Charge and Statistics of Dilute Laughlin Quasiparticles

20
Charge and Statistics of Dilute Laughlin Quasiparticles C. L. Kane University of Pennsylvania I. Introduction II. Transmission of Dilute Quasiparticles through a point contact Laughlin Quasiparticle and Shot Noise Corbino Geometry (Moty Heiblum et al. ’03) Telegraph Noise and fractional statistics Luttinger Liquid Theory Three Terminal Geometry for preparing “dilute quasiparticle beam” (Moty Heiblum et al. ’02) Shot Noise Puzzle Luttinger Liquid Theory PRL 90, 226802 (03) III. Proposed measurement of fractional statistics: Telegraph Noise PRB 67, 45307 (03) w/ Matthew Fisher (ITP)

Transcript of Charge and Statistics of Dilute Laughlin Quasiparticles

Charge and Statistics of Dilute Laughlin Quasiparticles

C. L. Kane University of Pennsylvania

I. Introduction

II. Transmission of Dilute Quasiparticlesthrough a point contact

• Laughlin Quasiparticle and Shot Noise

• Corbino Geometry (Moty Heiblum et al. ’03)• Telegraph Noise and fractional statistics• Luttinger Liquid Theory

• Three Terminal Geometry for preparing“dilute quasiparticle beam”

(Moty Heiblum et al. ’02)• Shot Noise Puzzle• Luttinger Liquid Theory

PRL 90, 226802 (03)

III. Proposed measurement of fractional statistics: Telegraph Noise

PRB 67, 45307 (03) w/ Matthew Fisher (ITP)

Laughlin Quasiparticle for ν = 1/m

• Energy Gap• Quantized Hall Conductance

Fractionally Charged Excitations

xy xydQ dE ddt dt

σ σ Φ= ⋅ =∫

( / ) / *xyQ h e e m eσ= = ≡

ν = 1/m

σxx = 0σxy = (1/m)e2/h

Fractional Statistics

• Phase Θ = π/m under interchange:

• Phase when one circles another:

e*

e*

Halperin 1984;Arovas, Schrieffer, Wilczek 1984

ie ΘΨ → Ψ

2ie ΘΨ → Ψ

• Signature of topological orderThouless 1989;Wen, Niu 1990

m-fold topologicaldegeneracy on torus

Measurement of Fractional Charge1. Capacitive Measurement

Resonant Tunneling Through Anti-dotGoldman & Su (Science, 1995)

∆VBG = e*/C

2. Shot Noise MeasurementBackscattering at Quantum Point Contact

Kane, Fisher (PRL 1994);De Picciotto et al. (Nature 1997); Glattli et al. (PRL 1997)

ItV

0<I2>ω~0 = e* Ib<I2>ω~0 = e It

Ibe

-e-e*

e* 0

V

Strong Pinch Off Weak Pinch Off

Electron Tunneling Quasiparticle Tunneling

Three Terminal ConfigurationComforti et al. (Nature 2002)

• When QPC2 is open, a “Dilute Beam” of quasiparticles is isolated in lead 3.

• Transport of Dilute beam through QPC2 probestransmission of individual quasiparticles.

Transmission of Dilute QuasiparticlesThrough a Point Contact

Dilute : q ~ .45 e

Not Dilute : q ~ e

Can Dilute Charge e/3 Quasiparticles Traverse a Nearly Opaque Barrier ?

q

t1

Comforti et al. (Nature 2002)

e over three ?

How can that be ?

E THREEe over three.

Luttinger Liquid Model : ν = 1/m

[ ]3

2

1

1 1 2 2 2 3

( )4

v cos( ) v cos( )

Fi x i i

i

mvH dx x

Vt

φπ

φ φ φ φ=

= ∂ +

− − + −

∑∫

Analysis:

QPC1:• Perturbative for small v1 (Dilute Limit)

QPC2:• Perturbative for small v2

• Perturbative for large v2 (small t2)• Exact Solution for m=2 via fermionization

Perturbative Analysis1. Small t2 (T<<V)

2. Small v2 (T<<V)

2 2 2 2/ 31 2( ) v t m mI V c V + −=

2 2 2 2/ 31 2( ) v t m mS V ec V + −=

2 21 2

1 21 2/ 2 2 /

v v( , ) 1m mI V T c cV T− −

⎡ ⎤= −⎢ ⎥

⎣ ⎦2 21 2

1 31 2/ 2 2 /

v v( , ) * 1m mS V T e c cV T− −

⎡ ⎤= −⎢ ⎥

⎣ ⎦

22

2-2/m

v*T

Q e c= +

Q e=

Perturbation theory diverges for T=0 even for fixed finite V.

Exact Solution

1. Zero Temperature:

For m=2 map problem to free fermions

2

in 42

2( ) ( ) 1 ( )16vVI V I V K

π⎛ ⎞

= − −⎜ ⎟⎝ ⎠

( ) ( )S V eI V=

Transmission through QPC2

V/v22

Q = e , independent of v2, even when transmission through QPC2 is nearly perfect.

2. Finite Temperature:

Limits T 0 and v2 0 do not commute:

Q(T 0,v2=0) = e/m

Q(T=0,v2 0) = e

A nasty integral

= 1 (independent of X) !

with

Interpretation: Andreev ReflectionThree possible scattering products

for an incident quasiparticle

1. Transmission

Probability T

2. Reflection

Probability R

3. Andreev Reflection

Probability A

Theory predicts T=0 at zero temperature• Strong Pinch-off: R~1, 0<A<<1• Weak Pinch-off: R=1-1/m, A=1/m

Observe Andreev processes by measuring correlations between transmitted and reflected currents.

What about the experiments?

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

23mK 20% Dilution23mK 10% Dilution40mK 20% Dilution74mK 20% Dilution

Effe

ctiv

eC

harg

e, q

2/e

Transmission of QPC2, t2

Theoryfor T 0

The measured charge does approach e for small t2 and low temperature, but “high” temperaturedata remains unexplained.

• Role of irrelevant operators, eg. (dφ/dx)3

• Role of smooth edges near point contact.

Fractional Statistics

“h/e”

• Phase Θ = π/m under interchange:

• Phase when one circles another:

e*

e*

e*

• Model: Bosons + Statistical Flux

Halperin 1984;Arovas, Schrieffer, Wilczek 1984

*2 ( / )

2 /

e h e

Θ =

=

ie ΘΨ → Ψ

2ie ΘΨ → Ψ

Measurement of Fractional StatisticsQuantum Interference Necessary To

Measure Statistical Phase

Two Point Contact InterferometerChamon et al. (1997)

Φ

I = I0 + ∆I cos[e* Φ /h + 2Θ Nqpenc]

Aharonov Bohm Phase Statistical Phase

I

• Net phase changes by 2Θ = 2π/m when qp tunnels from outside ring to inside of ring.

• Equilibrium h/e* oscillations eliminated by qp tunneling.

Y. Ji, Y. Chung, D. Sprinzak, M. Heiblum, D. Mahalu and H. Shtrikman, Nature (03)

A “Mach-Zehnder Interferometer”

An Ohmic contact in the middle of a ring

D1

S

BS1 M1

M2 BS2

D2

airbridge

QPC1

MG1

SD1

QPC2

mesa

MG2

D2

0 50 100 150 2000

5

10

15

-9.0 -7.5 -6.0 -4.5 -3.0

Time (minute) ~ Magnetic Field

Modulation Gate Voltage, VMG (mV)

Curr

ent

(a.u

.)

ν = 1

Telegraph Noise in ring with inner contact:A Direct Signature of Fractional Statistics

• Net phase changes by 2Θ = 2π/m when qp passes from lead 1 or 2 to lead 3.

• m-state telegraph noise for n = 1/m

• Related to m-fold “topological degeneracy”

• <I2>ω~0 = e* ∆I2/I3

Chiral Luttinger Liquid Model

( * ) ( * )*v vi e V t i e V tU e eα α α αφ φα α α α ακ κ∆ − − ∆ −+ −= +

Tunneling at QPCα :

Klein Factors

( )( )

232

2 2~03 3

coth * / 2*2 1 sin / sinh * / 2

e V Te III e V Tω

∆=+ Θ

Low Frequency Noise :

[ ]3 3

2

1 1( )

4F

i x i ii

mvH dx x Uαα

φπ = =

= ∂ +∑ ∑∫

2

3

*~2

e II∆

2 2

23

*~4 sin

e IG T

∆Θ

e*V3 >> kT

e*V3 << kT

Conclusion• Fractionally charged quasiparticles can not traverse

a nearly opaque barrier. At T=0 they can’t even getpast a nearly perfectly transmitting barrier!

• Telegraph Noise is predicted for a ring with an inner contact. It is a direct consequence of a fractional statistical phase, and has a unique signature in the low frequency noise.

Questions• Origin of observed suppression of transmitted

charge for moderately weak tunneling and moderately low temperature?

Smooth edges?Irrelevant operators?

• Observation of Andreev processes?

• Exact Solution for n=1/3?

• Telegraph Noise for Hierarchical Quantum Hall States?

• Effect of dephasing on edge state transport?