ChBE Senior Design Presentation

65
Design of an Ethylene Production Plant via Ethanol Dehydration Team 06   The Minions - Vedant Didwania, Luke Harris, Alia Khan, and Sarah Leung

Transcript of ChBE Senior Design Presentation

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 1/65

Design of an Ethylene ProductionPlant via Ethanol Dehydration

Team 06  – The Minions - Vedant Didwania, Luke Harris, Alia Khan, and Sarah Leung

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 2/65

Agenda

2

•  Abstract• Project BackgroundExecutive Summary

• Reaction Scheme• Separation Scheme• Optimization

Optimum Design

• Projected Costs of Project• Market Pricing• Feasibility Simulation

Financial Analysis

• Environmental, Health, Safety Concerns• PotentialSustainability

• ConclusionFinal

Recommendations

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 3/65

BACKGROUND

Design of an Ethylene Production Plant via Ethanol Dehydration

3

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 4/65

Abstract

 Assess the feasibility and sustainability of developingan ethylene production facility capable of producing

25,000 pounds per hour of 99.5% by weight ethylene

To be used in plastic production facility in the

Champaign-Urbana area 15-year project scope

350 production days per year

Currently: Plant is purchasing ethylene

4Background

ReactionScheme

SeparationScheme

Economics EHS Sustainability

Conclusions

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 5/65

Relevance of Ethylene

Most highly produced organic compound globally 141M tons of ethylene was produced last year,

Up by 3M from the previous year

Slated to increase by around 6M

Ethylene itself has no final use

Building block for a large array of chemical products 

5Background

ReactionScheme

SeparationScheme

Economics EHS Sustainability

Conclusions

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 6/65

Innovation Map

6

EnvironmentallyF r ie n dl y

R e l ia b l e p r o d uc t i on f r o mn o n- f o s si l f u e l so u r ce

Polymer GradeE t h yl e n e

R e ne w a bl e LowerC a p it a l C o s t

S i m p le U n i tOperations

Produces Large

quantities of Product percracker

DehydrationReaction

C r a ck i n g

I n B r az i l In U S A

Ethanol fromS ug ar C an e

Ethanolf ro m C or n

Activated

AluminaCatalyst

SilicaC a t al y s t

SulfuricAcid

N a p h th a l e ne o r

o t h er F o s si lF u e l s o u rc e s

ABC ChemicalsV al u e

P r od u ct

Project Differences

Technology

R a w M at e r ia l

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 7/65

Ethanol Dehydration

Strengths: Simplicity

Environmentallyfriendly

Ethanol accessibility

Safer

Lower FCI than steam

cracking

Weaknesses: Higher raw material

cost

Smaller profit margin

7Background

ReactionScheme

SeparationScheme

Economics EHS Sustainability Conclusions

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 8/65

REACTOR SCHEME

Design of an Ethylene Production Plant via Ethanol Dehydration

8

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 9/65

Consists of feed pump, process heater, steam-injected reactorwith catalyst regenerator, two heat exchangers

Feed of 49473 lb/h of 95% ethanol and 4000 lb/h hps

Reaction Scheme

9Background

ReactionScheme

SeparationScheme

Economics EHS Sustainability Conclusions

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 10/65

Feed Pump P-101

Centrifugal carbon steel0.242 hp pump

Feeds storage ethanolinto process heater

Provides pressuregradient for entiredownstream process

P-101 Flow (lbmol/h)  1157 Discharge Pressure (psig)  2 Temperature (F)  77 Driver Type  Centrifugal Shaft Power (hp)  0.242 Material of Construction  Carbon Steel Number of spares  1 

10Background

ReactionScheme

SeparationScheme

Economics EHS Sustainability Conclusions

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 11/65

Process Heater H-101

Stainless steel natural gasfed fired heater

Heats ethanol feed to720°F because reactor

cannot heat reactants Simulated by a electric

heater in ChemCAD

H-101 Type  Fired Heater  Tube Pressure (psig)  2

Tube Temperature  720 Duty (MJ/hr)  37300 Fuel Type  Natural Gas Material of Construction  Stainless Steel 

11Background Reaction

SchemeSeparation

SchemeEconomics EHS Sustainability Conclusions

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 12/65

Recycle/Feed Mixing Valve

Three way valve to combine feed ethanol with recyclestream

Recycle stream has higher pressure therefore flow isdriven without need of pump

Improves safety and costs less Recycle placement determined on heat duty

If placed before H-101 would increase duty by 9% or

$300,000/yr

12Background Reaction

SchemeSeparation

SchemeEconomics EHS Sustainability Conclusions

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 13/65

Reactor R-101

Catalyzed PFR coupled withcatalyst regenerator

Operated isothermally bysteam injection

 Activated alumina ascatalyst

Simulated in ChemCAD asisothermal Kinetic Reactor

Jacketed Agitated IsothermalPFR in CAPCOST

R-101 Type  Jacketed Agitated

(Isothermal PFR) Volume (ft3)  1630 Operating Temperature

(F) 720 

Operating Pressure

(psia) 23 

Pressure Drop (psi)  4 Specifications  Steam Injected 

13Background Reaction

SchemeSeparation

SchemeEconomics EHS Sustainability Conclusions

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 14/65

R-101 Optimization

Sensitivity studies from Volume, Pressure, and Temperatureversus product flow rates to maximum ethylene productionwith optimizing ethylene selectivity

81% ethylene selectivity

1630 ft2 Reactor operating at 23 psia and 720°F

Catalyst options

Replacement every 90 days

4 reactors operating in series at 25% 50% 75% and 100%

catalyst purities Catalyst regenerator

Catalyst regenerator the cheapest option

14

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 15/65

Heat Exchanger E-101

Passes recycle streamwith reactor exit stream

Optimized by HEN

Savings of $560,000/yr in

operating by using heatintegration

E-101 Type  Floating Head Duty (MMBtu/hr)  3.9 Area (ft2)  599 Temperature of

Shell/Tube (F) 700/600 

LMTD End Points (F)  130.83 Pressure of Shell/Tube

(psig) 4.3/6.3 

Number of passes  1-shell/2-tube Material of Construction

Shell/Tube Stainless Steel/Stainless

Steel 

15Background Reaction

SchemeSeparation

SchemeEconomics EHS Sustainability Conclusions

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 16/65

Heat Exchanger E-102

Cools reactor exit streamfurther to separation

600°F to 185°F

Uses cooling water

Cheap and easy wayto cool

Optimized via HEN

methodology

E-102

Type  Floating Head

Duty (MMBtu/hr)  25.2

Area (ft2)  1150

Temperature of

Shell/Tube (F) 105/185

LMTD End Points (F)  242.39

Pressure of Shell/Tube

(psig) 5/5

Number of passes  1-shell/2-tube

Material of Construction

Shell/Tube Carbon Steel/Carbon

Steel

16Background Reaction

SchemeSeparation

SchemeEconomics EHS Sustainability Conclusions

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 17/65

SEPARATION SCHEME

Design of an Ethylene Production Plant via Ethanol Dehydration

17

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 18/65

Process Flow Diagram

EthanolRecycle

Background ReactionScheme

SeparationScheme

Economics EHS Sustainability Conclusions18

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 19/65

Flash Tanks

Removes excess water from process Two tanks with interstage cooling to reduce utilities usage

and unit sizes

Sensitivity study on ChemCAD utilized to determine

operating temperature

Background ReactionScheme

SeparationScheme

Economics EHS Sustainability Conclusions

V-101  V-102 Height (ft)  6.6  6.6 

Diameter (ft)  2.2  2.2 Orientation  Vertical  Vertical 

Pressure (psig)  4  4 Temperature (F)  185  110 

Material of Construction  Carbon Steel  Carbon Steel CBM  $16,700  $16,700 

19

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 20/65

Distillation Towers

3 Towers

ChemCAD used to simulate tower design

CAPCOST used to determine bare module unit costs

CBM includes vessel, pump, partial condenser, and kettlereboiler

Background ReactionScheme

SeparationScheme

Economics EHS Sustainability Conclusions

T-101 T-102 T-103Function Ethylene

RecoveryEthanol Recycle α-Butylene

Purity 99.5% wt. fraction - 99.8% wt. fraction

Production 25,527 lb/h

Ethylene

4,121 lb/h Ethanol 1,457 lb/h

ButyleneCBM  $379,600  $264,300  $301,400 

20

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 21/65

T-101 Optimization

Vary feed tray location to minimize condenser/reboiler duties

Feed location of 3 out of 6 trays optimal

Background ReactionScheme

SeparationScheme

Economics EHS Sustainability Conclusions

T-101 Height (ft)  34 

Diameter (ft)  1.8 Pressure (psig)  5 Temperature (F)  Top: -128

Bottom: 61 Number of Trays  6 

Feed Location  3 Reflux Rate  325 

Type of Trays  Stainless Steel Sieve Material of

Construction Stainless Steel 

21

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 22/65

T-102 Optimization

Feed location of 4 out of 8 trays optimal

Large reduction in duties can be seen in figure above

Background ReactionScheme

SeparationScheme

Economics EHS Sustainability Conclusions

T-102 Height (ft)  38 

Diameter (ft)  2 Pressure (psig)  5 Temperature (F)  Top: 83

Bottom: 182

Number of Trays 

Feed Location  4 Reflux Rate  62 

Type of Trays  Carbon Steel Sieve Material of

Construction Carbon Steel 

22

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 23/65

T-103 Optimization

Feed location of 8 out of 10 trays optimal

Not middle tray for the α-Butylene tower

Background ReactionScheme

SeparationScheme

Economics EHS Sustainability Conclusions

T-103 Height (ft)  42 

Diameter (ft)  2.3 Pressure (psig)  6.5 Temperature (F)  Top: 35

Bottom: 92 Number of Trays

 10

 Feed Location  8 Reflux Rate  42 

Type of Trays  Carbon Steel Sieve Material of

Construction Carbon Steel

23

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 24/65

Other Tower Equipment

Background ReactionScheme

SeparationScheme

Economics EHS Sustainability Conclusions

E-105  E-106  E-107  E-108  E-109  E-110 Type  Floating Head,

partial

condenser  Floating Head,

partial

condenser  Floating Head,

partial

condenser  Kettle Reboiler   Kettle Reboiler Kettle Reboiler  

Duty (MMBtu/hr)  -4.4  -0.63  -0.80  0.45  1.8  0.04  Area (ft2)  141  190  113  118  74.8  180 

Temperature -128  83  35  61  182  92 Pressure of

Shell/Tube

(psig) 5/5  4/4  5.3/5.3  6.3/6.3  5.5/5.5  6.3/6.3 

Number of

passes 1-shell/2-tube  1-shell/2-tube  1-shell/2-tube  Single Pass  Single Pass  Single Pass 

MOC

Shell/Tube Stainless

Steel/Stainless

Steel Carbon

Steel/Carbon

Steel Carbon

Steel/Carbon

Steel Carbon

Steel/Carbon

Steel Carbon

Steel/Carbon

Steel Carbon

Steel/Carbon

Steel P-102  P-103  P-104 

Flow (lbmol/h)  930  63  32 Discharge Pressure (psig)  4.3  6.3  6.5 

Temperature (F)  -128  83  35 Driver Type  Centrifugal  Centrifugal  Centrifugal 

Shaft Power (hp)  0.5  0.7  0.7 Material of Construction  Stainless Steel  Carbon Steel  Carbon Steel 

Number of spares  1  1  1 

Heat Exchangers:

Pumps:

24

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 25/65

Design Decisions

Flash Tanks with interstage coolingDistillation tower use

T-102

T-103Partial Condenser

Kettle Reboiler

HEN IntegrationSide-product use

Background ReactionScheme

SeparationScheme

Economics EHS Sustainability Conclusions25

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 26/65

ECONOMIC ANALYSIS

Design of an Ethylene Production Plant via Ethanol Dehydration

26

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 27/65

Financial Analysis

Background ReactionScheme

SeparationScheme

Economics EHS Sustainability Conclusions

•  Annual Cost of Ethanol: -$138 million•  Annual Revenue from Ethylene: $130 million

• Bare Module Costs: -$5.6 million•  Annual Utility Costs: -$5.92 million

• NPV: -200.58 million

Quick Overview

27

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 28/65

Economic Feasibility

Production life of 15 years

2 years construction time

60% FCI Year 1, 40% FCI Year 2

Year 1 Start-up: 60% of

full production capacity. 350 production days

Land cost: $250,000

7-year Modified Accelerated

Cost Recovery System (MACRS) Discount rate: 10%

Tax rate of 40%

Background ReactionScheme

SeparationScheme

Economics EHS Sustainability Conclusions28

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 29/65

Cost Estimations

Background ReactionScheme

SeparationScheme

Economics EHS Sustainability Conclusions29

Fixed Capital Investment – ($9.53 million) Grassroots basis

Bare Module Costs

Working Capital – ($15.28 million)

Non-depreciable amount Raw Material, FCI, Operating Labor

Cost of Manufacturing Per Year - ($186.43 million) Tertiary Wastewater system

FCI, Catalyst Costs, Operating Labor Costs, Utility Costs, RawMaterial Costs

Catalyst Costs – ($50k at $2.20/kg)

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 30/65

Cost Components - Equipment

Fired heater accounts for over 64% of total equipment costs& 66.7% of utility costs.

Background ReactionScheme

SeparationScheme

Economics EHS Sustainability Conclusions30

Heat Exchanger 

Fired Heater 

Pumps

Reactors

Towers

Flash Tank

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 31/65

Profitability Analysis

(250,000,000.00)

 (200,000,000.00)

 (150,000,000.00)

 (100,000,000.00)

 (50,000,000.00)

 -0 2 4 6 8 10 12 14 16

   P  r  o   j  e  c   t   V  a   l  u  e ,

   $

Project Life, Years

Discounted Cumulative Cash Flow, Current Position

NPV: -200.58 million

Background ReactionScheme

SeparationScheme

Economics EHS Sustainability Conclusions31

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 32/65

Profitability Analysis

Background ReactionScheme

SeparationScheme

Economics EHS Sustainability Conclusions32

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 33/65

Fluctuating Nature - Ethylene

Background ReactionScheme

SeparationScheme

Economics EHS Sustainability Conclusions33

Price of the product can vary from -50% to 20% in a typicalanalysis 

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 34/65

Fluctuating Nature - Ethanol

Background ReactionScheme

SeparationScheme

Economics EHS Sustainability Conclusions34

Raw material availability and pricing can fluctuate from adynamic range of -25% to 50%

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 35/65

Break Even Points: NPV

Price of Ethylene ($/lb) 0.670  0.680  0.690  0.700  0.710 

Price of Ethanol ($/lb)  Net Present Value ($, millions) 0.305  -63.16  -55.62  -48.08  -40.54  -33.01 0.300  -54.49  -46.95  -39.41  -31.87  -24.34 0.295  -45.82  -38.28  -30.74  -23.21  -15.67 0.290  -37.16  -29.62  -22.08  -14.54  -7.00 0.285  -28.49  -20.95  -13.41  -5.87  1.67 0.280  -19.82  -12.28  -4.74  2.80  10.34 

Background ReactionScheme

SeparationScheme

Economics EHS Sustainability Conclusions35

Break even point: $0.283/lb ethanol and $0.695/lbethylene

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 36/65

Cash Flow Diagrams

36

CFD Scenarios

Ethylene($/lb)

Ethanol ($/lb) NPV PaybackPeriod

Current MarketPrice

0.61 0.35 -200.58M N/A

Increase in

Ethylene Price

0.892 0.35 +3.019M 2.9

Decrease inEthanol Price

0.61 0.237 +3.53M 2.8

Increase inEthylene andDecrease inEthanol Prices

0.710 0.280 +$2.84M 3.4

Background ReactionScheme

SeparationScheme

Economics EHS Sustainability Conclusions

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 37/65

EH&S

Design of an Ethylene Production Plant via Ethanol Dehydration

37

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 38/65

Health and Safety Concerns

Importance of Safety

Based on decisions made by administrators

Legal and moral responsibility to employees and public

EH&S Concerns

Daily safety for plant operation Recommend tested pilot scale process

Thermal impact jacket to prevent heat buildup from reactorT&P

Transportation and storage of chemicals Endothermic reaction to avoid potential runaway

Background ReactionScheme

SeparationScheme

Economics EHS Sustainability Conclusions38

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 39/65

Background ReactionScheme

SeparationScheme

Economics EHS Sustainability Conclusions

R-101 P&ID

39

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 40/65

Background ReactionScheme

SeparationScheme

Economics EHS Sustainability Conclusions

T-101 P&ID

40

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 41/65

Environmental Considerations

Environmental Compliance - EPA Regulation

LDAR – Leak Detection And Response

MON – Miscellaneous Organic chemical NESHAP

HON – Hazardous Organic chemical NESHAP

NESHAP – National Emission Standards for Hazardous AirPollutants

Waste facility auditing

MSDS Reports

Purging Storage

Background ReactionScheme

SeparationScheme

Economics EHS Sustainability Conclusions41

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 42/65

SUSTAINABILITY

Design of an Ethylene Production Plant via Ethanol Dehydration

42

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 43/65

Corporate Culture

Process Safety Management Plan

 Avenue for education and understanding of safety needs

Comprehensive management and advisory board

Emphasis on integrating safe technology and SOPs

Monthly meetings to discuss various incidents and share ideas

Safety awareness courses for all employees and administrators

Preventative first-aid proficiency courses

Industrial Recycling

Growing global market for scrapping and industrial recycling

Bureau of Industrial Recycling (BIR)

Possible to attain a higher salvage value for equipment and sideproducts

43Background Reaction

SchemeSeparation

SchemeEconomics EHS Sustainability Conclusions

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 44/65

Sustainability

Factors to Consider

Long term feasibility of operating the plant

Role of materials and products

Economic, societal and environmental impacts

Value proposition for the future

Price Sensitivity

Selling price of 1 lb ethylene vs purchase price of 1.84 lb ethanol

Operate when ethanol price is low, ethylene price high

Current prices are not favorable

Fluctuations in upstream product prices

Background ReactionScheme

SeparationScheme

Economics EHS Sustainability Conclusions44

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 45/65

Ethanol Price Trends

45Background Reaction

SchemeSeparation

SchemeEconomics EHS Sustainability Conclusions

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 46/65

Ethylene Price Trends

Background ReactionScheme

SeparationScheme

Economics EHS Sustainability Conclusions46

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 47/65

Economic Considerations

Economic Considerations

NPV target prices: $0.283/lb ethanol and $0.695/lbethylene

Current prices: $0.35/lb ethanol and $0.61/lb ethylene

Decreasing fossil fuel supply leading to increased crackingprices

Growing market for alternative fuel sources and moreefficient production methods

Realistic to expect these prices in the future

Background ReactionScheme SeparationScheme Economics EHS Sustainability Conclusions47

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 48/65

Accessibility

Location Factors

Transportation infrastructure and plant accessibility

Necessary to be able to access site to build and operate

Personnel movement and access to nearby amenities

Cost of transportation of raw materials and products Regional bioethanol and ethylene

Background ReactionScheme SeparationScheme Economics EHS Sustainability Conclusions48

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 49/65

Societal Considerations

Societal Considerations

Quality of workforce and access to research anddevelopment

Employee benefits with competitive wages, good morale

 Accelerated job creation and downstream growth of localeconomy

Improved quality of life with strong community culture

49Background ReactionScheme SeparationScheme Economics EHS Sustainability Conclusions

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 50/65

Environmental Considerations

Environmental Considerations

Renewable ‘green’ bioethanol feedstock 

Lower carbon emissions

Not a finite resource

Important to maintain reserves of natural resources Rising crude prices for cracking lead to higher ethylene

prices since this is the most common choice of technology

Governmental tax and infrastructure benefits

Background ReactionScheme SeparationScheme Economics EHS Sustainability Conclusions50

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 51/65

CONCLUSION

Design of an Ethylene Production Plant via Ethanol Dehydration

51

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 52/65

Final Recommendations

Profitability controlled by volatile fluctuations in ethanol and

ethylene prices

Self-production of ethylene vs outright purchase

 Advantages

Downstream societal and environmental effects of design

Disadvantages

High utility and heating costs in addition to changing prices

Short term recommendation

Not to pursue

Long term recommendation

 Assess market dynamics

Background ReactionScheme SeparationScheme Economics EHS Sustainability Conclusions52

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 53/65

APPENDIX SLIDES

Design of an Ethylene Production Plant via Ethanol Dehydration

53

R ti D t

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 54/65

Reaction Data

54

T a bl e 1 : K i ne ti c D a ta w i th A ct i va te d A lu mi n a C at a ly s t

Reaction A  j (mole atm-1

  kgcat-1

 

s-1

)

Ea ( kJ m ol e-

1)

k  j  R at e L aw

C2H5OH→C2H4  + H2O 5.41 x 106

  147.7 k1  r1 = k1P C2H5O H

2 C2H5OH→(C2H5)2O +H2O

9.55 x 107  101.0 k2  r2 = k2P 2  C2H5O H 

(C2H5)2O→ 2C2H4 + H2O 2.79 x 1010

  135.0 k3  r3 = k3P (C2H5)2O 

C2H5OH→ C2H4O + H2  2.78 x 108

  138.4 k4  r4 = k4P C2H5O H

2C2H4→ C4H8  1.45 x 107

  113.7 k5  r5 = k5P2

  C2H4 

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 55/65

EH&S

Reactor HAZOP

55Background ReactionScheme SeparationScheme Economics EHS Sustainability Conclusions

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 56/65

Background ReactionScheme SeparationScheme Economics EHS Sustainability Conclusions

EH&S

Tower T-101 HAZOP

56

R t S T bl

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 57/65

Reactor Summary Tables

57

Table 1: Process Heater Equipment Summary Table

  H-101

Type Fired Heater

T u be P r es s ur e ( p si g ) 2

Tube Temperature 700

Duty (MJ/hr) 37300

Fuel Type Natural Gas

M a t e ri a l o f Co n s tr u c t io n S t a i nl e s s S t e e l 

T a b le 2 : R e ac t o r E q u i p me n t S u m ma r y T a b l e

  R-101

Type Jacketed Agitated (Isothermal PFR)

Volume (ft3

) 1630Opera ting Tempera ture (F) 720

Operating Pressure (psia) 23

Press ure Dr op (psi) 4

Specifications Steam Injected

H t E h S T bl

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 58/65

Heat Exchanger Summary Table

58

T a b le 1 : P r o ce s s H e at E x c ha n g er s E q u i pm e n t S u m ma r y T a b le

  E-101 E-102 E- 103 E-104

Type Floating Head Floating Head Floating Head Floating Head

Duty

(MMBtu/hr)

3.9 25.2 12.4 1.8

A re a ( ft2

) 599 1150 3030 224

Temperature of

Shell/Tube (F)

700/600 105/185 110/115 87/80

LMTD End Points

(F)

130.83 242.39 45.21 89.78

Pressure of 

Shell/Tube (psig)

4.3/6.3 5/5 5/5 5/5

N um be r o f  

passes

1-shell/2-tube 1-shell/2-tube 1-shell/2-tube 1-shell/2-tube

M a te r ia l o f

Construction

Shell/Tube

Stainless

Steel/Stainless

Steel

Carbon

Steel/Carbon

Steel

Carbon

Steel/Carbon

Steel

Stainless

Steel/Stainless

Steel

S ti E i t T bl

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 59/65

Separation Equipment Table

59

T a bl e 1 : F l as h T a nk E q u ip m en t S u m m ar y T a b l e

V-101 V-102

Heigh t ( ft) 6.6 6.6

Diameter (ft) 2.2 2.2

Orientation Vertical Vertical

Pressure (psig) 4 4

Temperature (F) 185 110

Material of Construction Carbon Steel Carbon Steel

T a b l e 2 : D i s t il l a t io n T o w e r Eq u i p me n t S u m ma r y T a b le

  T -101 T-102 T-103

Heigh t ( ft) 34 38 42

Diameter (ft) 1.8 2 2.3

Pressure (psig) 5 5 6.5

T e mp e ra t ur e ( F ) T o p: - 1 28

B o tt om : 6 1

T op : 8 3

B ot to m: 1 82

T op : 3 5

B o tt o m: 9 2Number of Trays 6 8 10

Feed Location 3 4 8

Reflux Rate 325 62 42

Type of Trays Stain less Steel Sieve Carbon Steel Sieve Carbon Steel Si eve

M a te r ia l o f

Construction

Stainless Steel Carbon Steel Carbon Steel

T S T bl

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 60/65

Tower Summary Table

60

T a b le 1: Dist illa t ion T ow er Hea t Exch a n g ers Eq u ip men t S u mma ry T ab le

  E-10 5 E-1 06 E -107 E-1 08 E-109 E-110

Type Flo atingHead, partial

c o ndenser

Flo atingHead,

partial

c o ndenser

Flo atingHead,

partial

c o ndenser

KettleRebo iler

KettleR e b oi l er

KettleRebo iler

Duty

( M M B tu/hr

)

-4. 4 -0. 63 -0 .80 0.45 1. 8 0.0 4

A r ea ( f t2

) 141 1 90 1 13 118 74 .8 180

Temperatu

re

-128 8 3 3 5 61 18 2 92

Pressure o f 

Shell/Tube( psig)

5/ 5 4 /4 5 . 3/5. 3 6.3/ 6. 3 5. 5/5 .5 6.3 /6 .3

N u m be r o f  

passes

1-shell/2-

tube

1-shell/2-

tube

1-shell/2-

t u b e

Single

Pass

Single Pass Single

Pass

M a t e r ia l o f

Co nstruc ti

o n

Shell/Tube

Stainless

Steel/Stainle

ss Steel

Carbo n

Steel/Carbo

n Steel

Carbo n

Steel/Carbo

n Steel

Carbo n

Steel/Carb

o n Steel

Carbo n

Steel/Carb

o n Steel

Carbo n

Steel/Carb

o n Steel

T a b le 2 : P u m p s E q u i p m en t S u m ma r y T a b le

  P-101 P-102 P-103 P-10 4Flo w ( lbmo l/ h) 11 57 9 30 63 3 2

Disc harge

Pressure ( psig)

2 4 .3 6. 3 6 .5

Tem perat ure ( F) 77 -128 83 3 5

D ri ve r T yp e C en tr if ug al C en tr if ug al C en tr if ug al C en tr if ug al

Shaft Pow er (h p) 0. 242 0 .5 0. 7 0 .7

M a t e r ia l o f

Co nstruc tio n

Car bon Steel Stainless Steel Carbo n St eel Carbo n Steel

N u m be r o f  

spares

1 1 1 1

R ti P St T bl

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 61/65

Reaction Process Steam Table

61

S ti P St T bl

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 62/65

Separation Process Stream Table

62

Distillation Process Stream Table

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 63/65

Distillation Process Stream Table

63

Appendix CAPCOST

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 64/65

Appendix - CAPCOST

Background ReactionScheme SeparationScheme Economics EHS Sustainability Conclusions64

Appendix Utility Costs

8/12/2019 ChBE Senior Design Presentation

http://slidepdf.com/reader/full/chbe-senior-design-presentation 65/65

Appendix  – Utility Costs