Characterizing the response to face pareidolia in human category … · 2 Abstract The neural...

22
1 Characterizing the response to face pareidolia in human category-selective visual cortex Susan G Wardle* 1 , Kiley Seymour 2 & Jessica Taubert 3 1 Department of Cognitive Science and ARC Centre of Excellence in Cognition and its Disorders, 16 University Avenue, Macquarie University, New South Wales, 2109, Australia. 2 School of Social Sciences and Psychology, Western Sydney University, Sydney, New South Wales, Australia. 3 Section on Neurocircuitry, Laboratory of Brain and Cognition, The National Institute of Mental Health. 10 Center Drive, Bethesda, Maryland, 20892, USA. * Corresponding Author Dr Susan Wardle Department of Cognitive Science 16 University Avenue Macquarie University New South Wales, 2109, Australia. Ph: +61 2 9850 4072 [email protected] . CC-BY-NC-ND 4.0 International license available under a was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made The copyright holder for this preprint (which this version posted December 13, 2017. ; https://doi.org/10.1101/233387 doi: bioRxiv preprint

Transcript of Characterizing the response to face pareidolia in human category … · 2 Abstract The neural...

  • 1

    Characterizing the response to face pareidolia in human

    category-selective visual cortex

    Susan G Wardle*1, Kiley Seymour2 & Jessica Taubert3

    1Department of Cognitive Science and ARC Centre of Excellence in Cognition and its Disorders, 16 University Avenue,

    Macquarie University, New South Wales, 2109, Australia.

    2School of Social Sciences and Psychology, Western Sydney University, Sydney, New South Wales, Australia.

    3Section on Neurocircuitry, Laboratory of Brain and Cognition, The National Institute of Mental Health. 10 Center Drive,

    Bethesda, Maryland, 20892, USA. 


    * Corresponding Author

    Dr Susan Wardle

    Department of Cognitive Science

    16 University Avenue

    Macquarie University

    New South Wales, 2109, Australia.

    Ph: +61 2 9850 4072

    [email protected]

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2017. ; https://doi.org/10.1101/233387doi: bioRxiv preprint

    https://doi.org/10.1101/233387http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 2

    Abstract

    Theneuralmechanismsunderlyingfaceandobjectrecognitionareunderstoodtooriginateinventral

    occipital-temporalcortex.Akeyfeatureofthefunctionalarchitectureofthevisualventralpathwayis

    itscategory-selectivity,yetitisunclearhowcategory-selectiveregionsprocessambiguousvisualinput

    which violates category boundaries. One example is the spontaneous misperception of faces in

    inanimateobjectssuchastheManintheMoon,inwhichanobjectbelongstomorethanonecategory

    andfaceperceptionisdivorcedfromitsusualdiagnosticvisualfeatures.WeusedfMRItoinvestigate

    therepresentationofillusoryfacesincategory-selectiveregions.Theperceptionofillusoryfaceswas

    decodablefromactivationpatternsinthefusiformfacearea(FFA)andlateraloccipitalcomplex(LOC),

    butnotfromothervisualareas.Further,activityinFFAwasstronglymodulatedbytheperceptionof

    illusoryfaces,suchthatevenobjectswithvastlydifferentvisualfeatureswererepresentedsimilarlyif

    allimagescontainedanillusoryface.TheresultsshowthattheFFAisbroadly-tunedforfacedetection,

    not finely-tuned to the homogenous visual properties that typically distinguish faces from other

    objects.Acompleteunderstandingofhigh-levelvisionwill requireexplanationof themechanisms

    underlyingnaturalerrorsoffacedetection.

    Keywords. face processing, fMRI, fusiform face area (FFA), lateral occipital complex (LOC), object

    recognition,representationalsimilarityanalysis

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2017. ; https://doi.org/10.1101/233387doi: bioRxiv preprint

    https://doi.org/10.1101/233387http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 3

    INTRODUCTION

    Facepareidoliaistheperceptionofillusoryfacesininanimateobjects.Recently,facepareidoliahas

    been demonstrated in non-human primates (Taubert et al. 2017), evidence that it arises from a

    fundamentalaspectofafacedetectionsystemsharedacrossprimatespecies.Twokeyfeaturesof

    face pareidolia are that it is typically a spontaneous andpersistent phenomenon,with the object

    perceivedsimultaneouslyasbothanillusoryfaceandaninanimateobject,andsecondlythatthevisual

    attributes perceived as illusory facial features are highly variable. Face pareidolia thus offers the

    potential toexaminehowthebrainprocessesfaces inauniquesituationwherefaceperception is

    decoupledfromthevisualpropertiesthattypicallydefinefacesasacategory.Inthehumanbrain,the

    lateraloccipitalcomplex(LOC)(Malachetal.1995;KourtziandKanwisher2000)andfusiformface

    area(FFA)(Kanwisheretal.1997)inoccipital-temporalcortexrespondpreferentiallytoeitherobjects

    orfacesrespectively.Theinvolvementofthesecategory-selectiveregionsinthevisualventralstream

    inprocessingfalsepositivefacesthathaveasimultaneousdualfaceandobjectidentityisunclear.

    Several lines of evidence indicate that the response of the FFA is tightly-tuned to faces

    (KanwisherandYovel2006).EarlyfMRIstudiesshowedthattheFFArespondspreferentiallytofaces

    comparedtootherobjectcategories,evenifthefacesareschematicorimagined(Kanwisheretal.

    1997;O'CravenandKanwisher2000;Tongetal.2000).Morerecently,face-relatedfeaturesincluding

    identity and perceptual differences have been successfully decoded from fMRI BOLD activation

    patterns in theFFAusingmultivariatepatternanalysis (Nestoretal.2011;GoesaertanddeBeeck

    2013; Anzellotti et al. 2014; Axelrod and Yovel 2015; Zhang et al. 2016; Guntupalli et al. 2017).

    ConvergingevidenceindicatesthattheresponseoftheFFAisrelatedtofaceperception.Activityin

    the FFA correlateswith face detection and identification, but notwith the identification of other

    complexobjects(e.g.cars)thatrequireasimilar levelofvisualexpertise(Grill-Spectoretal.2004).

    Similarly,theFFAdisplaysagreaterresponsetouprightthaninvertedfaces,consistentwiththerobust

    behavioral observation of superior face recognition for upright faces (Yovel and Kanwisher 2005).

    Although the face-selectivity of the FFA is well-established, it is not yet known whether the

    spontaneousperceptionofafaceinanexemplarfromanon-preferredcategory(e.g.inaninanimate

    object)wouldmodulateactivityintheFFA.

    Givenitsselectivityforshapeandobjectproperties(Malachetal.1995;KourtziandKanwisher

    2000;2001),itisunclearwhetheractivityintheLOCwoulddifferentiatebetweeninanimateobjects

    whichcontainillusoryfacescomparedtosimilarobjectswithoutanillusoryface.Althoughtheobject-

    selectiveLOCisalsoresponsivetofacestosomedegree(YovelandKanwisher2004;2005),unlikethe

    FFA,activity in LOCdoesnot correlatewithbehavioralmeasures suchas the face inversioneffect

    (YovelandKanwisher2005)orthedegreeofperceivedface-likenessforsimplesilhouettes(Davidenko

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2017. ; https://doi.org/10.1101/233387doi: bioRxiv preprint

    https://doi.org/10.1101/233387http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 4

    etal.2012).Thus,whilethemisperceptionofafaceinnoiseproducesanincreaseinthemagnitude

    ofactivityintheFFA(Summerfieldetal.2006;Liuetal.2014)andissuggestiveofarolefortheFFA

    inperceivingillusoryfaces,thepossibleroleofobject-selectivecortexinprocessingillusoryfacesis

    moredifficulttopredict.

    Toexaminetherepresentationofillusoryfacesinhumancategory-selectivecortex,weused

    functionalmagneticresonance imaging(fMRI) torecordpatternsofblood-oxygen-level-dependent

    (BOLD)activationinvisualbrainareaswhilesubjectsviewedpicturesofobjectseitherwithorwithout

    illusory faces (Figure 2a). We collected 56 photographs of naturally occurring examples of face

    pareidoliainobjectssuchasfood,accessories,andappliances.Foreachobjectwithanillusoryface,

    wefoundasimilarimageofthesamecategoryofobjectbutwithoutanillusoryface.Importantly,this

    yokedimagesetof56imageswasmatchedforobjectcontentandvisualfeaturestypicaloftheobject

    category but did not contain any illusory faces. In total there were 8 unique image sets, each

    containing14 images (Figure1),whichwerepresented in a standard fMRIblockeddesign (Figure

    2b,c).Inordertocomprehensivelycharacterizetheresponseofvisualventralareastotheperception

    of illusory faces in inanimate objects, we applied both multivariate pattern analysis and

    representational similarity analysis techniques to the fMRI data. The aimswere firstly to discover

    whichcategory-selectiveareasofvisualventralcortexaresensitivetotheperceptionofillusoryfaces,

    andsecondlytodeterminetowhatextenttherepresentationintheseregions is influencedbythe

    presenceofanillusoryface.

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2017. ; https://doi.org/10.1101/233387doi: bioRxiv preprint

    https://doi.org/10.1101/233387http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 5

    Figure1.ExperimentalStimuli.All112experimentalstimulifromthe8imagesets.Fourimagesets

    containimagesofillusoryfacesininanimateobjects,andfourimagesetscontainimagesofobjects

    matchedforcontentand/orvisualfeatures,butwithoutanillusoryface.

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2017. ; https://doi.org/10.1101/233387doi: bioRxiv preprint

    https://doi.org/10.1101/233387http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 6

    MATERIALS AND METHODS

    Participants.Nineparticipants(8naivetoexperimentalaims(6female),1author)participatedin

    returnforfinancialcompensationandprovidedinformedconsent.Oneadditionalparticipantwas

    excludedfromanalysisduetoexcessivemovementintheMRIscanner(>20mm).Ethicalapproval

    forallexperimentalprocedureswasobtainedfromtheMacquarieUniversityHumanResearchEthics

    Committee(MedicalSciences).

    MRIDataacquisition.MRIdatawereacquiredwitha3TSiemensVerioMRIscanneratMacquarie

    Medical Imaging,MacquarieUniversityHospital.Ahigh-resolution (1x1x1mm)T1-weighted3D

    whole-brain structural MRI scan was collected for each participant at the start of the session.

    Functionalscanswereacquiredwitha2DT2*-weightedEPIacquisitionsequence:TR=2s,TE=32ms,

    FA=80deg,voxelsize:2.5x2.5x2.5mm,inplanematrixsize:102x102.Apartialvolumecontaining

    33sliceswascollectedorientedapproximatelyparalleltothebaseofthetemporallobeoranterior

    commissure-posterior commissure (AC-PC) line for each participant, ensuring coverage of both

    occipitalandtemporallobes.

    Visualstimuliweredisplayedusingaprojectorforonesubject(1author)withresolution1280

    x800andviewingdistance150cm.Experimentalstimuli(400x400pixels)subtended10.5x10.5°,

    localizer stimuli (480 x 480 pixels) 12.6 x 12.6°. For the remaining 8 naive subjects, stimuli were

    displayed using a flat-panel MRI-compatible 32" Cambridge Research Systems BOLDscreen with

    resolution1920x1080andviewingdistance112cm.Experimentalstimulisubtended7.4x7.4°and

    localizerstimuli8.8x8.8°.BehavioralresponseswerecollectedusingaLuminaMRI-compatiblebutton

    box.

    ExperimentalDesignandStimuli.ExperimentalcodewaswritteninMATLABwithfunctionsfromthe

    Psychtoolbox(Brainard1997;Pelli1997;Kleineretal.2007),andrunonanAppleMacBookProwith

    MacOSX.Thescanningsessionforeachsubjectconsistedofahigh-resolutionstructuralMRIscan,2

    functionallocalizerrunstoidentifycategory-selectiveregionsFFA,LOC,andPPA,and8experimental

    runs.Thefunctionallocalizerwasrunonceatthestartofthesessionfollowingthestructuralscanand

    onceattheendofthesession.Theeightexperimentalrunsforeachparticipantwerecollectedin-

    betweenthelocalizerruns.

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2017. ; https://doi.org/10.1101/233387doi: bioRxiv preprint

    https://doi.org/10.1101/233387http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 7

    Figure2.fMRIMethods.(a)Examplestimuli:illusoryfaces(left)andmatchedobjects(right).(b)Trial

    sequencewithineachimageblock.Whileinthescanner,participants(N=9)performeda1-backtask

    tomaintainattention,pressingakeywheneveranimagewasshowntwiceinarow.(c)Sequenceof

    blockdesign.Illusoryfaceblocksalternatedwithmatchedobjectblocks,separatedbyfixationperiods.

    Fortheexperimentalruns,56colorimagesofnaturalexamplesofillusoryfacesininanimate

    objectswerecollectedfromtheinternet.Foreachillusoryfaceimage,wesourcedaphotographofa

    similarobjectwithoutanillusoryfaceandcroppedittomatchthefirstimageascloselyaspossible

    (Figure2a). Imageswerecroppedtothesamesize,butnoothermanipulationwasmade.The112

    photographsweregroupedinto8uniqueimagesetsof14imageseach,with4illusoryfacesetsand

    4matchedobjectsets(Figure1).Stimuliwereshowncenteredonagrayscreenwithacentralblack

    andwhite fixation bullseye (0.4° diameter for subject 1, 0.3° diameter for the all other subjects).

    Duringfixationblocksthefixationbullseyeremainedonthegraybackground.Eachimageblockwas

    16s in duration, followed by a 10s fixation period.Within each block, every imagewas shown in

    random order for 800ms followed by a 200ms inter-stimulus-interval (Figure 2b). The order of

    presentation of the images within each block was yoked between the face image sets and their

    matchedobjectsets.Anewyokedrandomorderwasgeneratedeachtimeanimagesetblockwas

    repeatedinthesession.Foreachblocktherewere16images:14uniqueimages,andanadditional2

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2017. ; https://doi.org/10.1101/233387doi: bioRxiv preprint

    https://doi.org/10.1101/233387http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 8

    imageswhichwererepeatedforthe1-backtask.The1-backtaskwasyokedbetweenillusoryfaceand

    matchedobjectblocks,suchthattherepeatedimagesonagivenblockpresentationwereidentical

    between the matched image sets. Two 1-back trials occurred during each 16s block to maintain

    attention,onceinthefirsthalfandonceinthesecondhalf.Participantspressedakeywhentheysaw

    thesameimagetwiceinarow.Feedbackontaskperformancewasgivenattheendofeachrunafter

    scanningwascomplete.Overall taskperformancewashighacross subjectsandexperimental runs

    (Meanaccuracy=98.8%,SD=1.5%).

    Theorderoftheexperimentalblocksalternatedbetweenillusoryobjectsandmatchedobjects

    inanABAB/BABAdesign(Figure2c),withthestartingblocktypecounterbalancedacrossrunsforeach

    participant.Theorderofblockpresentationwithineachrunwasrandomizedwithinthisdesignwith

    theadditionalrestrictionsthat(1)amatchedimagesetneverdirectlyfolloweditsyokedfacesetand

    viceversa,and(2)eachimagesetwascycledthroughonceintheruninarandomorderbeforebeing

    repeated. Each of the 8 unique image sets was repeated twice per 7-minute experimental run.

    Experimentalrunsbeganwitha4sfixationperiod.

    Thefunctionallocalizerstimuliwerecolorpicturesoffaces,places,andobjects.54imagesfor

    eachcategorywere selected fromTheCenter forVital Longevity FaceDatabase (MinearandPark

    2004),theSUN397database(Xiaoetal.2010),andtheBOSSdatabase(Brodeuretal.2010;2014)

    respectively. Scrambled objects for localizing object-selective region LOC (Kourtzi and Kanwisher

    2000)werepre-generatedinMATLABbyrandomlyscramblingeachobjectimageinan8x8gridand

    savingtheresultingimage.Foreachstimulusclass,therewere3uniqueblocksof18images.Every

    timeablockwasrun,theimageswerepresentedinarandomorderandtworandomimageswere

    repeatedtwiceforthe1-backtask.Participantsperformeda1-backtaskasfortheexperimentalruns,

    pressingakeyeachtimeanimagewasrepeatedtwiceinarow(Meanaccuracy=96.8%,SD=3.8%).

    Eachof the20 imageswithinablock (18unique+2 repeats)wasshownfor600ms followedbya

    200msinter-stimulusinterval.The16sstimulusblocksalternatedwith10sfixationblocks.Eachofthe

    4stimuluscategorieswasrepeatedthreetimesper5-minutelocalizerrun,onceperuniqueimageset.

    The order of block presentation was in a pseudorandom order, with two different orders

    counterbalancedacrossrunsforeachparticipant.Localizerrunsbeganwitha4sfixationperiodbefore

    thefirststimulusblock.

    fMRIdatapreprocessing.MinimalpreprocessingoftheMRIdatawasconductedusingSPM8.Foreach

    observer,fMRIdataforallexperimentalandlocalizerrunswasmotioncorrectedandco-registeredto

    their structural scan. No normalization or spatial smoothing was applied, and all analyses were

    conductedinthenativebrainspaceofeachsubject.

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2017. ; https://doi.org/10.1101/233387doi: bioRxiv preprint

    https://doi.org/10.1101/233387http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 9

    Region-of-interest(ROI)definition.CorticalreconstructionwasperformedusingFreesurfer5.3from

    thestructuralscanforeachsubject.V1(range:886-1244voxels,M=1094)wasanatomicallydefined

    ineachobserverbasedontheirindividualsurfacetopologyusingcorticalsurfacetemplatesapplied

    totheirinflatedcorticalsurface(Bensonetal.2012).Thecategory-selectiveregions-of-interest(ROIs)

    were functionally defined using standard procedures from the independent localizer runs

    (Kriegeskorteetal.2009).FFA(range:29-78voxels,M=58)wasdefinedasthecontiguousclusterof

    voxels inthefusiformgyrusproducedfromthecontrastbetweenfacesversusobjectsandscenes.

    LOCscr(range:7-64voxels,M=39)wasdefinedasactivationonthelateraloccipitalsurfacefromthe

    contrast between objects and scrambled objects. For comparison, LOCofs (range: 43-245 voxels,

    M=113)wasdefinedasactivationonthelateraloccipitalsurfaceforthecontrastofobjectsversus

    faces and places. Finally, PPA (range: 12-170 voxels,M=75) was defined as the peak cluster of

    activationintheparahippocampalgyrusproducedbythecontrastbetweenscenesversusfacesand

    objects(Kauffmannetal.2015).OverlappingvoxelswerepermittedbetweenLOCscrandLOCofs(range:

    2-31voxels,M=12),butnotbetweentheotherregions.

    Generallinearmodel.Toestimatethebetaweightsforeachexperimentalcondition,thefunctional

    MRIdatafromtheexperimentalrunswasenteredintoaGLMinSPM8withaseparateregressorfor

    eachofthe8stimulusblocks,producingoneparameterestimate(βweight)perconditionperrun(64

    intotalperparticipant).Fixationwasnotexplicitlymodelledbutprovidedanimplicitbaseline.Percent

    BOLDsignalchange(Figure3a)wascalculatedforeachparticipantandregion-of-interestacrossall

    facevs.matchedobjectblocksusingSPM8andthemarsbar(Brettetal.2002)package.

    Decodinganalysis.Decodinganalyseswereperformedseparatelyforeachparticipantintheirnative

    brainspaceinMATLABusingfunctionsfromTheDecodingToolbox(Hebartetal.2014).Classification

    usingalinearSVMwasconductedusingthebetaweightsforeachofthe8uniquestimulusblocks.For

    leave-one-run-outclassification(Figure3b),theclassifierwastrainedontheactivationpatternsfor

    each pair of the 8 conditions for 7 runs, and tested on the one run left out of the training set.

    Classification accuracywas averaged across all permutations of leave-one-run-out cross-validation

    folds(n=28).Forfacecross-decoding(Figure3c),theclassifierwastrainedonalldataforayoked

    stimulusset (e.g.FacesSet1vs.MatchedObjectSet1)andtestedonalldata forasecondyoked

    stimulusset(e.g.FacesSet2vs.MatchedObjectsSet2),andthenclassificationwasrepeatedwiththe

    test and training sets swapped. This process was repeated for all possible yoked pairings, with

    classificationaccuracyaveragedacrossallpermutations(n=6).Forobjectcross-decoding(Figure3d),

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2017. ; https://doi.org/10.1101/233387doi: bioRxiv preprint

    https://doi.org/10.1101/233387http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 10

    two-way cross classificationwas conducted for each relevant pair as for face cross-decoding. For

    example,theclassifierwastrainedontwodifferentimagesetseitherbothwithorwithoutfaces(e.g.

    Faces Set 1 vs. Faces Set 2) and tested on their yokedmatched sets (e.g.MatchedObjects 1 vs.

    MatchedObjects2),andthenviceversa.Classifieraccuracywasaveragedacrossallpermutationsof

    possiblepairs(n=6).

    Representationalsimilarityanalysis.Representationalsimilarityanalyses(Kriegeskorteetal.2008;

    Kriegeskorte and Kievit 2013) was performed in MATLAB using functions from the toolbox for

    representationalsimilarityanalysis(rsatoolbox)(Nilietal.2014).Categoricalmodelswereconstructed

    basedonthestimulusdesign,todistinguishbetweenthetwopotentialoutcomesofinterest:whether

    thesimilarityofbrainactivationpatternswasdeterminedprimarilybythepresenceofanillusoryface

    orobjectcontent(Figure4c).Blueregionsindicatepredictedsimilarpatternsofactivationbetween

    image set pairs, yellow regions indicate predicted dissimilar activation patterns, and grey regions

    indicatemoderatedissimilarity.Theempiricaldissimilaritymatricesforeachbrainregion(Figure4a,b)

    werecalculatedby1-correlationoftheBOLDactivationpatternsforeachimagesetpair.Dissimilarity

    was scaled separately for each brain region to fall between 0 and 1 (min andmax dissimilarity).

    CorrespondencebetweenthecategoricalRSAmodelsandthedissimilaritymatriciesforeachbrain

    region(Figure4d)wereassessedbycomputingthecorrelation(Kendalltau-a)andapplyingcondition-

    labelrandomizationwithFDRcorrectionappliedformultiplecomparisons(p<.05)(Nilietal.2014).

    RESULTS

    We focused our analysis on specific predefined regions-of-interest in ventral occipital-temporal

    cortex.Ineachparticipant,welocalizedthreecategory-selectiveregions:thefusiformfacearea(FFA),

    thelateraloccipitalcomplex(twoversions:LOCscrandLOCofs),andtheparahippocampalplacearea

    (PPA),usingstandardfunctionallocalizers(Kanwisheretal.1997;EpsteinandKanwisher1998;Kourtzi

    andKanwisher2000;Kravitzetal.2011;Parketal.2011;Kauffmannetal.2015).Asanadditional

    comparisonregion,wedefinedV1anatomicallyineachsubject(Bensonetal.2012).

    Univariateanalysis

    Tocharacterizetheamountofactivationineachregion,wecalculatedBOLDpercentsignalchangefor

    allillusoryfaceblocksversusallnon-faceblocks(Figure2a).Statisticalsignificancewasassessedfor

    percentsignalchangeforillusoryfaceversusnon-faceblocksonthemeanactivationaveragedacross

    participantsforeachregionofinterest(Figure2a)usingtwo-tailedpairedt-testswiththeBonferroni

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2017. ; https://doi.org/10.1101/233387doi: bioRxiv preprint

    https://doi.org/10.1101/233387http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 11

    correctionappliedformultiplecomparisons(k=5)tomaintainα<0.05(α/k=.01).Illusoryfaceblocks

    produced significantlyhigheractivation thannon-faceblocksasmeasuredbypercentBOLDsignal

    changeforLOCscr(t(8)=4.25,p=.002814)andFFA(t(8)=8.15,p=.000038).Therewasnosignificant

    differenceinactivationforillusoryfacesversusnon-facesforLOCofs(t(8)=2.89,p=.020278),PPA(t(8)=

    -2.68,p=.027728),orV1(t(8)=-2.41,p=.042692).

    Figure3.fMRIresultsaveragedacrosssubjects(N=9)foreachregion-of-interest.(a)BOLD%signal

    change for illusory face blocks andmatched object blocks. Error bars are between-subjects SEM.

    AsterisksdenoteasignificantdifferenceassessedwithBonferronipairedt-tests(*α<.05,**α<.01).

    (b) Leave-one-run-out pairwise decoding of the 8 image sets. For panels b-d, asterisks denote a

    significantdifferencefromchancedecodingperformance(50%)assessedwithBonferronione-sample

    t-tests(*α<.05,**α<.01)anderrorbarsarebetween-subjectsSD.(c)Illusoryfacecross-decoding

    results.Cross-classificationofillusoryfacesversusyokedobjectswithoutillusoryfacesacrossimage

    sets(e.g.trainclassifieronFacesSet1vs.MatchedSet1;testclassifieronFacesSet2vs.MatchedSet

    2).(d)Objectcross-decodingresults.Cross-classificationofobject identityacrossyokedimagesets

    (e.g.trainclassifieronFacesSet1vs.FacesSet2;testclassifieronMatchedSet1vs.MatchedSet2).

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2017. ; https://doi.org/10.1101/233387doi: bioRxiv preprint

    https://doi.org/10.1101/233387http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 12

    Multivariatepatternclassification

    Leave-one-runoutclassification

    Foraninitialsanitycheck,weperformedastandardleave-one-run-outclassificationanalysisonthe

    patternsofBOLDactivationevokedby the8unique image sets.Usingpairwise classificationwith

    cross-validation,alinearsupportvectormachinewastrainedonthedataforallrunsminusone,and

    testedontheremainingset(Hebartetal.2014).Figure2bshowsthemeanclassificationaccuracyfor

    each region-of-interest, averaged across subjects.Decoding accuracywas assessed statistically for

    eachROIusingtwo-tailedone-samplet-testsonthemeanclassificationaccuraciesacrossparticipants

    against chance decoding performance of 50%with the Bonferroni correction applied formultiple

    comparisons(k=5)tomaintainα<0.05(α/k=.01).Decodingperformancewassignificantlyabove

    chanceforallfiveROIs(Figure2b).V1:(t(8)=7.27,p=.000086),LOCscr(t(8)=4.35,p=.002444),LOCofs

    (t(8)=7.40,p=.000076),PPA(t(8)=6.33,p=.000226),FFA(t(8)=11.16,p=.000004).Notethatasthe

    classifieristrainedonexamplesofBOLDactivationpatternsevokedbyeachoftheuniquestimulus

    blocksusingthisclassificationmethod,successfulclassificationcouldbebasedonsensitivitytolow-

    levelvisualfeaturesratherthantheobjectorfacecontentoftheimagesets.Itislikelythatsuccessful

    classification was based on different visual features in each ROI, however the consistently high

    classifierperformancevalidatesthehighpowerofthefMRIdesignandverifiestherobustnessofthe

    dataforthesubsequentanalysesofinterest.

    Illusoryfacecross-classification

    Weusedcross-decodingasthecriticaltestfordefiningwhethereachbrainregionwassensitivetothe

    presenceorabsenceofillusoryfacesininanimateobjects(Figure2c).Alinearclassifierwastrained

    onthepatternsofBOLDactivationevokedbyoneyokedsetofimages(e.g.FaceSet1vs.Matched

    Set1),andtestedonthebrainactivationpatternsforanewyokedset(e.g.FaceSet2vs.MatchedSet

    2). This analysis requires that the classifier be able to generalize across new images in order to

    correctly classify the test set, excluding the possibility of illusory face decoding based upon brain

    responsestothelow-levelvisualfeaturesofparticularimages.Cross-decodingaccuracywasassessed

    usingtwo-tailedone-samplet-testswiththeBonferronicorrectionappliedformultiplecomparisons

    (k=5)tomaintainα<0.05(α/k= .01).Cross-classificationof illusoryfaceswassignificantlyabove

    chance in LOCscr (t(8)=4.97, p = .001096), LOCofs (t(8)= 7.21, p = .000092), and FFA (t(8)= 13.29, p =

    .000001),butnotforV1(t(8)=3.10,p=.014737)orPPA(t(8)=2.44,p=.040749).

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2017. ; https://doi.org/10.1101/233387doi: bioRxiv preprint

    https://doi.org/10.1101/233387http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 13

    Objectcross-classification

    As our stimulus set included matched objects, we also tested whether object identity could be

    decodedfromeachbrainregionacrossdifferentphotographs(Figure2d).Inthisanalysis,weignored

    thepresence/absenceofanillusoryface,andinsteadtrainedtheclassifiertodiscriminatebetween

    twodifferentobjectsetsthateitherbothdidordidnotcontainillusoryfaces(e.g.FaceSet1vs.Face

    Set2).Theclassifierwasthentestedonthematchedsetscorrespondingtothetwotrainingsets(e.g.

    MatchedSet1vs.MatchedSet2).Successfulclassificationrequiresextrapolationbasedonresponses

    toeitherobject identityor sharedvisual featuresacrossdifferent images,but it isnotpossible to

    distinguishbetweenthetwopossibilities.Objectcross-decodingwassignificantlyabovechancefor

    LOCscr(t(8)=4.14,p=.003250),LOCofs(t(8)=5.63,p=.000491),andPPA(t(8)=4.37,p=.002379),butnot

    forV1(t(8)=1.12,p=.296317)orFFA(t(8)=1.34,p=.216760).Thusbothfaceandobjectcross-decoding

    weresuccessfulinLOC,butonlyfacesandnotobjectscouldbecross-decodedacrossimagesetsfrom

    activityinFFA,andonlyobjectsbutnotfacesfromactivityinPPA.Neitherformofcross-decodingwas

    successfulinV1,yettheidentityofthe8uniqueimagesetscouldbedecodedfromV1activityusing

    leave-one-run-outclassification,consistentwithitsknownsensitivitytolow-levelvisualproperties.

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2017. ; https://doi.org/10.1101/233387doi: bioRxiv preprint

    https://doi.org/10.1101/233387http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 14

    Figure4.Representationalsimilarityanalysis.(a)Dissimilaritymatrixshowingthenormalizedpairwise

    dissimilarity(1-correlation)inBOLDactivationpatternsevokedbyeachofthe8uniqueimagesetsin

    theFFA.Blueindicatesmoresimilaractivationpatterns,yellowmoredissimilar.Notethatthefour

    uniquefaceblocksproducesimilarpatternsofactivity(upperleftquadrantisblue).(b)Dissimilarity

    matrices for LOCscr, LOCofs,PPAandV1 (legendas forpanela). (c)Categoricalmodelsofexpected

    patternsof similarity in theBOLDactivationpatternsevokedbyeach imageset if facesorobjects

    dominatetheunderlyingrepresentation.(d)Correlation(Kendalltau-a)betweenthecategoricalRSA

    models and the FFA RDM. Mean correlation across subjects (N=9) is shown, asterisks denote a

    significantdifferencefromchancecalculatedusingcondition-labelrandomizationwithFDRcorrection

    appliedformultiplecomparisons(p<.05).ErrorbarsareSEM.Thegraybandrepresentstheupper

    andlowerboundariesofthenoiseceiling,indicatingthemaximumpossiblecorrelationpossiblefor

    any model given the noise in the data (Nili et al. 2014). Note that no correlations between the

    categoricalmodelsandtheotherregionsofinterest(LOCscr,LOCofs,PPA,V1)weresignificant.

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2017. ; https://doi.org/10.1101/233387doi: bioRxiv preprint

    https://doi.org/10.1101/233387http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 15

    RepresentationalSimilarityAnalysis

    To further characterize the response to illusory faces in visual ventral cortex, we applied

    representationalsimilarityanalysis(KriegeskorteandKievit2013)toexaminesimilaritiesinactivation

    patternsforthedifferentimagesets.Therepresentationaldissimilaritymatricesforeachregionof

    interestquantifythedegreeofsimilarityintheBOLDactivationpatternsacrossvoxelsbetweeneach

    pair of image sets (Figure 4a,b). Different models of the underlying representational space are

    predictediffacesorobjectsarethedominantorganizingprincipleinaparticularbrainregion(Figure

    4c). Notably, the dissimilarity matrix for the FFA (Figure 4a) reveals a strong dominance of the

    presence of an illusory face on the brain activation patterns (upper left quadrant). Image sets

    containingillusoryfacesproducemoresimilarresponsesinFFAthantheirmatchedimagesets,even

    thoughthematchedimagesetssharemanymorevisualfeatureswiththefacesetsthanispresent

    betweendifferentfacesets.Thisrelationshipiswell-describedbythefacemodel(Figure4c),which

    significantlycorrelateswiththeFFAdissimilaritymatrix(Figure4d).

    Beyond a similar representation of illusory faces irrespective of their visual features, the

    responseoftheFFAisstronglymodulatedbythepresenceorabsenceofaface.Objectswhichdonot

    haveanillusoryfaceelicitdissimilaractivationpatternstoeachotherinFFA(bottomrightquadrant

    inFigure4a),aswouldbeexpectedfromdifferencesintheirobjectidentityand/orvisualfeatures.

    Thisisinsharpcontrasttotheactivationpatternselicitedbytheiryokedobjectswithillusoryfaces,

    whichelicithighlysimilaractivationpatternstoeachotherintheFFAdespitetheirsubstantialvisual

    differences (compare upper left and bottom right quadrants in Figure 4a). In contrast, objects

    containingillusoryfacesaremoderatelydissimilartothosewithoutillusoryfaces(toprightquadrant

    inFigure 4a), despite their visual similarity resulting from the yoked stimulus design.Overall, the

    results indicatethattheresponseofFFAisdominatedbythepresenceorabsenceofafacetothe

    extent that itoverridesany influenceof thesimilarityofvisualpropertiesorobject identity in the

    representation.

    These relationships are well-captured by the face-nonface model (Figure 4c), which

    significantlycorrelateswiththeFFAdissimilaritymatrix(Figure4d)andapproachesthetheoretical

    limitofthemaximumpossiblecorrelationwiththefMRIdataasdefinedbythenoiseceiling(Nilietal.

    2014).Notablytheobjectmodelfailstocapturetherepresentationalstructureofthevisualstimuliin

    FFA,indicatedbyalackofasignificantcorrelationwiththeFFAdissimilaritymatrix(Figure4d).Insum,

    theperceptionofanillusoryfacemediatesactivityinFFA,regardlessoftheparticularvisualproperties

    that compose the facial features. Although the presence of an illusory face could be successfully

    decodedfromactivationpatternsinLOCscrandLOCofs(Figure4b),noneofthedissimilaritymatrices

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2017. ; https://doi.org/10.1101/233387doi: bioRxiv preprint

    https://doi.org/10.1101/233387http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 16

    fortheotherregionsofinterest(Figure4b)significantlycorrelatedwiththecategoricalmodels(Figure

    4c),suggestingthisorganizationoftherepresentationalspaceisuniquetotheFFA.

    DISCUSSION

    We investigated the representation of illusory faces in inanimate objects throughout category-

    selectivehumanventralvisualcortex.Importantly,weusedayokedfMRIdesigntocomparepatterns

    ofBOLDactivationevokedbyimagesofobjectscontainingillusoryfaceswiththatevokedbysimilar

    matched objects without illusory faces. We selected only naturally-occurring examples of face

    pareidoliainordertoinvestigatespontaneousfalsepositivesoffacedetectionwithahighdegreeof

    varianceintheirspecificvisualproperties.Thecross-decodingresultsrevealedthatactivity inboth

    face (FFA) andobject-selective (LOC) regionswasmodulatedby images that elicit facepareidolia,

    regardlessof theparticularvisualelements thatcomposethe facial featuresand itsconfiguration.

    GiventhatV1isparticularlysensitivetolow-levelvisualfeaturesandisimplicatedintheearlystages

    ofretinotopicvisualprocessing,itisunsurprisingthattheclassifierfailedtodecodethepresenceof

    an illusory face fromactivationpatterns in this region.Wealso foundnoevidence thatactivity in

    scene-selectivePPAismediatedbytheperceptionofillusoryfaces.ThisisnotableasPPAisfrequently

    functionally defined as voxelswhich exhibit a greater response to scenes than faces (Epstein and

    Kanwisher 1998; Kravitz et al. 2011; Park et al. 2011; Kauffmann et al. 2015), thus a reduction in

    activity for illusory facesmighthavebeenexpected.However, therewasalsonodifference in the

    magnitudeofBOLDactivationinPPAforillusoryfacesversusmatchedobjects.

    Inadditiontosuccessfulclassificationof illusory facesacross imagesets,activity inobject-

    selectiveregionswasalsoinformativeaboutobjectcontent.SuccessfulobjectcrossdecodinginLOC

    is consistent with previous results suggesting patterns of activation in these regions are strongly

    associatedwithobjectidentity(MacEvoyandEpstein2009)andobjectshape/features(Kourtziand

    Kanwisher2000).Notably,objectcrossdecodingwasalsosuccessful inPPA,butnot inFFAorV1.

    Thereisconsiderableinfluenceoflow-levelvisualfeaturesontheresponseofscene-selectiveregions

    (Groenetal.2017),thuscross-classificationofobjectsinPPAmaybebaseduponresponsesevoked

    bysharedvisualfeaturesbetweendifferentpicturesofthesameobjectclass.

    AlthoughbothFFAandLOCcontaineddecodableinformationabouttheperceptionofillusory

    facesininanimateobjects,itislikelythatthestructureofthecorrespondingrepresentationsofthese

    categoricallyambiguous stimuli is substantiallydifferentbetween these two regions.Beyond their

    difference in preferred category (faces vs. objects) as measured by the magnitude of the BOLD

    response (Kanwisher et al. 1997; Kourtzi and Kanwisher 2000), there are other known functional

    differences.Previousstudieshaveobservedthatactivity inLOCdoesnotcorrelatewithbehavioral

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2017. ; https://doi.org/10.1101/233387doi: bioRxiv preprint

    https://doi.org/10.1101/233387http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 17

    measuresoffaceprocessing(YovelandKanwisher2005;Davidenkoetal.2012),whileactivityinFFA

    does(Grill-Spectoretal.2004;YovelandKanwisher2005).Thisisconsistentwithourfindingthatthe

    facemodelssignificantlycorrelatedwiththeFFAdissimilaritymatrix,andnotwiththat forobject-

    selectiveLOC.Thissuggeststhatthepresenceofillusoryfacesisastrongerpredictoroftheunderlying

    representationoftheseobjectsintheFFA,whiletherepresentationinLOCislikelytoinvolveother

    factors.Further,theobjectcross-decodinganalysisrevealedthatactivityinLOCwasalsoinformative

    aboutobjectidentity,whileobjectcontentcouldnotbedecodedfromtheFFA.Togethertheseresults

    point to genuine functional differences in the representationof illusory faces in face- andobject-

    selectivecorticalregions.

    Thefunctionalarchitectureofhumanventraltemporalcortexisunderstoodtoinvolveboth

    clustered category-selective regions such as the FFA, and more distributed patterns of category-

    selectivityacrosslargerregionsofcortex(Grill-SpectorandWeiner2014).Animportantoutstanding

    questionistounderstandthefunctionalsignificanceoftheinformationtheFFAcontainsaboutnon-

    face objects (Haxby et al. 2001; O'Toole et al. 2005), which is a challenge to its face-specificity

    (Kanwisher2017).ArelevantpointraisedbyourresultsisthattheresponseoftheFFAtoinanimate

    objects is stronglymodulated by the spontaneous perception of an illusory face. Image setswith

    diversevisualpropertiesandobjectidentitieselicitedsimilarrepresentationsiftheycontainedillusory

    faces.Conversely,imagesetswiththesamedegreeofvarianceinvisualpropertiesandobjectidentity

    elicitedhighlydissimilarrepresentationsifnoillusoryfaceswerepresent.Notablyevenyokedimage

    setsmatchedforvisualfeaturesandobjectidentityproducedmarkedlydissimilarrepresentationsif

    onlyonesetcontainedillusoryfaces,despitetheirconsiderablevisualandsemanticsimilarityonother

    dimensions.Thissuggeststhatanynon-faceobjectinformationcontainedintheFFAissecondaryto

    thedominanceoffaceinformationinitsrepresentationalorganization.

    A significant current issue in studying the neural mechanisms of object recognition is in

    disentangling the degree towhich category-selective responses in inferior temporal cortex reflect

    categoryrepresentationsperse,versussensitivitytothelowlevelvisualfeatures(e.g.shape,color,

    symmetry)thatco-varywithcategorymembership(CoxandSavoy2003;Baldassietal.2013;Riceet

    al.2014;WardleandRitchie2014;Andrewsetal.2015;BracciandOpdeBeeck2016;Cogganetal.

    2016;Kaiseretal.2016;Proklovaetal.2016;Braccietal.2017).Itisintuitivethatbydefinition,any

    high-levelvisualrepresentationsmustberelatedtothevisualfeaturesthatdefineobjectcategories

    to some degree. However, the impossibility of comprehensively accounting for all possible

    combinations of visual features at different levels of description entails that it is empirically

    challenging to provide evidence of category-representations that are not in principle reducible to

    somesetofco-varyingvisualelements.Thenovelapproachwetakehereistouseastimulusclassin

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2017. ; https://doi.org/10.1101/233387doi: bioRxiv preprint

    https://doi.org/10.1101/233387http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 18

    whichfaceperceptionisdecoupledfromthetypicalvisualfeaturesthatdefinerealfaces.Secondly,

    theuseofayokedexperimentaldesignmeansthatthesetsofillusoryfacessharemorevisualfeatures

    withtheircorrespondingmatchedobjectsthanwitheachother,ensuringthatthevisualvarianceis

    higherwithin-categorythanacross-categoryinourdesign.Thisisanextremeexampleofintroducing

    highvarianceintothecategoryexemplars(BracciandOpdeBeeck2016;Braccietal.2017),asthe

    visualfeaturesinourstimulussetareinsteaddiagnosticofnon-preferredobjectcategories(forthe

    FFA).Afurtheradvantageofthisapproachisthatitdoesnotrequireartificiallycontrollingthevisual

    contentoftheexperimentalstimuliandthereforereducingtheirecologicalvalidity(TalebiandBaker

    2012).Instead,inourdesignweexploitthehighvariabilityinnaturallyoccurringfalsepositivesofface

    detectionmadebytheprimatevisualsystem(Taubertetal.2017).

    TogetherourresultsshowthattheFFAstronglyrespondstofalsepositivefacesininanimate

    objects and is tolerant to a high degree of visual variance in what constitutes a "face". Previous

    arguments for the face-selectivity of the FFA have been predominantly based on its preferred

    responsetofaces,typicallyquantifiedbyahighermagnitudeoffMRIBOLDpercentsignalchangeto

    faces compared to other categories (Kanwisher and Yovel 2006). In addition to human faces

    (Kanwisheretal.1997),theFFAisknowntorespondtoanimalfaces(Tongetal.2000),schematic

    faces(Tongetal.2000),andimaginedfaces(O'CravenandKanwisher2000).Morerecently,further

    corroboratingevidencehasarisenfromsuccessfuldecodingofface-relatedpropertiesfromactivation

    patternsintheFFAsuchasidentity(Nestoretal.2011;Zhangetal.2016),famousfaces(Axelrodand

    Yovel2015),differencesinfacialfeaturesandtheirconfiguration(GoesaertanddeBeeck2013),and

    tolerancetoviewpointrotation(Anzellottietal.2014).Importantly,ourresultsshowthattheface-

    selective response in the FFA is not reducible to the specific low-level visual features that often

    distinguish real faces from inanimateobjects. TheFFA isnot finely-tuned toahomogenous setof

    visualfeatures.Instead,wefindthattheFFAisbroadly-tunedtothedetectionofaface,independently

    oftheparticularvisualfeaturesthatformthisperception.

    Object recognition and face processing are two of the most impressive computational

    achievements of the human visual system, and the underlying neural mechanisms are still being

    revealed.Todate thedevelopmentof the theoretical framework forunderstanding the functional

    architecture of ventral temporal cortex and its role in high-level visual processing has focused on

    exemplarswithdistinctcategorymembership(Kravitzetal.2013;Grill-SpectorandWeiner2014).Our

    results with categorically ambiguous exemplars emphasize the complexity with which visual

    informationismodulatedbyhigherlevelperceptionincategory-selectiveregionsoftheventralvisual

    stream.Furtherexaminationofnatural'errors'orfalsepositivessuchasinthecaseoffacepareidolia

    mayhelpconstrainmodelsofhigh-levelvisualprocessinginthefuture.

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2017. ; https://doi.org/10.1101/233387doi: bioRxiv preprint

    https://doi.org/10.1101/233387http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 19

    Acknowledgements

    WethankJeffMcIntoshandthestaffofMacquarieMedicalImagingatMacquarieUniversityHospital

    for assistance with the operation of the MRI scanner, and Robert Keys for assistance with data

    collection.ThisworkwassupportedbyanAustralianNHMRCEarlyCareerFellowship(APP1072245)

    andMacquarieUniversityResearchDevelopmentGrantawardedtoS.G.W.

    References

    AndrewsTJ,WatsonDM,RiceGE,HartleyT.2015.Low-levelpropertiesofnaturalimagespredict

    topographicpatternsofneuralresponseintheventralvisualpathway.JVis.15:3.

    AnzellottiS,FairhallSL,CaramazzaA.2014.Decodingrepresentationsoffaceidentitythatare

    toleranttorotation.CerebralCortex.24:1988–1995.

    AxelrodV,YovelG.2015.Successfuldecodingoffamousfacesinthefusiformfacearea.PLoSONE.

    10:e0117126.

    BaldassiC,Alemi-NeissiA,PaganM,DiCarloJJ,ZecchinaR,ZoccolanD.2013.Shapesimilarity,better

    thansemanticmembership,accountsforthestructureofvisualobjectrepresentationsina

    populationofmonkeyinferotemporalneurons.PLoSComputBiol.9:e1003167.

    BensonNC,ButtOH,DattaR,RadoevaPD,BrainardDH,AguirreGK.2012.Theretinotopic

    organizationofstriatecortexiswellpredictedbysurfacetopology.CurrBiol.22:2081–2085.

    BracciS,OpdeBeeckH.2016.DissociationsandAssociationsbetweenShapeandCategory

    RepresentationsintheTwoVisualPathways.JNeurosci.36:432–444.

    BracciS,RitchieJB,deBeeckHO.2017.Onthepartnershipbetweenneuralrepresentationsof

    objectcategoriesandvisualfeaturesintheventralvisualpathway.Neuropsychologia.

    BrainardD.1997.ThePsychophysicsToolbox.SpatVis.10:433–436.

    BrettM,AntonJL,ValabregueR,PolineJB.2002.RegionofinterestanalysisusinganSPMtoolbox

    [abstract]Presentedatthe8thInternationalConferenceonFunctionalMappingoftheHuman

    Brain,June2-6,2002,Sendai,Japan.NeuroImage.16.

    BrodeurMB,Dionne-DostieE,MontreuilT,LepageM.2010.TheBankofStandardizedStimuli

    (BOSS),anewsetof480normativephotosofobjectstobeusedasvisualstimuliincognitive

    research.PLoSONE.5:e10773.

    BrodeurMB,GuérardK,BourasM.2014.BankofStandardizedStimuli(BOSS)phaseII:930new

    normativephotos.PLoSONE.9:e106953.

    CogganDD,LiuW,BakerDH,AndrewsTJ.2016.Category-selectivepatternsofneuralresponsein

    theventralvisualpathwayintheabsenceofcategoricalinformation.NeuroImage.135:107–

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2017. ; https://doi.org/10.1101/233387doi: bioRxiv preprint

    https://doi.org/10.1101/233387http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 20

    114.

    CoxDD,SavoyRL.2003.Functionalmagneticresonanceimaging(fMRI)“brainreading”:detecting

    andclassifyingdistributedpatternsoffMRIactivityinhumanvisualcortex.NeuroImage.

    19:261–270.

    DavidenkoN,RemusDA,Grill-SpectorK.2012.Face-likenessandimagevariabilitydriveresponsesin

    humanface-selectiveventralregions.HumBrainMapp.33:2334–2349.

    EpsteinR,KanwisherN.1998.Acorticalrepresentationofthelocalvisualenvironment.Nature.

    392:598–601.

    GoesaertE,deBeeckHPO.2013.RepresentationsofFacialIdentityInformationintheVentralVisual

    StreamInvestigatedwithMultivoxelPatternAnalyses.JNeurosci.33:8549–8558.

    Grill-SpectorK,KnoufN,KanwisherN.2004.Thefusiformfaceareasubservesfaceperception,not

    genericwithin-categoryidentification.NatNeurosci.7:555–562.

    Grill-SpectorK,WeinerKS.2014.Thefunctionalarchitectureoftheventraltemporalcortexandits

    roleincategorization.NatRevNeurosci.15:536–548.

    GroenIIA,SilsonEH,BakerCI.2017.Contributionsoflow-andhigh-levelpropertiestoneural

    processingofvisualscenesinthehumanbrain.PhilosTransRSocLond,B,BiolSci.

    372:20160102.

    GuntupalliJS,WheelerKG,GobbiniMI.2017.DisentanglingtheRepresentationofIdentityfrom

    HeadViewAlongtheHumanFaceProcessingPathway.CerebralCortex.27:46–53.

    HaxbyJV,GobbiniMI,FureyML,IshaiA,SchoutenJL,PietriniP.2001.Distributedandoverlapping

    representationsoffacesandobjectsinventraltemporalcortex.Science.293:2425–2430.

    HebartMN,GörgenK,HaynesJ-D.2014.TheDecodingToolbox(TDT):aversatilesoftwarepackage

    formultivariateanalysesoffunctionalimagingdata.FrontNeuroinform.8:88.

    KaiserD,AzzaliniDC,PeelenMV.2016.Shape-independentobjectcategoryresponsesrevealedby

    MEGandfMRIdecoding.JNeurophysiol.jn.01074.2015.

    KanwisherN.2017.TheQuestfortheFFAandWhereItLed.JNeurosci.37:1056–1061.

    KanwisherN,McDermottJ,ChunMM.1997.Thefusiformfacearea:amoduleinhumanextrastriate

    cortexspecializedforfaceperception.JNeurosci.17:4302–4311.

    KanwisherN,YovelG.2006.Thefusiformfacearea:acorticalregionspecializedfortheperception

    offaces.PhilosTransRSocLond,B,BiolSci.361:2109–2128.

    KauffmannL,RamanoëlS,GuyaderN,ChauvinA,PeyrinC.2015.Spatialfrequencyprocessingin

    scene-selectivecorticalregions.NeuroImage.112:86–95.

    KleinerM,BrainardD,PelliD.2007.What’snewinPsychtoolbox-3.Perception.36(ECVPAbstract

    Supplement}.

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2017. ; https://doi.org/10.1101/233387doi: bioRxiv preprint

    https://doi.org/10.1101/233387http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 21

    KourtziZ,KanwisherN.2000.Corticalregionsinvolvedinperceivingobjectshape.JNeurosci.

    20:3310–3318.

    KourtziZ,KanwisherN.2001.Representationofperceivedobjectshapebythehumanlateral

    occipitalcomplex.Science.293:1506–1509.

    KravitzDJ,PengCS,BakerCI.2011.Real-worldscenerepresentationsinhigh-levelvisualcortex:it's

    thespacesmorethantheplaces.JNeurosci.31:7322–7333.

    KravitzDJ,SaleemKS,BakerCI,UngerleiderLG,MishkinM.2013.Theventralvisualpathway:an

    expandedneuralframeworkfortheprocessingofobjectquality.TrendsCognSci.17:26–49.

    KriegeskorteN,KievitRA.2013.Representationalgeometry:integratingcognition,computation,and

    thebrain.TrendsCognSci.17:401–412.

    KriegeskorteN,MurM,BandettiniP.2008.Representationalsimilarityanalysis-connectingthe

    branchesofsystemsneuroscience.FrontSystNeurosci.2:4.

    KriegeskorteN,SimmonsWK,BellgowanPSF,BakerCI.2009.Circularanalysisinsystems

    neuroscience:thedangersofdoubledipping.NatNeurosci.12:535–540.

    LiuJ,LiJ,FengL,LiL,TianJ,LeeK.2014.SeeingJesusintoast:neuralandbehavioralcorrelatesof

    facepareidolia.Cortex.53:60–77.

    MacEvoySP,EpsteinRA.2009.Decodingtherepresentationofmultiplesimultaneousobjectsin

    humanoccipitotemporalcortex.CurrBiol.19:943–947.

    MalachR,ReppasJB,BensonRR,KwongKK,JiangH,KennedyWA,LeddenPJ,BradyTJ,RosenBR,

    TootellRB.1995.Object-relatedactivityrevealedbyfunctionalmagneticresonanceimagingin

    humanoccipitalcortex.ProcNatlAcadSciUSA.92:8135–8139.

    MinearM,ParkDC.2004.Alifespandatabaseofadultfacialstimuli.BehavResMethodsInstrum

    Comput.36:630–633.

    NestorA,PlautDC,BehrmannM.2011.Unravelingthedistributedneuralcodeoffacialidentity

    throughspatiotemporalpatternanalysis.ProcNatlAcadSciUSA.108:9998–10003.

    NiliH,WingfieldC,WaltherA,SuL,Marslen-WilsonW,KriegeskorteN.2014.Atoolboxfor

    representationalsimilarityanalysis.PLoSComputBiol.10:e1003553.

    O'CravenKM,KanwisherN.2000.Mentalimageryoffacesandplacesactivatescorresponding

    stimulus-specificbrainregions.JCognNeurosci.12:1013–1023.

    O'TooleAJ,JiangF,AbdiH,HaxbyJV.2005.Partiallydistributedrepresentationsofobjectsandfaces

    inventraltemporalcortex.JCognNeurosci.17:580–590.

    ParkS,BradyTF,GreeneMR,OlivaA.2011.Disentanglingscenecontentfromitsspatialboundary:

    ComplementaryrolesforthePPAandLOCinrepresentingreal-worldscenes.JNeurosci.

    31:1333–1340.

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2017. ; https://doi.org/10.1101/233387doi: bioRxiv preprint

    https://doi.org/10.1101/233387http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 22

    PelliDG.1997.TheVideoToolboxsoftwareforvisualpsychophysics:transformingnumbersinto

    movies.SpatVis.10:437–442.

    ProklovaD,KaiserD,PeelenMV.2016.DisentanglingRepresentationsofObjectShapeandObject

    CategoryinHumanVisualCortex:TheAnimate-InanimateDistinction.JCognNeurosci.28:680–

    692.

    RiceGE,WatsonDM,HartleyT,AndrewsTJ.2014.Low-LevelImagePropertiesofVisualObjects

    PredictPatternsofNeuralResponseacrossCategory-SelectiveRegionsoftheVentralVisual

    Pathway.JNeurosci.34:8837–8844.

    SummerfieldC,EgnerT,MangelsJ,HirschJ.2006.Mistakingahouseforaface:neuralcorrelatesof

    misperceptioninhealthyhumans.CerebCortex.16:500–508.

    TalebiV,BakerCL.2012.Naturalversussyntheticstimuliforestimatingreceptivefieldmodels:a

    comparisonofpredictiverobustness.JNeurosci.32:1560–1576.

    TaubertJ,WardleSG,FlessertM,LeopoldDA,UngerleiderLG.2017.Facepareidoliaintherhesus

    monkey.CurrBiol,27:2505–2509.e2.

    TongF,NakayamaK,MoscovitchM,WeinribO,KanwisherN.2000.Responsepropertiesofthe

    humanfusiformfacearea.CognNeuropsychol.17:257–280.

    WardleSG,RitchieJB.2014.Canobjectcategory-selectivityintheventralvisualpathwaybe

    explainedbysensitivitytolow-levelimageproperties?JNeurosci.34:14817–14819.

    XiaoJ,HaysJ,EhingerKA,OlivaA,TorralbaA.2010.SUNdatabase:Large-scalescenerecognition

    fromabbeytozoo.In:.Presentedatthe2010IEEEConferenceonComputerVisionandPattern

    Recognition(CVPR).IEEE.p.3485–3492.

    YovelG,KanwisherN.2004.Faceperception:domainspecific,notprocessspecific.Neuron.44:889–

    898.

    YovelG,KanwisherN.2005.Theneuralbasisofthebehavioralface-inversioneffect.CurrentBiology.

    15:2256–2262.

    ZhangH,JapeeS,NolanR,ChuC,LiuN,UngerleiderLG.2016.Face-selectiveregionsdifferintheir

    abilitytoclassifyfacialexpressions.NeuroImage.130:77–90.

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2017. ; https://doi.org/10.1101/233387doi: bioRxiv preprint

    https://doi.org/10.1101/233387http://creativecommons.org/licenses/by-nc-nd/4.0/