Charge-Changing Neutrino Scattering from the Deuteron J. W. Van Orden ODU/Jlab Collaborators: T. W....

23
Charge-Changing Neutrino Scattering from the Deuteron J. W. Van Orden ODU/Jlab Collaborators: T. W. Donnelly and Oscar Morino MIT W. P. Ford University of Tennessee Final State Nucleons for Neutrino-Nucleus Interactions, 5/15/2015

Transcript of Charge-Changing Neutrino Scattering from the Deuteron J. W. Van Orden ODU/Jlab Collaborators: T. W....

Page 1: Charge-Changing Neutrino Scattering from the Deuteron J. W. Van Orden ODU/Jlab Collaborators: T. W. Donnelly and Oscar Morino MIT W. P. Ford University.

Charge-Changing Neutrino Scattering from the Deuteron

J. W. Van OrdenODU/Jlab

Collaborators:

T. W. Donnelly and Oscar MorinoMIT

W. P. FordUniversity of Tennessee

Final State Nucleons for Neutrino-Nucleus Interactions, 5/15/2015

Page 2: Charge-Changing Neutrino Scattering from the Deuteron J. W. Van Orden ODU/Jlab Collaborators: T. W. Donnelly and Oscar Morino MIT W. P. Ford University.

Introduction• Detection of the final-state particles can be used to

determine the initial neutrino energy.

• The deuteron is the simplest nucleus containing a neutron and can be calculated relatively easily.

• This reaction can then be used to measure the incident neutrino flux.

• This reaction can be used to study aspects of the weak interactions.

• Calculation for deuterium can be used as a testbed for adding relativistic and pionic contributions to calculations for heavier nuclei.

Page 3: Charge-Changing Neutrino Scattering from the Deuteron J. W. Van Orden ODU/Jlab Collaborators: T. W. Donnelly and Oscar Morino MIT W. P. Ford University.

Kinematics

lepton plane

hadron plane

Since the final state includes two protons, double counting can be avoided by always choosing p1 to be the proton with the largest momentum.

Page 4: Charge-Changing Neutrino Scattering from the Deuteron J. W. Van Orden ODU/Jlab Collaborators: T. W. Donnelly and Oscar Morino MIT W. P. Ford University.
Page 5: Charge-Changing Neutrino Scattering from the Deuteron J. W. Van Orden ODU/Jlab Collaborators: T. W. Donnelly and Oscar Morino MIT W. P. Ford University.

The Model

The model used for the calculations shown here is based on modifications to a model of deuteron electrodisintegration* developed for use at Q2 of several GeV2.

The model is based on the Bethe-Salpeter equation and is manifestly covariant.

Details of the electrodisintegration calculations can be found in the references below.

*S. Jeschonnek and J. W. Van Orden, Phys. Rev. C 78, 014007 (2008); Phys. Rev. C 80, 054001 (2009); Phys. Rev. C 81, 014008 (2010).

Page 6: Charge-Changing Neutrino Scattering from the Deuteron J. W. Van Orden ODU/Jlab Collaborators: T. W. Donnelly and Oscar Morino MIT W. P. Ford University.

The Bethe-Salpeter Equation

Page 7: Charge-Changing Neutrino Scattering from the Deuteron J. W. Van Orden ODU/Jlab Collaborators: T. W. Donnelly and Oscar Morino MIT W. P. Ford University.

The Deuteron Vertex Function

Page 8: Charge-Changing Neutrino Scattering from the Deuteron J. W. Van Orden ODU/Jlab Collaborators: T. W. Donnelly and Oscar Morino MIT W. P. Ford University.

The Current Operator

Page 9: Charge-Changing Neutrino Scattering from the Deuteron J. W. Van Orden ODU/Jlab Collaborators: T. W. Donnelly and Oscar Morino MIT W. P. Ford University.

The Impulse ApproximationThe impulse approximation to CCν scattering from the deuteron is defined by the Feynman diagrams:

We will show three approximations:

1. Plane Wave Impulse Approximation (PWIA): diagram (a) only.2. Plane Wave Born Approximation (PWBA): diagrams (a)+(b).3. Distorted Wave Born Approximation (DWBA): diagrams (a)+(b)+(c).

On Mass Shell

Antisymmetric scattering matrix

Page 10: Charge-Changing Neutrino Scattering from the Deuteron J. W. Van Orden ODU/Jlab Collaborators: T. W. Donnelly and Oscar Morino MIT W. P. Ford University.

Deuteron Vertex Function

The invariant functions gi are given by

where

a b

is the magnitude of the three-momentum in the deuteron rest frame.

Charge conjugation matrix

Page 11: Charge-Changing Neutrino Scattering from the Deuteron J. W. Van Orden ODU/Jlab Collaborators: T. W. Donnelly and Oscar Morino MIT W. P. Ford University.

The Single-Nucleon Current Operator

where

and

The weak form factors used in the calculations shown here are:

Page 12: Charge-Changing Neutrino Scattering from the Deuteron J. W. Van Orden ODU/Jlab Collaborators: T. W. Donnelly and Oscar Morino MIT W. P. Ford University.

Final State InteractionsThere are no reliable meson-exchange models of NN scattering for the invariant masses where pions production channels are open.

The scattering amplitudes must be obtained from data.

The scattering amplitudes are represented by a parameterization in terms of five Fermi invariants.

• A complete description of on-shell NN scattering.

• Lorentz invariant.

• Has complete spin dependence.

Page 13: Charge-Changing Neutrino Scattering from the Deuteron J. W. Van Orden ODU/Jlab Collaborators: T. W. Donnelly and Oscar Morino MIT W. P. Ford University.

We use two approaches:

1. The invariant functions are constucted from the SAID helicity amplitudes. pp amplitudes are available for s<9.16 GeV2

2. We have recently performed a fit of the available NN data from s=5.4 GeV2 to s=4000 GeV2 based on a Regge model.*

In the calculations shown here, only on-shell contributions from the pp amplitudes are used.

* W. P. Ford and J. W. Van Orden, Phys. Rev. C 87, 014004 (2013). W. P. Ford, Ph.D. Dissertation, http://arxiv.org/abs/1310.0871

Page 14: Charge-Changing Neutrino Scattering from the Deuteron J. W. Van Orden ODU/Jlab Collaborators: T. W. Donnelly and Oscar Morino MIT W. P. Ford University.

cm (deg)

0 10 20 30 40 50 60 70 80 90

100

101

s= 5.913 GeV2s= 5.934 GeV2ReggeSAID

Elastic pp Scattering

Page 15: Charge-Changing Neutrino Scattering from the Deuteron J. W. Van Orden ODU/Jlab Collaborators: T. W. Donnelly and Oscar Morino MIT W. P. Ford University.

For the purpose of initial study of this reaction, we assume kinematics such as are used in electron scattering. That is, the initial neutrino energy is assumed to be known and the muon and proton 1 are detected in the final state.

(GeV)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

q (

GeV

)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(GeV)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

d3 /(d

'd

k')

(G

eV-3

)

0

5.0x10-11

1.0x10-10

1.5x10-10

2.0x10-10

2.5x10-10

3.0x10-10

3.5x10-10

4.0x10-10

PWIAPWBADWBA

Integrated Cross Section

Maximum

10% of Maximum

Cross Section at Maximum

Page 16: Charge-Changing Neutrino Scattering from the Deuteron J. W. Van Orden ODU/Jlab Collaborators: T. W. Donnelly and Oscar Morino MIT W. P. Ford University.

(GeV)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

q (

GeV

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(GeV)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

d3 /(d'

dk

') (

GeV

-3)

10-13

10-12

10-11

10-10

10-9

10-8

PWIAPWBADWBA

(GeV)0.0 0.1 0.2 0.3

0

2x10-9

4x10-9

6x10-9

8x10-9

1x10-8

Page 17: Charge-Changing Neutrino Scattering from the Deuteron J. W. Van Orden ODU/Jlab Collaborators: T. W. Donnelly and Oscar Morino MIT W. P. Ford University.

Exclusive Cross Section

where

and

O. Moreno, T. W. Donnelly, W. P. Ford and J. W. Van Orden, Phys. Rev. D 90, 013014 (2014).

for neutrino scatteringfor anti-neutrino scattering

Page 18: Charge-Changing Neutrino Scattering from the Deuteron J. W. Van Orden ODU/Jlab Collaborators: T. W. Donnelly and Oscar Morino MIT W. P. Ford University.

p2 (GeV) 0.0 0.2 0.4 0.6 0.8 1.0

10-15

10-14

10-13

10-12

10-11

10-10

10-9

PWIAPWBADWBA SAIDDWBA Regge

p2 (GeV)0.00 0.10 0.20 0.30

10-13

10-12

10-11

10-10

10-9

10-8

Exclusive Cross Section Calculations

Page 19: Charge-Changing Neutrino Scattering from the Deuteron J. W. Van Orden ODU/Jlab Collaborators: T. W. Donnelly and Oscar Morino MIT W. P. Ford University.

0.00 0.05 0.100

1x10-92x10-93x10-94x10-95x10-9

p2 (GeV)0.0 0.2 0.4 0.6 0.8 1.0

10-14

10-13

10-12

10-11

10-10

10-9

10-8=0 deg=36 deg=72 deg=108 deg=144 deg=180 deg

Azimuthal Angular Dependence

Page 20: Charge-Changing Neutrino Scattering from the Deuteron J. W. Van Orden ODU/Jlab Collaborators: T. W. Donnelly and Oscar Morino MIT W. P. Ford University.

p2 (GeV)0.0 0.2 0.4 0.6 0.8 1.0

10-14

10-13

10-12

10-11

10-10

10-9

10-8

MA=1.03 GeVMA=1.3GP=0

Sensitivity to the Weak Form Factors

Page 21: Charge-Changing Neutrino Scattering from the Deuteron J. W. Van Orden ODU/Jlab Collaborators: T. W. Donnelly and Oscar Morino MIT W. P. Ford University.

Summary• We have produced a working calculation of CCν for

the deuteron in the DWBA designed for use at large energies.

• We are just beginning to explore the results of this calculation.

• The existing calculations indicate that the bulk of the cross section is produced at forward lepton scattering angles with small energy and momentum transfer.

• The exclusive calculations indicate that the cross sections are dominated by high-momentum protons close to q.

Page 22: Charge-Changing Neutrino Scattering from the Deuteron J. W. Van Orden ODU/Jlab Collaborators: T. W. Donnelly and Oscar Morino MIT W. P. Ford University.

• The effects of final state interactions in this region are small but not necessarily neglegible.

• The exclusive cross sections are sensitive to the axial form factor GA(Q2).

• Inclusion of Δ currents is underway.

Page 23: Charge-Changing Neutrino Scattering from the Deuteron J. W. Van Orden ODU/Jlab Collaborators: T. W. Donnelly and Oscar Morino MIT W. P. Ford University.

p2 (GeV) 0.0 0.2 0.4 0.6 0.8 1.0

10-1410-1310-1210

-1110-1010-910-810

-710-610-510-410

-3

Comparison of Electron and Neutrino Scattering