Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3...

139
Chapter3 Image Transforms Preview 3 1G lI d i d Cl ifi i 3.1General Introduction and Classification 3.2 The Fourier Transform and Properties h bl f 3.3 Other Separable Image Transforms 3.4 Hotelling Transform Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang 1

Transcript of Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3...

Page 1: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

Chapter3 Image Transforms

• Preview3 1G l I d i d Cl ifi i• 3.1General Introduction and Classification

• 3.2 The Fourier Transform and Propertiesh bl f• 3.3 Other Separable Image Transforms

• 3.4 Hotelling Transform

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

1

Page 2: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

Chapter3 Image Transforms

PreviewGeneral steps of operation in frequency domain

DFT IDFT),( vuH

General steps of operation in frequency domain

Pre- Post-

),( vuF ),(),( vuHvuF

Preprocessing

Postprocessing

)(f )( yxg),( yxf ),( yxg

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

2

Page 3: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

Chapter3 Image Transforms

Preview

Lowpass filterLowpass filter And highpass filter

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

3

Page 4: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

Chapter3 Image Transforms

PreviewDirectly display DFT coefficientsDirectly display DFT coefficients

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

4

Page 5: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

Chapter3 Image Transforms

PreviewDisplay DFT coefficients after log operateDisplay DFT coefficients after log operate

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

5

Page 6: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

Chapter3 Image Transforms

Preview Rotational properties of DFT

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

6

Page 7: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

Chapter3 Image Transforms

Preview Examples of DFT

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

7

Page 8: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

Chapter3 Image TransformsChapter3 Image TransformsPreview Blurred image and its DFTPreview Blurred image and its DFT

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

8

Page 9: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

Chapter3 Image TransformsChapter3 Image TransformsPreview Blurred image and its DFTPreview Blurred image and its DFT

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

9

Page 10: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

Chapter3 Image TransformsChapter3 Image TransformsPreview Blurred image and its DFTPreview Blurred image and its DFT

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

10

Page 11: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

Chapter3 Image Transforms

Preview Examples of DCT

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

11

Page 12: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.1 General Introduction and Classification3.1.1 introduction

• image transforms are the bases of image processing g g p gand analysis

• this chapter deals with two-dimensional transforms and their propertiesp p

• image transforms are used in image enhancement, g g ,restoration, reconstruction, encoding and description

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

12

Page 13: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.1 General Introduction and Classification3.1.1 classification

DFT and its properties⎧ ⎧ DFT and its propertiesDCT

Hadamard Transform

⎧ ⎧⎪ ⎪

⎧⎪ ⎪⎪⎪ ⎪⎪ ⎪Hadamard Transform

separable transformsimage transforms others Walsh Transform

Slant Transform

⎪ ⎪⎪ ⎪⎪ ⎨ ⎪⎨ ⎨⎪

⎪⎪⎪

⎪⎪ Slant Transform

Haar Transform

statistical transforms: Hotelling transform

⎪⎪⎪⎪⎪ ⎩⎩

⎪⎪⎪⎪⎩ statistical transforms: Hotelling transform⎪⎩

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

13

Page 14: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2.1 introduction

Optical PrismOp c s

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

14

Page 15: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2.1 introduction

DFT

Mathematic Prisme c s

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

15

Page 16: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2.2 definitions: 1-D CFT

The One-Dimensional Continuous Fourier Transform and its Inverse

2( ) ( ) j uxF u f x e dxπ+∞ −= ∫( ) ( )f−∞∫

2( ) ( ) j xuf x F u e duπ+∞

∞= ∫−∞∫

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

16

Page 17: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2.2 definitions:1-D DFT

The One-Dimensional Discrete Fourier Transform and its Inverse

21N j uxπ− −

∑ 0 1 1u N=0

( ) ( )j ux

N

x

F u f x e=

=∑ 0,1, 1u N= −L

21

0

1( ) ( )N j ux

Nf x F u eN

π−

= ∑ 0,1, 1x N= −L0uN =

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

17

Page 18: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

Basis function DFT N=64Digital Image Processing

Prof.zhengkai Liu Dr.Rong Zhang18

Basis function DFT N=64

Page 19: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2.2 definitions (2) :1-D DFT

Other expressions:

)()()( ujIuRuF +=

[ ])()()( jFF φor

[ ])(exp)()( ujuFuF φ=

E l ’ f lEuler’s formula:

[ ] uxjuxuxj πππ 2sin2cos2exp −=−Digital Image Processing

Prof.zhengkai Liu Dr.Rong Zhang19

[ ]

Page 20: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2.2 definitions:spectrum, Phase angle Power spectrum

Magnitude or spectrum [ ] 21

)()()( 22 uIuRuF +=Magnitude or spectrum

Ph l h t

[ ])()()( uIuRuF +=

[ ])()(arctan)( uRuIu =φPhase angle or phase spectrum [ ])()(arctan)( uRuIu =φ

)()()()( 222Power spectrum(Spectral density)

)()()()( 222 uIuRuFuP +==

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

20

Page 21: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2.2 definitions:1-D DFT example

If a signal is expressed as f(x)={2,3,4,4}, its DFT are:3

0(0) ( ) exp(0) (0) (1) (2) (3) 13

xF f x f f f f

=

= = + + + =∑3

0 / 2 3 / 2

0(1) ( ) exp( 2 / 4) 2 3 4 4 2j j j

xF f x j x e e e e jπ π ππ − − −

=

= − = + + + = − +∑33

0 2 3

0(2) ( ) exp( 4 / 4) 2 3 4 4 1j j j

xF f x j x e e e eπ π ππ − − −

=

= − = + + + = −∑3

/ /∑ 0 3 / 2 3 9 / 2

0(3) ( ) exp( 6 / 4) 2 3 4 4 2j j j

xF f x j x e e e e jπ π ππ − − −

=

= − = + + + = − −∑

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

21

Page 22: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2.2 definitions:1-D DFT example

And the Fourier spectra are :p

(0) 0φ =| (0) | 13F = ( )φ

(1) 0.85φ π=2 2 1/ 2| (1) | [( 2) 1 ] 5F = − + =

(3) 0 85φ π= −(3)φ π=

2 2 1/ 2| (3) | [( 2) ( 1) ] 5F = − + − =

2 1/ 2| (2) | [( 1) ] 1F = − =

(3) 0.85φ π= −| (3) | [( 2) ( 1) ] 5F = − + − =

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

22

Page 23: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2.2 definitions:1-D DFT example

Graphic illustration :

|F(u)|

p

f(x) jF(u)

u0 1 2 3

Φ(u)

x0 1 2 3

Φ(u)π

-0.85π

0 1 2 3-0.85π0 u

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

23

Page 24: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

Fourier Transform and Properties3.2.2 definitions:1-D DFT exampleIf a signal is expressed as f(x)={3,2,3,1,4,5,0,2}, its DFT are:

7

0(0) ( ) exp(0) (0) (1) (2) (3)

xF f x f f f f

=

= = + + +∑(4) (5) (6) (7) 20f f f f+ + + + =

70 / 4 / 2 3 / 4(1) ( ) exp( 2 / 8) 3 2 3 1 4j j j jF f x j x e e e e eπ π π ππ − − − −= − = + + + +∑

0

5 / 4 3 / 2 7 / 4

(1) ( ) exp( 2 / 8) 3 2 3 1 4

5 0 2 2.4142 0.1716x

j j j

F f x j x e e e e e

e e e jπ π π

π=

− − −

= = + + + +

+ + + = − −

70 / 2 3 / 2 2

0(2) ( ) exp( 4 / 8) 3 2 3 1 4j j j j

xF f x j x e e e e eπ π π ππ − − − −

=

= − = + + + +∑

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

245 / 2 3 7 / 25 0 2 4 4j j je e e jπ π π− − −+ + + = −

Page 25: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

70 3 / 4 3 / 2 9 / 4 3

0

(3) ( ) exp( 6 / 8) 3 2 3 1 4j j j jF f x j x e e e e eπ π π ππ − − − −= − = + + + +∑0

15 / 4 9 / 2 21 / 45 0 2 0.4142 5.8284x

j j je e e jπ π π

=

− − −+ + + = +7

0 2 3 4

0

5 6 7

(4) ( ) exp( 8 / 8) 3 2 3 1 4

5 0 2 0

j j j j

x

j j j

F f x j x e e e e e

e e e

π π π π

π π π

π − − − −

=

− − −

= − = + + + +

+ + + =

∑5 0 2 0e e e+ + + =

70 5 / 4 5 / 2 15 / 4 5

0

(5) ( ) exp( 10 / 8) 3 2 3 1 4j j j j

x

F f x j x e e e e eπ π π ππ − − − −

=

= − = + + + +∑0

25 / 4 15 / 2 35 / 45 0 2 0.4142 5.8284x

j j je e e jπ π π

=

− − −+ + + = −7

0 3 / 2 3 9 / 2 6j j j jπ π π π∑ 0 3 / 2 3 9 / 2 6

0

15 / 2 9 21 / 2

(6) ( ) exp( 12 / 8) 3 2 3 1 4

5 0 2 4 4

j j j j

x

j j j

F f x j x e e e e e

e e e j

π π π π

π π π

π − − − −

=

− − −

= − = + + + +

+ + + = +

∑5 0 2 4 4e e e j+ + + +

70 7 / 4 7 / 2 21 / 4 7

0

(7) ( ) exp( 14 / 8) 3 2 3 1 4j j j j

x

F f x j x e e e e eπ π π ππ − − − −

=

= − = + + + +∑

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

25

035 / 4 21 / 2 49 / 45 0 2 2.4142 0.1716

xj j je e e jπ π π− − −+ + + = − +

Page 26: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2 Fourier Transform and Properties3.2.2 definitions:1-D DFT example

And the Fourier spectra are :

| (0) | 20F = (0) 0φ =| (0) | 20F =2 2 1/ 2| (1) | [( 2.4142) ( 0.1716) ] 2.4203F = − + − =

(0) 0φ =(1) 0.9774φ π= −(2) 0 25φ2 2 1/ 2| (2) | [4 ( 4) ] 5.6569F = + − =

2 2 1/ 2| (3) | [0.4142 5.8284 ] 5.8431F = + =

(2) 0.25φ π= −(3) 0.4774φ π=

| (4) | 0F =2 2 1/ 2| (5) | [0.4142 ( 5.8284) ] 5.8431F = + − =

(4)φ π=(5) 0.4774φ π= −| ( ) | [ ( ) ]

2 2 1/ 2| (6) | [4 4 ] 5.6569F = + =

( )φ(6) 0.25φ π=(7) 0 9774φ

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

26

2 2 1/ 2| (7) | [( 2.4142) 0.1716 ] 2.4203F = − + = (7) 0.9774φ π=

Page 27: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3 2 Fourier Transform and Properties3.2 Fourier Transform and Properties3.2.2 definitions:1-D DFT example

Graphic illustration :

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

27

Page 28: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3 2 Fourier Transform and Properties3.2 Fourier Transform and Properties3.2.2 definitions:1-D DFT example

Graphic illustration :

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

28

Page 29: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2.2 definitions: 2D-DFT

The Two-Dimensional Discrete Fourier Transform and its Inverse

1 12 ( / / )( , ) ( , )

M Nj ux M vy NF u v f x y e π

− −− += ∑ ∑

0,1, 1u M= −L

0 1 1v N= −L0 0

( , ) ( , )x y

F u v f x y e= =∑ ∑ 0,1, 1v N=

1 12 ( / / )

0 0

1( , ) ( , )M N

j ux M vy N

u vf x y F u v e

MNπ

− −+

= =

= ∑ ∑ 0,1, 1x M= −L

0,1, 1y N= −L

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

29

Page 30: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2.2 definitions: 2D-DFT

Magnitude or spectrum

[ ] 2122 ),(),(),( vuIvuRvuF +=

Magnitude or spectrum

Phase angle or phase spectrum

[ ]),(),(arctan),( vuRvuIvu =φPhase angle or phase spectrum

),(),(),(),( 222 vuIvuRvuFvuP +==

Power spectrum(Spectral density)

),(),(),(),( vuIvuRvuFvuP +

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

30

Page 31: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2.2 definitions: 2D-DFT

Magnitude Phaseimage

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

31

Page 32: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2.2 definitions: 2D-DFT

Typical images and their spectra

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

32

Page 33: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2 Fourier Transform and Properties3.2.2 definitions: 2D-IDFT

IDFT

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

33

Page 34: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2 Fourier Transform and Properties3.2.2 definitions: 2D-IDFT

IDFT

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

34

Page 35: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2 Fourier Transform and Properties3.2.2 definitions: 2D-IDFT

IDFTIDFT

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

35

Page 36: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2.3 Properties: Display

•Usually the Fourier spectra are displayed as intensity functionUsually the Fourier spectra are displayed as intensity function.• many image spectra decrease rather rapidly as a function of increasing frequency

•their high-frequency terms have a tendency to become obscured when displayed in image.

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

36

Page 37: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties

• A useful processing technique which compensates for this difficulty consists of displaying the function

3.2.3 Properties: Display

this difficulty consists of displaying the function

1( , ) log(1 ( , ) )D u v F u v= +

Or

2

( , ) 100 ( , )

F u vD u v

⎧ +⎪= ⎨2 ( , )255 if ( , ) 100 255

D u vF u v⎨ + >⎪⎩

•instead of ( , )F u v

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

37

Page 38: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2.3 Properties: Display

( , )F u v

2 ( , )D u v

( )D

2 ( , )

1( , )D u v

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

38

Page 39: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2.3 Properties: separability

The DFT pair can be expressed in the separable forms:

⎤⎡⎤⎡ −− vyjuxj NN ππ 221 11

The DFT pair can be expressed in the separable forms:

⎥⎦⎤

⎢⎣⎡−

⎥⎦⎤

⎢⎣⎡−= ∑∑

== Nvyjyxf

Nuxj

NvuF

N

y

N

x

ππ 2exp),(2exp1),(1

0

1

0

∑∑−

=

=⎥⎦⎤

⎢⎣⎡

⎥⎦⎤

⎢⎣⎡=

1

0

1

0

2exp),(2exp1),(N

v

N

u NvyjvuF

Nuxj

Nyxf ππ

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

39

Page 40: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2.3 Properties: separability

The principal of the separability property is that f(x,y) or F(u,v)p p p y p p y f( ,y) ( , )can be obtained in two steps by successive applications of the 1-DFourier transform or its inverse

Y

(N-1)

V

(N-1)

V

(N-1)

f(x,y)

X

( )(0 0)

列变换

乘以NF(x,v)

X

( )(0 0)

行变换F(u,v)

U

( )(0 0)(N-1)(0,0) (N-1)(0,0) (N-1)(0,0)

图3.2.2 由2步1-D变换计算2-D变换

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

40

Page 41: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2.3 Properties: separability

For a N*N image, it can be separated into 2N 1D-DFT

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

41

Page 42: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2.3 Properties: periodicity and conjugate symmetryThe discrete Fourier transform and its inverse are periodic with

),(),(),(),( NvNuFNvuFvNuFvuF ++=+=+=Period N

The Fourier transform also exhibits conjugate symmetry since

( ) ( )F u v F u v∗

Or more interestingly,

( , ) ( , )F u v F u v= − −

( , ) ( , )F u v F u v= − −

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

42

Page 43: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

|F(u)|1D periodicity and conjugate symmetry

|F(u)|

One period-N/2 N/2 N-1,N0

|F(u)|

-N/2 N/2 N 10Digital Image Processing

Prof.zhengkai Liu Dr.Rong Zhang43

One periodN/2 N/2 N-10

Page 44: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

2D periodicity and conjugate symmetry

(0 0) (0,N-1)

One period

(0,0) (0,N 1)

One period

(N-1,0)( )

(2N-1,2N-1)

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

44

Page 45: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2.3 Properties: periodicity and conjugate symmetry

Lowfrequencies

High frequencies

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

45

Page 46: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2.3 Properties: translation

The translation properties of the Fourier transform pair are given byp p p g y

[ ] ),()(2exp),( 0000 vvuuFNyvxujyxf −−⇔+π[ ] 0000

and

[ ]NvyuxjvuFyyxxf )(2exp),(),( 0000 +−⇔−− π

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

46

Page 47: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2.3 Properties: translation

A hift i f( ) d t ff t th it d f it F iA shift in f(x,y) does not affect the magnitude of its Fourier transform since

[ ]0 0| ( , ) exp 2 ( ) | | ( , ) |F u v j ux vy N F u vπ− + =[ ]0 0| ( ) p ( ) | | ( ) |j y

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

47

Page 48: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2.3 Properties: translation

Example: in the case u0=v0=N/2, it follows thatExample: in the case u0 v0 N/2, it follows that

and

( )( 1) ( / 2 / 2)x yf +( , )( 1) ( / 2, / 2)x yf x y F u N v N+− ⇔ − −

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

48

Page 49: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2.3 Properties: translation

Example of One-Dimensional DFT shiftf(x)

F( )F(u)shift

F(u)No shift

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

49

Page 50: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2.3 Properties: translation

Example of Two-Dimensional DFT shift

F( )F(u,v)No shift

F(u,v) shifted

(0,0) (0,N-1)

(N-1,0)

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

50

(2N-1,2N-1)

Page 51: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2.3 Properties: translation

Example of Two-Dimensional DFT shift

F(u)F(u)No shift

F(u,v)shifted

f(x,y)

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

51

shifted

Page 52: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2.3 Properties: rotation

If we introduce the polar coordinates

cos( )x r θ= sin( )y r θ= cos( )u ω φ= sin( )v ω φ=

Th f( ) d F( )b d i l( )f θ ( )F φThen f(x,y) and F(u,v)become and respectively( , )f r θ ( , )F ω φ

),(),( 00 θφθθ +⇔+ wFrf

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

52

Page 53: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2.3 Properties: rotation

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

53

Page 54: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2.3 Properties: Distributivity

It follows directly from the definition of the transform pair that,

{ } { } { }),(),(),(),( 2121 yxfFyxfFyxfyxfF +=+

y p

And, in general that,

{ } { } { }),(),(),(),( 2121 yxfyxfFyxfyxfF ⋅≠⋅

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

54

Page 55: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2.3 Properties: scaling

It is also easy to show that for two scalar a and b

)()( vuaFyxaf ⇔

It is also easy to show that for two scalar a and b

),(),( vuaFyxaf ⇔and

⎟⎠⎞

⎜⎝⎛⇔

bv

auF

abbyaxf ,1),(

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

55

Page 56: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2.3 Properties: average value

A widely-used definition of the average value of a 2DA widely used definition of the average value of a 2DDiscrete function is given by the expression

∑∑− −1 1~ 1 N N

∑∑= =

=0 0

2 ),(1),(x y

yxfN

yxf

b i i f i d fi i i f i ldSubstitution of u-v-0 in definition of 2D DFT yields

− −1 11 N N 1~

∑∑= =

=0 0

),(1)0,0(x y

yxfN

F )0,0(1),( FN

yxf =

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

56

Page 57: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2.3 Properties: convolution

The convolution of two functions f(x) and g(x), denoted by

∫∞

f(x)*g(x), is defined by the integral:

dzzxgzfxgxf ∫∞−

−=∗ )()()()(

Where z is a dummy variable of integration

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

57

Page 58: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2 Fourier Transform and Properties3.2.3 Properties: convolutionExample1: graphic illustration of convolution f(x)*g(x)

( ) ( )

Example1: graphic illustration of convolution f(x)*g(x)

f(z)

z

1

g(z)

z1/2

g(-z) g(x-z)

z z1/2 1/2

z

0 1(a)

z

0 1(b) (c) (d)

z z

0-1 -1 x0

( ) ( ) ( ) ( ) ( ) ( )f(z)g(x-z)

z

1/2110 ≤≤ x 121 ≤≤ x

1/2z

f(z)g(x-z)

1/2x

f(x)*g(x)

z

0 x 1-1 0 1x-1 x

z

(f)(e)

0 1 2

x

(g)

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

58

图3.2.3 1-D函数卷积示例

Page 59: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2 Fourier Transform and Properties3.2.3 Properties: convolution

Example2: graphic illustration of convolution f(x,y)*g(x,y)

x

ζζ ζ ζM-1A-1

N-1

g(ζ,η)

f(ζ,η)

g(-ζ,-η)

g(x-ζ, y-η)B-1

ηηf(ζ,η)

η ηy

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

59

Page 60: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2.3 Properties: convolutionExample2: graphic illustration of convolution f(x,y)*g(x,y)p g p f( ,y) g( ,y)

ζ ζ ζ xA+M-1(0,0)

ζ ζ ζ

η η η B+N-1

f(ζ,η) *g(x-ζ, y-η)f(ζ,η) *g(x-ζ, y-η)

y f(x,y)*g(x,y)

f(ζ,η) *g(x-ζ, y-η)

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

60

Page 61: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2.3 Properties: convolution

If f(x y) has the Fourier transform F(u v) and g(x y)has the FourierIf f(x,y) has the Fourier transform F(u,v) and g(x,y)has the FourierTransform G(u,v), then f(x,y)*g(x,y) has the Fourier transformF(u,v)G(u,v).This result, formally stated as:( ) ( ) y

),(),(),(),( vuGvuFyxgyxf ⇔∗

And the convolution in frequency domain reduces to multiplicationIn the spatial-domain

),(),(),(),( vuGvuFyxgyxf ∗⇔

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

61

Page 62: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2.3 Properties: convolutionDefinition of 1D-discrete convolutionDefinition of 1D discrete convolution

⎧ )(xf 10 −≤≤ Ax

⎩⎨⎧

=0

)()(

xfxfe

10 ≤≤ Ax1−≤≤ MxA

⎩⎨⎧

=0

)()(

xgxge

10 −≤≤ Bx

1−≤≤ MxB

∑−

−=∗1

)()(1)()(M

mxgmfxgxf x=0,1,…,Mx=0,1,…,M--11∑=

=∗0

)()()()(m

eeee mxgmfM

xgxf x 0,1,…,Mx 0,1,…,M 11

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

62

Page 63: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.2 Fourier Transform and Properties3.2.3 Properties: convolutionDefinition of 2D-discrete convolutionDefinition of 2D discrete convolution

⎨⎧ ),(

)(yxf

yxf10 −≤≤ Ax andand 10 −≤≤ By

⎩⎨= 0

),( yxfe1−≤≤ MxA oror 1−≤≤ NyB

⎩⎨⎧

=0

),(),(

yxgyxge

andand

oror

0 1x C≤ ≤ −

1−≤≤ MxC

10 −≤≤ Dy

1−≤≤ NyD y

1,...,1,0 −= Mx∑∑− −

−−=∗1 1

),(),(1),(),(M N

nymxgnmfyxgyxf ∑∑= =0 0

),(),(),(),(m n

eeee nymxgnmfMN

yxgyxf1,...,1,0 −= Ny

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

63

Page 64: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

question

DFT ??

2003 Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

64

Page 65: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

The answer is:

Amplitude Phasep Phase

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

65

Page 66: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

The answer is:

Amplitude Phasep Phase

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

66

Page 67: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.3 Other Separable Transforms3.3.1 General formulations

Definition1: if X is an N-by-1 vector and T is an N-by-N matrix then:1

,0

N

i i j jj

y t x−

=

=∑ polynomial expression

0 0,0 0,1 0, 1 0Ny t t t x−⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥

L

Y TX=1 1,0 1,1 1, 1 1Ny t t t x−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

L

M O MM

1,0 1,1 1, 1 11 N N N N NNt t t xy − − − − −−

⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦ L

matrix expressionDigital Image Processing

Prof.zhengkai Liu Dr.Rong Zhang67

matrix expression

Page 68: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.3 Other Separable Transforms

1X T Y

3.3.1 General formulations

Definition2: inversion 1X T Y−=Definition2: inversion

If k(T) N h i i li f1 tT T− ∗= 1tTT TT I∗ −= =

If rank(T)= N then it is a linear transform

If then it is a Unitary transform

1 tT T− =If then it is a orthogonal transform 1tTT TT I−= =

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

68

Page 69: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.3 Other Separable Transforms3.3.1 General formulations

Example: 1-D Discrete Fourier Transform (DFT)Example: 1 D Discrete Fourier Transform (DFT)

21

( ) ( )N j ux

NF u f x eπ− −

=∑ F Tf=0

( ) ( )x

F u f x e=

=∑211( ) ( )

N j uxNf Fπ−

F Tf=

1f T F−

0

( ) ( ) N

u

f x F u eN =

= ∑ 1f T F=

1 tT T− ∗

It is a Unitary transform

T T=

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

69

Page 70: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.3 Other Separable Transforms

Definition3: 2 D transformation

3.3.1 General formulations

1 1

( )M N− −

Φ∑∑

Definition3: 2-D transformation

, ,0 0

( , , , )m n i ji j

y x i j m n= =

= Φ∑∑

Can be thought of as a MN-by-MN block matrix haveM rows of M blocks, each of which is an N-by-N

( , , , )i j m nΦ

matrix

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

70

Page 71: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.3 Other Separable Transforms3.3.1 General formulations

Definition4: if can be separated into the product ( , , , )i j m nΦ p pof rowwise and columnwise component function, that is

( , , , )j

( , , , ) ( , ) ( , )r ci j m n T i m T j nΦ =

then the transformation is called separablethen the transformation is called separable

[ ]1 1

( , ) ( , )M N

m n i j c ry x T j n T i m− −

= ∑ ∑[ ], ,0 0

( , ) ( , )m n i j c ri j

y x j n i m= =∑ ∑

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

71

Page 72: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.3 Other Separable Transforms3.3.1 General formulations

Definition5: if two component are identical:p

( , , , ) ( , ) ( , )i j m n T i m T j nΦ =

then the transformation is called symmetric1 1M N

[ ]1 1

, ,0 0

( , ) ( , )M N

m n i ji j

y x T j n T i m− −

= =

= ∑ ∑oror

Y TXT=

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

72

Page 73: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.3 Other Separable Transforms3.3 Other Separable Transforms3.3.1 General formulations

Example: 2-D Discrete Fourier Transform (DFT)

Separable and Symmetric Unitary transform

⎥⎦⎤

⎢⎣⎡−

⎥⎦⎤

⎢⎣⎡−= ∑∑

=

= Nvyjyxf

Nuxj

NvuF

N

y

N

x

ππ 2exp),(2exp1),(1

0

1

0

lets exp( 2 / )MW j Mπ=

exp( 2 / )NW j Nπ=

then

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

73

Page 74: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3 3 Oth S bl T f3.3 Other Separable Transforms3.3.2 Discrete Cosine Transform (DCT)3.3. sc e e Cos e s o ( C )

The 1-D DCT pair is given by the expression:1

0

(2 1)( ) ( ) ( ) cos2

N

x

x uC u a u f xN

π−

=

+⎡ ⎤= ⎢ ⎥⎣ ⎦∑ x=0,1,…N-1

1

0

(2 1)( ) ( ) ( ) cos2

N

u

x uf x a u C uN

π−

=

+⎡ ⎤= ⎢ ⎥⎣ ⎦∑

u=0,1,…N-10 2u N= ⎣ ⎦

where

⎧ 1 0( )

2 1,2, , 1

N ua u

N u N

⎧ =⎪= ⎨= −⎪⎩ L

when

when

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

74

, , ,⎪⎩

Page 75: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3 3 Oth S bl T f3.3 Other Separable Transforms3.3.2 Discrete Cosine Transform (DCT)3.3. sc e e Cos e s o ( C )

Basis function matrix

1/ 2 1/ 2 1/ 2⎡ ⎤⎢

L⎥

x

ucos / 2 cos3 / 2 cos(2 1) / 2cos 2 / 2 cos 6 / 2 cos 2(2 1) / 2

23 / 2 9 / 2 3(2 1) / 2

N N N NN N N N

C N N N N

π π ππ π π

⎢−⎢

⎢ −⎢

= ⎢

L

L

⎥⎥⎥⎥⎥

u

cos3 / 2 cos9 / 2 cos3(2 1) / 2cos 4 / 2 cos12 / 2 cos 4(2 1) / 2

NC N N N NN

N N N Nπ π ππ π π

= −⎢⎢ −⎢⎢

L

L

M M O M

⎥⎥⎥⎥

cos( 1) / 2 cos3( 1) / 2 cos(2 1)( 1) / 2N N N N N N Nπ π π⎢⎢ − − − −⎢⎣ ⎦

M M O M

L

⎥⎥⎥

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

75

Page 76: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3 3 Oth S bl T f3.3 Other Separable Transforms3.3.2 Discrete Cosine Transform (DCT)3.3. sc e e Cos e s o ( C )

The 1 DCT basis function for N=8Digital Image Processing

Prof.zhengkai Liu Dr.Rong Zhang76

The 1-DCT basis function for N=8

Page 77: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3 3 Oth S bl T f3.3 Other Separable Transforms3.3.2 Discrete Cosine Transform (DCT)3.3. sc e e Cos e s o ( C )

DCT 1D N=64Digital Image Processing

Prof.zhengkai Liu Dr.Rong Zhang77

DCT_1D N 64

Page 78: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3 3 Oth S bl T f3.3 Other Separable Transforms3.3.2 Discrete Cosine Transform (DCT)3.3. sc e e Cos e s o ( C )

The 2-D DCT pair is given by the expression:

1 1 (2 1) (2 1)( , ) ( ) ( ) ( , ) cos cosN N x u y vC u v a u a v f x y π π− − + +⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∑∑

0 0( , ) ( ) ( ) ( , ) cos cos

2 2x yC u v a u a v f x y

N N= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑∑

u,v=0,1,…N-11 1

0 0

(2 1) (2 1)( , ) ( ) ( ) ( , ) cos cos2 2

N N

u v

x u y vf x y a u a v C u vN N

π π− −

= =

+ +⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∑∑

x,y=0,1,…N-1

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

78

Page 79: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.3 Other Separable Transforms3.3.2 Discrete Cosine Transform (DCT)

u

v

x

y

The 2D-DCT basis images for N=4

y

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

79

The 2D DCT basis images for N 4

Page 80: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.3 Other Separable Transforms3.3.2 Discrete Cosine Transform (DCT)

A l f 2D DCTAn example of 2D-DCT

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

80

Page 81: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.3 Other Separable Transforms3.3.2 Discrete Cosine Transform (DCT)Relationship between DFT and DCTp

DCTDCT

DFTDFT

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

81

Page 82: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.3 Other Separable Transforms3.3.2 Discrete Cosine Transform (DCT)Relationship between DFT and DCTp

Shifted DFT

DFTDCT

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

82

Page 83: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3 3 Oth S bl T f3.3 Other Separable Transforms3.3.2 Walsh transform3.3. W s s o

1 1n−

When N=2n, the kernel function is:1( , )g x uN

= 1( ) ( )

0

( 1) i n ib x b u

i

− −

=

−∏

1

11( ) ( )1( ) ( ) ( 1) i i

nNb x b uW f

−−

∑ ∏

the discrete Walsh transform of a function f(x), denote by W(u), is:

1( ) ( )

0 0

( ) ( ) ( 1) i n ib x b u

x i

W u f xN

− −

= =

= −∑ ∏

Wh b ( ) i h k h bi i h bi i fWhere bk(z) is the kth bit in the binary representation of z.Eg: n=3, z=6 (110 in binary), we have that

b (z)=0 b (z)=1 and b (z)=1Digital Image Processing

Prof.zhengkai Liu Dr.Rong Zhang83

b0(z) 0, b1 (z) 1, and b2(z) 1

Page 84: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3 3 Oth S bl T f3.3 Other Separable Transforms3.3.2 Walsh transform: 1-D transform3.3.2 Walsh transform: 1 D transformThe values of g(x,u) are list in below

u\x 0 1 2 3 4 5 6 7x

0 + + + + + + + +

1 + + + +

u

1 + + + + - - - -

2 + + - - + + - -

3 + + - - - - + +

4 + - + - + - + -

5 + - + - - + - +

6 + - - + + - - +

7 + - - + - + + -

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

84

Page 85: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3 3 Oth S bl T f3.3 Other Separable Transforms3.3.2 Walsh transform: 1-D transform3.3.2 Walsh transform: 1 D transform

Inverse kernel and transform:

1

1( ) ( )( , ) ( 1) i n i

nb x b uh x u − −

= −∏0i=∏

11 nN −−1( ) ( )

0 0

( ) ( ) ( 1) i n ib x b u

u i

f x W u − −

= =

= −∑ ∏

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

85

Page 86: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3 3 Oth S bl T f3.3 Other Separable Transforms3.3.2 Walsh transform: 1-D matrix expression N=83.3.2 Walsh transform: 1 D matrix expression N 8

0 0

1 1

1 1 1 1 1 1 1 11 1 1 1 1 1 1 1

w fw f⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥⎢ ⎥

2 2

3 3

4 4

1 1 1 1 1 1 1 11 1 1 1 1 1 1 11 1 1 1 1 1 1 1

w fw fw f

⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥⎢ ⎥

5 5

6 6

77

1 1 1 1 1 1 1 11 1 1 1 1 1 1 11 1 1 1 1 1 1 1

w fw f

fw

⎢ ⎥ ⎢ ⎥⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢⎢ ⎥− − − −⎢ ⎥ ⎢⎢ ⎥

− − − −⎢ ⎥⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦⎣ ⎦

⎥⎥⎥77 f⎢ ⎥⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎥

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

86

Page 87: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3 3 Oth S bl T f3.3 Other Separable Transforms3.3.2 Walsh transform: 1-D transform3.3.2 Walsh transform: 1 D transform The values of g(x,u) are list in below for N=8

u\x 0 1 2 3 4 5 6 7 Sequency of the x

0 + + + + + + + +

1 + + + +

01

rowu

1 + + + + - - - -

2 + + - - + + - -

3 + + - - - - + +

132

4 + - + - + - + -

5 + - + - - + - +

76

6 + - - + + - - +

7 + - - + - + + -

45

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

87

Page 88: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3 3 Oth S bl T f3.3 Other Separable Transforms3.3.2 Walsh transform: 1-D ordered Walsh transform3.3.2 Walsh transform: 1 D ordered Walsh transform The values of g(x,u) are list in below for N=8

u\x 0 1 2 3 4 5 6 7 Sequency of the x

0 + + + + + + + +

1 + + + +

01

rowu

1 + + + + - - - -

2 + + - - - - + +

3 + + - - + + - -

123

4 + - - + + - _ +

5 + - - + - + + -

45

6 + - + - - + - +

7 + - + - - + + -

67

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

88

Page 89: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3 3 Oth S bl T f3.3 Other Separable Transforms3.3.2 Walsh transform: 2-D transform3.3.2 Walsh transform: 2 D transform The direct and inverse kernel functions are expressed as:

1 1

1[ ( ) ( ) ( ) ( )]1( ) ( 1) i n i i n i

nb x b u b y b vg x y u v − − − −

−+= −∏

0

( , , , ) ( 1)i

g x y u vN =

= ∏1 1

1[ ( ) ( ) ( ) ( )]

0

1( , , , ) ( 1) i n i i n i

nb x b u b y b v

i

h x y u vN

− − − −

−+

=

= −∏0i=

And the direct and inverse transforms are:

1 1

11 1[ ( ) ( ) ( ) ( )]

0 0 0

1( , ) ( , ) ( 1) i n i i n i

nN Nb x b u b y b v

x y i

W u v f x yN

− − − −

−− −+

= = =

= −∑∑ ∏11 11 nN N −− −

∑∑ 1 1[ ( ) ( ) ( ) ( )]

0 0 0

1( , ) ( , ) ( 1) i n i i n ib x b u b y b v

u v i

f x y W u vN

− − − −+

= = =

= −∑∑ ∏

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

89

Page 90: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3 3 Oth S bl T f3.3 Other Separable Transforms3.3.2 Walsh transform: 2-D transform3.3.2 Walsh transform: 2 D transform

The direct and inverse kernel functions areSeparable and SymmetricSeparable and Symmetric

1 1 1 1( , , , ) ( , ) ( , ) ( , ) ( , )g x y u v g x u g y v h x u h y v= =

So it can be implemented in two steps

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

90

Page 91: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3 3 Oth S bl T f3.3 Other Separable Transforms3.3.2 Walsh transform: 2-D transform3.3.2 Walsh transform: 2 D transform

u

vv

x

The Walsh transform basis images for N=4y

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

91

g

Page 92: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3 3 Oth S bl T f3.3 Other Separable Transforms3.3.2 Hadamard transform: 1-D transform 3.3. d d s o : s oWhen N=2n, the kernel function is:

1n−

0

( ) ( )1( , ) ( 1)i i

i

b x b u

g x uN

=∑

= −

1 D Hadamard transform of a function f(x) denote by H(u) is:

Where the summation in the exponent is performed in modulo 2

1-D Hadamard transform of a function f(x), denote by H(u), is:

11 ( ) ( )1

n

i iN b x b u−

− ∑0

( ) ( )

0

1( ) ( )( 1)i i

i

x

H u f xN

=

=

∑= −∑

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

92

Page 93: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3 3 Oth S bl T f3.3 Other Separable Transforms3.3.2 Hadamard transform: 1-D inverse transform 3.3. d d s o : ve se s o

Inverse kernel and transform:1

0

( ) ( )

( , ) ( 1)

n

i ii

b x b u

h x u

=∑

= −

1

0

1 ( ) ( )

( ) ( )( 1)

n

i ii

N b x b u

f x H u

=

− ∑= −∑

0

( ) ( )( 1)u

f x H u=

= −∑

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

93

Page 94: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3 3 Oth S bl T f3.3 Other Separable Transforms3.3.4 hadamard transform: 1-D matrix expression N=8

1 1 1 1 1 1 1 1h f⎡ ⎤ ⎡ ⎤⎡ ⎤

3.3.4 hadamard transform: 1 D matrix expression N 8

0 0

1 1

2 2

1 1 1 1 1 1 1 11 1 1 1 1 1 1 11 1 1 1 1 1 1 11 1 1 1 1 1 1 1

h fh fh fh f

⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥3 3

4 4

5 5

1 1 1 1 1 1 1 11 1 1 1 1 1 1 11 1 1 1 1 1 1 1

h fh fh fh

⎢ ⎥ ⎢ ⎥⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥⎢ ⎥

− − − −⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢⎢ ⎥ ⎥

6 6

77

1 1 1 1 1 1 1 11 1 1 1 1 1 1 1

h ffh

⎢ ⎥ ⎢⎢ ⎥− − − −⎢ ⎥ ⎢⎢ ⎥

− − − −⎢ ⎥⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦⎣ ⎦

⎥⎥⎥

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

94

Page 95: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3 3 Oth S bl T f3.3 Other Separable Transforms3.3.2 Hadamard transform: 1-D transform3.3.2 Hadamard transform: 1 D transform The values of g(x,u) are list in below for N=8

u\x 0 1 2 3 4 5 6 7 Sequency of the x

0 + + + + + + + +

1 + + + +

07

rowu

1 + - + - + - + -

2 + + - - + + - -

3 + - - + + - - +

734

4 + + + + - - _ -

5 + - + - - + - +

16

6 + + - - - - + +

7 + - - + - + + -

25

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

95

Page 96: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3 3 Oth S bl T f3.3 Other Separable Transforms3.3.2 Hadamard transform: 1-D transform3.3.2 Hadamard transform: 1 D transform

The 1 D Hadamard transform basis function for N=8Digital Image Processing

Prof.zhengkai Liu Dr.Rong Zhang96

The 1-D Hadamard transform basis function for N=8

Page 97: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3 3 Oth S bl T f3.3 Other Separable Transforms3.3.4 Hadamard transform: 1-D transform3.3.4 Hadamard transform: 1 D transform

h b h k l i iAnother way for generating kernel matrix

2

1 111 12

H⎡ ⎤

= ⎢ ⎥⎣ ⎦

For the two-by-two case, the kernel matrix is

1 12 −⎣ ⎦

And for successively larger N, these can be generated fromThe block matrix from

N NH HH H H

⎡ ⎤= = ⊗⎢ ⎥

The block matrix from

2 2N NN N

H H HH H

= = ⊗⎢ ⎥−⎣ ⎦

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

97

Page 98: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3 3 Oth S bl T f3.3 Other Separable Transforms3.3.4 Hadamard transform: 1-D transform3.3.4 Hadamard transform: 1 D transform

Another way for generating kernel matrix

For examples1 1 1 1 1 1 1 11 1 1 1 1 1 1 1⎡ ⎤⎢ ⎥

4

1 1 1 11 1 1 111 1 1 14

H

⎡ ⎤⎢ ⎥− −⎢ ⎥=⎢ ⎥− − 8

1 1 1 1 1 1 1 11 1 1 1 1 1 1 11 1 1 1 1 1 1 11H

⎢ ⎥− − − −⎢ ⎥⎢ ⎥− − − −⎢ ⎥− − − −⎢ ⎥= ⎢ ⎥1 1 1 14

1 1 1 1⎢ ⎥⎢ ⎥− −⎣ ⎦

8 1 1 1 1 1 1 1 181 1 1 1 1 1 1 11 1 1 1 1 1 1 1

H ⎢ ⎥− − − −⎢ ⎥

− − − −⎢ ⎥⎢ ⎥− − − −⎢ ⎥1 1 1 1 1 1 1 1⎢ ⎥

− − − −⎢ ⎥⎣ ⎦

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

98

Page 99: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3 3 Oth S bl T f3.3 Other Separable Transforms3.3.4 Hadamard transform: 1-D ordered Hadamard transform3.3.4 Hadamard transform: 1 D ordered Hadamard transform

Lets kernel function:1

( ) ( )

01( ) ( 1)

nb x p ui i

ig x u

=∑

= 0( , ) ( 1) ig x uN

= −

0 1( ) ( )np u b u−= ⎫⎪where

1 1 2( ) ( ) ( )n np u b u b u− −⎪= + ⎪⎬⎪⎪

M

where

1 1 0( ) ( ) ( )np u b u b u−⎪= + ⎭

And inverse kernel function:1

( ) ( )

0( , ) ( 1)

nb x p ui i

ih x u

=∑

= −

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

99

Page 100: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3 3 Oth S bl T f3.3 Other Separable Transforms3.3.4 Hadamard transform: 1-D ordered Hadamard transform3.3.4 Hadamard transform: 1 D ordered Hadamard transform The values of g(x,u) are list in below for N=8

u\x 0 1 2 3 4 5 6 7 Sequency of the S ith th

0 + + + + + + + +

1 + + + +

01

rowSame with theOrdered

Walsh transform

1 + + + + - - - -

2 + + - - - - + +

3 + + - - + + - -

123

4 + - - + + - _ +

5 + - - + - + + -

45

6 + - + - - + - +

7 + - + - - + + -

67

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

100

Page 101: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3 3 Oth S bl T f3.3 Other Separable Transforms3.3.4 Hadamard transform: 1-D ordered Hadamard transform3.3.4 Hadamard transform: 1 D ordered Hadamard transform

Then the ordered Hadamard transform pair is

1( ) ( )

0

11( ) ( )( 1)

nb x p ui i

i

N

H u f x

=

− ∑= −∑

0( ) ( )( 1)

xH u f x

N =∑

1( ) ( )

nb

∑ ( ) ( )

0

1

( ) ( )( 1)b x p ui i

i

N

f x H u =

− ∑= −∑

0u=

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

101

Page 102: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.3 Other Separable Transformsp3.3.4 Hadamard transform: 2-D transform

The kernel functions of 2-D Hadamard are:1

[ ( ) ( ) ( ) ( )]

01( , , , ) ( 1)

nb x b u b y b vi i i i

ih x y u vN

−+

=∑

= −1

[ ( ) ( ) ( ) ( )]

01( , , , ) ( 1)

nb x b u b y b vi i i i

ig x y u vN

−+

=∑

= −

N

NBoth the direct and inverse kernel function are Separable and Symmetric because

1 1 1 1( , , , ) ( , ) ( , ) ( , ) ( , )g x y u v g x u g y v h x u h y v= =

Separable and Symmetric, because

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

102

Page 103: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.3 Other Separable Transformsp3.3.4 Hadamard transform: 2-D transform

And the 2-D Hadamard transform is defined as:

1[ ( ) ( ) ( ) ( )]

0

1 11( , ) ( , )( 1)

nb x b u b y b vi i i i

i

N N

H u v f x yN

−+

=

− − ∑= −∑∑

0 0x yN = =

1[ ( ) ( ) ( ) ( )]1 11

nb x b u b y b vi i i iN N

−+− − ∑

0

1 1

0 0

1( , ) ( , )( 1) i

N N

x yf x y H u v

N=

= =

∑= −∑∑

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

103

Page 104: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.3 Other Separable Transformsp3.3.2 Hadamard transform: 2-D transform

uu

v

x

The Hadamard transform basis images for N=4

y

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

104

The Hadamard transform basis images for N=4

Page 105: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.3 Other Separable Transformsp3.3.4 Hadamard transform: 2-D ordered transform

The direct and inverse kernel functions of 2-D ordered Hadamard are same as: 1 [ ( ) ( ) ( ) ( )]

1n b x p u b y p vi i i i− +∑

A d h 2 D d d H d d f i d fi d

01( , , , ) ( , , , ) ( 1) ig x y u v h x y u vN

=∑

= = −

And the 2-D ordered Hadamard transform is defined as:1 [ ( ) ( ) ( ) ( )]

1 11n b x p u b y p vi i i iN N− +

− − ∑∑∑ 0

0 0

1( , ) ( , )( 1) i

x y

H u v f x yN

=

= =

∑= −∑∑

1 [ ( ) ( ) ( ) ( )]n b x p u b y p vi i i i− +[ ( ) ( ) ( ) ( )]

0

1 1

0 0

1( , ) ( , )( 1)b x p u b y p vi i i i

i

N N

x y

f x y H u vN

+

=

− −

= =

∑= −∑∑

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

105

0 0x y

Page 106: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.3 Other Separable Transformsp3.3.4 Hadamard transform: 2-D ordered transform

uu

v

x

Basis image of 2-D ordered Hadamard transform y

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

106

Page 107: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.3 Other Separable Transformsp3.3.5 Haar transform: definitions1 Haar function1. Haar function

The Haar functions hk(z) are defined on the interval [0,1], and k=0 1 N-1 N=2n Let theInteger be specified0 1k N≤ ≤ −k 0,1…N 1, N 2 . Let theInteger be specified ( uniquely) by two other integers, p and q, as

0 1k N≤ ≤ −

2 1pk q= + −2 1k q+

Where 2p is the largest power of 2 such that and q-1 is Th i d

2 p k≤The remainder

For example, k=1=20+1-1, p=0, q=1k , p 0, qk=23=24+8-1, p=4, q=8k=100=26+37-1, p=6, q=37

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

107

, p , q

Page 108: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.3 Other Separable Transformsp3.3.5 Haar transform: definitions1 Haar function1. Haar function

The Haar functions are defined by

0 00( ) ( ) 1h z h z N= = [0,1]z∈

1 2122 2

2 p pqqp z −−⎧ ≤ <

⎪ 2 21 22

2 2

1( ) ( ) 2

0p p

q qpk pqh z h z z

N−

⎪⎪= = − ≤ <⎨⎪⎪⎩ others0⎪⎩ others

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

108

Page 109: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.3 Other Separable Transformsp3.3.5 Haar transform: definitions2 Haar transform matrix2. Haar transform matrix

0 0 0(0 / ) (1/ ) ( 1/ )h N h N h N N−⎡ ⎤L0 0 0

1 1 1

(0 / ) (1/ ) ( 1/ )(0 / ) (1/ ) ( 1/ )

h N h N h N Nh N h N h N N

H

⎡ ⎤⎢ ⎥−⎢ ⎥=⎢ ⎥⎢ ⎥

L

M M O M

1 1 1(0 / ) (1/ ) ( 1/ )N N Nh N h N h N N− − −

⎢ ⎥⎢ ⎥−⎢ ⎥⎣ ⎦K

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

109

Page 110: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.3 Other Separable Transformsp3.3.5 Haar transform: definitions2 Haar transform matrix2. Haar transform matrix

For example: N=20 00

1(0 / 2) (0 / 2)h h= =

0 02

1 1

(0 2) (1 2)(0 2) (1 2)

h hH

h h⎡ ⎤

= ⎢ ⎥⎣ ⎦

0 00(0 / 2) (0 / 2)2

h h

0 001(1/ 2) (1/ 2)2

h h= =1 1(0 2) (1 2)h h⎣ ⎦ 2

11 01

1(0 / 2) (0 / 2)2

h h= =k=0 p=0, q=0

1 011(1/ 2) (1/ 2)2

h h= = −k=1 p=0, q=1

2

1 111 12

H⎡ ⎤

= ⎢ ⎥−⎣ ⎦

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

110

Page 111: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.3 Other Separable Transformsp3.3.5 Haar transform: definitions2 Haar transform matrix2. Haar transform matrix

For example: N=4 For example: N=8p1 1 1 11 1 1 11H

⎡ ⎤⎢ ⎥− −⎢ ⎥

⎡ ⎤4 2 2 0 02

0 0 2 2

H ⎢ ⎥= ⎢ ⎥−⎢ ⎥⎢ ⎥−⎣ ⎦

1 1 1 1 1 1 1 11 1 1 1 1 1 1 1

2 2 2 2 0 0 0 0

⎡ ⎤⎢ ⎥− − − −⎢ ⎥⎢ ⎥− −⎢ ⎥

8

2 2 2 2 0 0 0 01 0 0 0 0 2 2 2 28 2 2 0 0 0 0 0 0

H⎢ ⎥⎢ ⎥− −= ⎢ ⎥−⎢ ⎥⎢ ⎥0 0 2 2 0 0 0 0

0 0 0 0 2 2 0 00 0 0 0 0 0 2 2

⎢ ⎥−⎢ ⎥

−⎢ ⎥⎢ ⎥−⎢ ⎥⎣ ⎦

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

111

0 0 0 0 0 0 2 2⎢ ⎥⎣ ⎦

Page 112: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.3 Other Separable Transformsp3.3.5 Haar transform: definitions2. Haar transform matrix. s o

h f b i f i fDigital Image Processing

Prof.zhengkai Liu Dr.Rong Zhang112

The 1-D Haar transform basis function for N=8

Page 113: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.3 Other Separable Transformsp3.3.5 Haar transform: definitions3 Haar transform3. Haar transform

G HF=Direct transform:f

0 01 1 1 1 1 1 1 1g f⎡ ⎤⎡ ⎤ ⎡ ⎤

⎢ ⎥⎢ ⎥ ⎢ ⎥

1F H G−=Inverse transform:

1 1

2 2

1 1 1 1 1 1 1 1

2 2 2 2 0 0 0 01 0 0 0 0 2 2 2 2

g fg fg f

⎢ ⎥⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥3 3

4 4

5 5

1 0 0 0 0 2 2 2 28 2 2 0 0 0 0 0 0

0 0 2 2 0 0 0 0

g fg fg f

⎢ ⎥− −⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥

6 6

7 7

0 0 0 0 2 2 0 00 0 0 0 0 0 2 2

g fg f

⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

113

Page 114: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.3 Other Separable Transformsp3.3.5 Haar transform: properties3 Haar transform3. Haar transform

u

v

x

h f b i i f

y

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

114The Haar transform basis images for N=4

Page 115: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.3 Other Separable Transformsp3.3.5 Haar transform: mallat algorithms

h(-n) 2 2 h(n)

+

jka

1jka +

j

g(-n) 2 2 g(n)

+

1jkd +

jka

LL1

LH1

HL1

HH1

HL2

HL3

LH2

HH2

LH3 HH3

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

115

Page 116: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.3 Other Separable Transformsp3.3.5 Haar transform: mallat algorithms

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

116

Page 117: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.3 Other Separable Transformsp3.3.6 Slant transform: definitions

2

1 111 12

S⎡ ⎤

= ⎢ ⎥−⎣ ⎦Unitary kernel matrix starting with:

1 0 1 0⎡ ⎤⎢ ⎥⎡ ⎤

M

M

And iterating it according to the schema:

/ 2

1 0 1 00 0

0N N N N Na b a b S

⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

MM M M

M

L L L L L L L M

( / 2) 2 ( / 2) 20 012 0 1 0 1

0 0

N N

N

I IS

− −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥

M M M M

L L L L L L L L L L

MM M M

/ 2

( / 2) 2 ( / 2) 2

0 0

00 0

N N N N

N

N N

b a b aS

I I− −

⎢ ⎥⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥− ⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥

M M MM

L L L L L L L M

M M M M

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

117

( / 2) 2 ( / 2) 2N N⎢ ⎥⎣ ⎦⎢ ⎥⎢ ⎥⎣ ⎦M

Page 118: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.3 Other Separable Transformsp3.3.6 Slant transform: definitions

Where I is the identity matrix of order N/2-2 and

1 22

2

34( 1)N

NaN

⎡ ⎤= ⎢ ⎥−⎣ ⎦

1 22

2

44( 1)N

NbN

⎡ ⎤−= ⎢ ⎥−⎣ ⎦

For example: N=4⎡ ⎤

4

1 1 1 1

3/ 5 1/ 5 1/ 5 3/ 51S

⎡ ⎤⎢ ⎥

− −⎢ ⎥= ⎢ ⎥4 1 1 1 141/ 5 3/ 5 3/ 5 1/ 5

⎢ ⎥− − −⎢ ⎥⎢ ⎥− −⎣ ⎦

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

118

Page 119: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.3 Other Separable Transformsp3.3.6 Slant transform: definitions

For example: N=8

1 1 1 1 1 1 1 1⎡ ⎤1 1 1 1 1 1 1 1

7 / 21 5 / 21 3/ 21 1/ 21 1/ 21 3/ 21 5 / 21 7 / 211 1 1 1 1 1 1 1

− − − −− − − −

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥

8

1/ 5 3/ 5 3/ 5 1/ 5 1/ 5 3/ 5 3/ 5 1/ 518 3/ 5 1/ 5 1/ 5 3/ 5 3/ 5 1/ 5 1/ 5 3/ 5

7 / 105 1/ 105 9 / 105 17 / 105 17 / 105 9 / 105 1/ 105 7 / 105

S− − − −

=− − − −

⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥7 / 105 1/ 105 9 / 105 17 / 105 17 / 105 9 / 105 1/ 105 7 / 105

1 1 1 1 1 1 1 1

1/ 5 3/ 5 3/ 5 1/ 5 1/ 5 3/ 5 3/ 5

− − − −− − − −

− − − − 1/ 5

⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

119

Page 120: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.3 Other Separable Transformsp3.3.6 Slant transform: 1-D basis functions

The 1-D Slant transform basis functions for N=8Digital Image Processing

Prof.zhengkai Liu Dr.Rong Zhang120

The 1 D Slant transform basis functions for N 8

Page 121: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.3 Other Separable Transformsp3.3.6 Slant transform: 2-D basis images

u

v

x

y

The 2-D Slant transform basis functions for N=4

y

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

121

Page 122: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.4 Hotelling Transformsg3.3.7 Hotelling transform: definitions

KLT: Karhunen-Loeve Transfrom

Th kth i i i t b d t

KLT: Karhunen Loeve TransfromPCA:Principal Components Analysis

L

The kth image in a image set can be expressed as a vector:

k=0,1, …M-10 1 1 TN

k k k kx x x x −⎡ ⎤= ⎣ ⎦L

T

The covariance matrix of the x vector is defined as

{ }

{( )( ) }Tx x xC E x m x m= − −

where{ }xm E x=

w e e

is the mean vector, E is the expected valueDigital Image Processing

Prof.zhengkai Liu Dr.Rong Zhang122

, p

Page 123: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.4 Hotelling Transforms3.3.7 Hotelling transform: definitions

g

11 M −

They can be approximated from the samples by using the relations

0x k

k

m xM =

= ∑

and

11 ( )( )M

Ti iC x m x m

= − −∑

and

0

1

( )( )

1

x i x i xk

MT T

k k x x

C x m x mM

x x m mM

=

= −

∑0kM =∑

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

123

Page 124: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.4 Hotelling Transforms3.3.7 Hotelling transform: definitions

l Calculated N eigenvalues and

g

let Calculated N eigenvalues andarranged as 0 1 1Nλ λ λ −≥ ≥ ≥L

l [ ]

0xC Iλ− =

C l l d ilet [ ] 0x i iC I Tλ− = Calculated N eigenvectors Ti and arranged as

⎡ ⎤0

1

T

T

TT

A

⎡ ⎤⎢ ⎥⎢ ⎥=⎢ ⎥M

1T

NT −

⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

M

Hotelling transform ( )xY A X m= −

Inverse Hotelling transform TX A Y m+Digital Image Processing

Prof.zhengkai Liu Dr.Rong Zhang124

Inverse Hotelling transform xX A Y m= +

Page 125: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.4 Hotelling Transforms3.3.7 Hotelling transform: properties

Relationship between the eigenvaluse and eigenvectors:

g

x i i iC T Tλ=

Relationship between the eigenvaluse and eigenvectors:

[ ] 0x i iC I Tλ− =

0

1

T

T

TT

⎡ ⎤⎢ ⎥⎢ ⎥ T T

xC A A= ∧

0 0λ⎡ ⎤⎢ ⎥

1

1T

N

TA

T −

⎢ ⎥=⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

M

1λ⎢ ⎥⎢ ⎥∧ =⎢ ⎥⎢ ⎥

Owhere

10 Nλ −

⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

125

Page 126: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.4 Hotelling Transforms3.3.7 Hotelling transform: properties

g

{ } { } { }( )y x xm E y E Ax Am AE x Am= = − = −mean vector of y

0m =

The covariance matrix of the Y vector is given by

0ym =

{ }{( )( ) }

( )( )

Ty y y

T

C E Y m Y m

E AX A AX A

= − −

{ }{ }( )( )

( )( )

Tx x

T T

E AX Am AX Am

E A X m X m A

= − −

= − −{ }{ }( )( )

( )( )

x x

T Tx x

E A X m X m A

AE X m X m A= − −

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

126

Page 127: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.4 Hotelling Transforms3.3.7 Hotelling transform: properties

TC AC A

g

Ty x

T

C AC A

AA

=

= ∧TAA I=

C is a diagonal matrix with elements equal to

AA ∧= ∧

0λ⎡ ⎤

Cy is a diagonal matrix with elements equal to the eigenvalues of Cx, that is

1

2

0

yC

λλ

⎡ ⎤⎢ ⎥⎢ ⎥=⎢ ⎥⎢ ⎥

O

0 Nλ⎢ ⎥⎢ ⎥⎣ ⎦

That’s means elements of Y are uncorrelated

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

127

Page 128: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.4 Hotelling Transforms3.3.7 Hotelling transform: inverse transform

Si H t lli t f i th l

g

TxX A Y m= +

Since Hotelling transform is orthogonal , so

1 TA A− = and xmIf we form A from K eigenvectors corresponding to the largest eigenvalues as A the recovered vector will be

ˆ TK xX A Y m= +

largest eigenvalues as AK, the recovered vector will be

K xIt can be shown that the mean square error, ems, between Xand is given by the expressionX̂

1 1 1

0 0

N k N

ms j j jj j j K

e λ λ λ− − −

= = =

= − =∑ ∑ ∑

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

128

Page 129: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.4 Hotelling Transforms3.3.7 Hotelling transform: example

Gi h l f 2 di i h b l

g

Given the samples of 2-dimension vectors shown as below, calculate its Hotelling transform. N=2, M=27

(1,1) (1,2) (2,1) (2,2) (2,3)(3,1) (3,2) (3,3) (4,2) (4,3) (4 4) (4 5) (4 6) (5 3) (5 4)

x1

(4,4) (4,5) (4,6) (5,3) (5,4) (5,5) (5,6) (5,7) (6,4) (6,5) (6 6) (6 7) (6 8) (7 5) (7 6)(6,6) (6,7) (6.8) (7,5) (7,6) (7,7) (7,8)

0 1 2 3 4 5 6 7

x0

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

129

Page 130: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.4 Hotelling Transforms3.3.7 Hotelling transform: example

g

Let 0 1

Tk k kx x x⎡ ⎤= ⎣ ⎦ k=0,1, …26

251 [ ]25

0

1 4.444 4.296327x k

km x

=

= =∑

251 ( )( )TC ∑0

1 ( )( )27

3 4103 3 2479

Tx i x i x

k

C x m x m=

= − −

⎡ ⎤

∑3.4103 3.2479

3.2479 4.7550⎡ ⎤

= ⎢ ⎥⎣ ⎦

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

130

Page 131: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.4 Hotelling Transforms3.3.7 Hotelling transform: example

l 3 4103 3 2479λ

g

let 0xC Iλ− = 3.4103 3.24790

3.2479 4.7550λ

λ−

=−

0 7.3993λ = 1 0.7659λ =

[ ] 0C I Tλ ⎡ ⎤ ⎡ ⎤let [ ] 0x i iC I Tλ− =0

0.63140.7755

T ⎡ ⎤= ⎢ ⎥⎣ ⎦

1

0.77550.6314

T−⎡ ⎤

= ⎢ ⎥⎣ ⎦

0.6314 0.77550.7755 0.6314

A⎡ ⎤

= ⎢ ⎥−⎣ ⎦

( )xy A x m= −

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

131

Page 132: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.4 Hotelling Transforms3.3.7 Hotelling transform: example

g

y =( -4.7309 0.5899) ( -3.9555 1.2212) ( -4.0996 -0.1856) ( -3.3241 0.4458)

( -2.5486 1.0771) ( -3.4682 -0.9611) ( -2.6927 -0.3297) ( -1.9172 0.3017)

( -2.0613 -1.1052) ( -1.2859 -0.4738) ( -0.5104 0.1576) ( 0.2651 0.7890)

my = 1.0e-015 *

-0.6908 -0.1069

( 1.0406 1.4203) ( -0.6545 -1.2493) ( 0.1210 -0.6179) ( 0.8965 0.0135)

( 1.6719 0.6449) ( 2.4474 1.2762) ( 0.7524 -1.3934) ( 1.5279 -0.7620

( 2.3033 -0.1306) ( 3.0788 0.5008) ( 3.8543 1.1322) ( 2.1592 -1.5375)

( 2 9347 0 9061) ( 3 7102 0 2747) ( 4 4857 0 3567)

cy =

7.3993 0.0000

0.0000 0.7659( 2.9347 -0.9061) ( 3.7102 -0.2747) ( 4.4857 0.3567)

corry =x1 y1y0

1.0000 0.0000

0.0000 1.0000

y1

0 1 2 3 4 5 6 7 x0

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

132

x0

Page 133: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.4 Hotelling Transforms3.3.7 Hotelling transform: example

2

g

x2 y2

x1y1

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

133

Page 134: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

3.4 Hotelling Transforms3.3.7 Hotelling transform: inverse transform

g

x2 y2y

x1 1KLT

x1 y1

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

134

Page 135: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

Summary

Basic function

Sinusoidal transforms

(a) Discrete Fourier Transform cos sinie iθ θ θ= +( )

(b) Discrete Cosine Transform cosθi θ(c) Discrete Sine Transform

(d) Hartly Transform

sinθ

cos sinθ θ+cos sinθ θ+

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

135

Page 136: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

Summary

Rectangular wave transforms

(a) Hadamard Transform( )

(b) Walsh Transform

(c) Slant Transform

(d) Haar Transform

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

136

Page 137: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

Summary

Eigenvector-based transforms

(a) Hotelling Transform (K-LT)( ) g ( )

(b) SVD Transform

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

137

Page 138: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

Homework

(1) 计算下图的 DFT, DCT, Hadamard 变换和Haar 变换变换

0 1 1 00 1 1 00 1 1 00 1 1 00 1 1 0

(2) Page 71(章毓晋) 3 21: 设有一组64*64的图像(2) Page 71(章毓晋) 3.21: 设有一组64*64的图像,它们的协方差矩阵式单位矩阵.如果只使用一半的原始特征值计算重建图像,那么原始图像和重建图原始特征值计算重建图像,那么原始图像和重建图像间的均方误差是多少?

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

138

Page 139: Chapter3 Image Transforms - USTChome.ustc.edu.cn/~xuedixiu/image.ustc/course/dip/DIP14...Chapter3 Image Transforms •Preview • 31G lI d i dCl ifi i3.1General Introduction and Classification

The End

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

139