Chapter2-6-Chem207

download Chapter2-6-Chem207

of 72

Transcript of Chapter2-6-Chem207

  • 8/15/2019 Chapter2-6-Chem207

    1/72

    Chem 207 B. R. Kaafarani 1

    Chapter 2Hydrocarbon Frameworks:

     Alkanes

  • 8/15/2019 Chapter2-6-Chem207

    2/72

    Chem 207 B. R. Kaafarani 2

    Hydrocarbons

     Aromatic

     Aromatic Aliphatic

     Aliphatic

     Alkanes

     Alkanes  Alkynes

     Alkynes Alkenes

     Alkenes

    C C

    H

    H

    H

    H

    H

    H C C

    H

    HH

    H

    C C HH

    H H

    H

    HH

    H

  • 8/15/2019 Chapter2-6-Chem207

    3/72

    Chem 207 B. R. Kaafarani 3

    1. Valence Bond Theory:

    Constructive interference between electron

    waves of two half-filled atomic orbitals is basis of 

    shared-electron bond.

    2. Molecular Orbital Theory:

    Derive wave functions of molecules by combining

    wave functions of atoms.

    Models for Chemical Bonding

  • 8/15/2019 Chapter2-6-Chem207

    4/72

    Chem 207 B. R. Kaafarani 4

    2.5. Introduction to Alkanes (CnH2n+2). The simplest

     Alkanes: Methane, Ethane, and Propane

    bp -160°C bp -89°C bp -42°C

    Methane (CH4) CH4

    Ethane (C2H6) CH3CH3

    Propane (C3H8) CH3CH2CH3

  • 8/15/2019 Chapter2-6-Chem207

    5/72

    Chem 207 B. R. Kaafarani 5

    Structure of Methane

    2.6. sp3 Hybridization and Bonding in

    Methane

    Tetrahedral

    Bond angles = 109.5°

    Bond distances = 110 pm

    But structure seems inconsistent with

    electron configuration of carbon.

  • 8/15/2019 Chapter2-6-Chem207

    6/72

    Chem 207 B. R. Kaafarani 6

    Electron configuration of carbon

    2s

    2p

    Only two unpaired electrons.

    Should form bonds to only two

    hydrogen atoms.

    Bonds should be at right angles

    to one another.

  • 8/15/2019 Chapter2-6-Chem207

    7/72

    Chem 207 B. R. Kaafarani 7

    2s

    2p

    sp3 Orbital Hybridization

    Promote an electron from the 2s to the 2p orbital.

    2p

    2s

  • 8/15/2019 Chapter2-6-Chem207

    8/72

    Chem 207 B. R. Kaafarani 8

    2p

    2s

    sp3 Orbital Hybridization

    Mix together (hybridize)the 2s orbital and the

    three 2p orbitals.

    2 sp3

    4 equivalent half-filled

    orbitals are consistentwith four bonds and

    tetrahedral geometry.

  • 8/15/2019 Chapter2-6-Chem207

    9/72

    Chem 207 B. R. Kaafarani 9

    sp3 Orbital Hybridization

  • 8/15/2019 Chapter2-6-Chem207

    10/72

    Chem 207 B. R. Kaafarani 10

    Nodal Properties of Orbitals

    s

    p +  – 

    +

  • 8/15/2019 Chapter2-6-Chem207

    11/72

    Chem 207 B. R. Kaafarani 11

    Shape of sp3 hybrid orbitals

    p +  –  s +

    Take the s orbital and

    place it on top of the p orbital.

    s + p +  – +

    Reinforcement of electron wave

    in regions where sign is the same.

    Destructive interference in

    regions of opposite sign.

  • 8/15/2019 Chapter2-6-Chem207

    12/72

    Chem 207 B. R. Kaafarani 12

    Shape of sp3 hybrid orbitals

    sp hybrid +  – 

    Orbital shown is sp hybrid.

     Analogous procedure using one s orbital and three p orbitals

    gives sp3 hybrid.

    Shape of sp3 hybrid is similar.

    Hybrid orbital is not symmetrical.

    Higher probability of finding an electron on one side of the

    nucleus than the other.

    Leads to stronger bonds.

  • 8/15/2019 Chapter2-6-Chem207

    13/72

    Chem 207 B. R. Kaafarani 13

     – 

    +  – 

    The C—H Bond in Methane

    sp3s CH

    H—C CH

    gives a   bond.

    In-phase overlap of a half-filled 1s orbital of hydrogen

    with a half-filled sp3 hybrid orbital of carbon:

    +

    +

  • 8/15/2019 Chapter2-6-Chem207

    14/72

    Chem 207 B. R. Kaafarani 14

    Justification for Orbital Hybridization

    Consistent with structure of methane.

     Allows for formation of 4 bonds rather than 2.

    Bonds involving sp3 hybrid orbitals are stronger

    than those involving s-s overlap or p-p overlap.

  • 8/15/2019 Chapter2-6-Chem207

    15/72

    Chem 207 B. R. Kaafarani 15

    Structure of Ethane

    CH3CH3

    C2H6

    2.7. Bonding in Ethane

    Tetrahedral geometry at each carbon.

    C—H bond distance = 110 pm.

    C—C bond distance = 153 pm.

  • 8/15/2019 Chapter2-6-Chem207

    16/72

    Chem 207 B. R. Kaafarani 16

    The C—C Bond in Ethane

    In-phase overlap of half-filled sp3 hybrid orbital of one

    carbon with half-filled sp3 hybrid orbital of another.

    Overlap is along internuclear axis to give a

    bond.

  • 8/15/2019 Chapter2-6-Chem207

    17/72

    Chem 207 B. R. Kaafarani 17bp -0.4

    °C bp -10.2

    °C

    n-Butane CH3CH2CH2CH3

    Isobutane (CH3)3CH

    2.8. Isomeric Alkanes: The Butanes

    C4H10

  • 8/15/2019 Chapter2-6-Chem207

    18/72

    Chem 207 B. R. Kaafarani 18

     

    CH3CH2CH2CH2CH2CH3

    n-Hexane

     

    n-Pentane

    CH3CH2CH2CH2CH3

    CH3CH2CH2CH2CH2CH2CH3

    n-Heptane

    2.9. Higher n-Alkanes

  • 8/15/2019 Chapter2-6-Chem207

    19/72

    Chem 207 B. R. Kaafarani 19

     

    n-Pentane

    CH3CH2CH2CH2CH3

    Isopentane

    (CH3)2CHCH2CH3

    Neopentane

    (CH3)4C

    2.10. The C5H12 Isomers

  • 8/15/2019 Chapter2-6-Chem207

    20/72

    Chem 207 B. R. Kaafarani 20

    Table 2.1 Number of Constitutionally Isomeric Alkanes

    CH4 1 C8H18 18

    C2H6 1 C9H20 35

    C3H8 1 C10H22 75

    C4H10 2 C15H32 4,347C5H12 3 C20H42 366,319

    C6H14 5 C40H82 62,491,178,805,831

    C7H16 9

    How many isomers?

    The number of isomeric alkanes increases as the number

    of carbons increases.

    There is no simple way to predict how many isomers there

    are for a particular molecular formula.

  • 8/15/2019 Chapter2-6-Chem207

    21/72

    Chem 207 B. R. Kaafarani 21

    IUPAC (International Union of Pure and Applied

    Chemistry) NomenclatureA. Parent chains: normal alkanes

    Parent names:

    CH4 methane   n-C11H24 undecane

    CH3CH3 ethane   n-C12H26 dodecane

    CH3CH2CH3  propane   n-C13H28 tridecane

    CH3(CH2)2CH3  butane   n-C14H30 tetradecane

    CH3(CH2)3CH3  pentane ¦

    CH3(CH2)4CH3 hexane  n

    -C20H42 icosanen-C7H16 heptane   n-C30H62 triacontane

    n-C8H18 octane   n-C40H82 tetracontane

    n-C9H20 nonane ¦

    n-C10H22 decane etc.

    Systematic name: {side groups}parent chain{suffix}

    know

    to here

  • 8/15/2019 Chapter2-6-Chem207

    22/72

    Chem 207 B. R. Kaafarani 22

    2.11. IUPAC Nomenclature of Unbranched Alkanes

    Note:

    n-prefix is not part of IUPAC name of any alkane.

    For example: n-butane is "common name"

    for CH3CH2CH2CH3; butane is "IUPAC name."

    Others:

    Latin or Greek prefix for number of carbons + ane

    suffix.

  • 8/15/2019 Chapter2-6-Chem207

    23/72

    Chem 207 B. R. Kaafarani 23

    B. Substituents: Alkyl groups

    CH3

    CH3 CH2 CH2

    CH3CH2CH2CH2

    CH3 CH CH2

    CH3

    CH3 CH2

    CH3 CH CH3

    CH3CH

    2CHCH

    3

    CH3 C CH3

    CH3

    methyl group ethyl group

     propyl isopropyl

     butyl   sec-butyl

    isobutyl   tert -butyl

  • 8/15/2019 Chapter2-6-Chem207

    24/72

    Chem 207 B. R. Kaafarani 24

    Naming Alkyl Groups

    Step 1: Identify longest continuous chain starting at

    point of attachment.

    Step 2: Drop -ane ending from name of unbranched

    alkane having same number of carbons as longest

    continuous chain and replace by -yl.Step 3: Identify substituents on longest continuous

    chain.

    Step 4: Chain is always numbered starting at point

    of attachment.

  • 8/15/2019 Chapter2-6-Chem207

    25/72

    Chem 207 B. R. Kaafarani 25

    CH3CH2CH2C CH

    H H

    H H

    C

    H

    H

    or 

    and

    CH3CHCH3C CH

    H H

    H

    HC

    H

    H

    or 

    IUPAC name: Propyl

    Common name: n-Propyl

    IUPAC name: 1-Methylethyl

    Common name: Isopropyl

    The C3H7 Alkyl Groups

  • 8/15/2019 Chapter2-6-Chem207

    26/72

    Chem 207 B. R. Kaafarani 26

    CH3CH2CH2

    Classification: Primary alkyl group.

     Alkyl groups are classified according to the degree of 

    substitution at the carbon that bears the point of  attachment.

     A carbon that is directly attached to one other carbon is

    a primary carbon. A carbon that is directly attached to two other carbons is

    a secondary carbon.

    CH3CHCH3* *

    The C3H7 Alkyl Groups

  • 8/15/2019 Chapter2-6-Chem207

    27/72

    Chem 207 B. R. Kaafarani 27

    IUPAC name: 1-Methylpropyl

    Common name: sec-Butyl

    Classification: Secondary alkyl group

    CH3CHCH2CH3C CH

    H H

    H

    HC C

    H H

    H H

    or 1

    2 3

    The C4H9 Alkyl Groups

  • 8/15/2019 Chapter2-6-Chem207

    28/72

    Chem 207 B. R. Kaafarani 28

    IUPAC name: 2-Methylpropyl

    Common name: IsobutylClassification: Primary alkyl group

    123C

    H

    CH2

    CH3

    CH3

    The C4H9 Alkyl Groups

  • 8/15/2019 Chapter2-6-Chem207

    29/72

    Chem 207 B. R. Kaafarani 29

    1 2

    C CH3

    CH3

    CH3

    The C4H9 Alkyl Groups

    IUPAC name: 1,1-Dimethylethyl

    Common name: tert-Butyl

    Classification: Tertiary alkyl group

  • 8/15/2019 Chapter2-6-Chem207

    30/72

    Chem 207 B. R. Kaafarani 30

    C. IUPAC Rules

    1. Find the longest straight chain = parent chain.

    2. Number the parent chain in the direction that gives the lowest

    number to the substituents at the first point of difference.

    3. Two or more identical groups are indicated by di, tri, tetra, etc.

    CH3 CH2 CH2 CH2 CH

    CH2 CH3

    CH3

    Longest chain is 7 (not 6).

    This is 3-Methylheptane..

    2,3,6-Trimethylheptane (not

    2,5,6-trimethylheptane)

    2,2,6,6,7-Pentamethyloctane (not

    2,3,3,7,7-Pentamethyloctane)

    12

    34567

  • 8/15/2019 Chapter2-6-Chem207

    31/72

    Chem 207 B. R. Kaafarani 31

     

    2,2,6,6,7-Pentamethyloctane?

    2,3,3,7,7-Pentamethyloctane?

    What is correct name?

    1

    2 34

    56

    78

     

    8

    7 65

    43

    21

    The chain is numbered in the direction that gives the lower locant to the substituent at the first point of difference in the

    names.

    First Point of Difference Rule

  • 8/15/2019 Chapter2-6-Chem207

    32/72

    Chem 207 B. R. Kaafarani 32

    4. Different groups are listed in alphabetical order (di, tri,

    tetra, etc. don’t count; n, sec, tert don’t count; iso does).

    5. If the numbering is the same in both directions, choosethe numbering to follow the alphabetical order.

    6-Ethyl-5-isopropyl-2,2-dimethyloctane

    5-Ethyl-6-propyldecane

  • 8/15/2019 Chapter2-6-Chem207

    33/72

    Chem 207 B. R. Kaafarani 33

    6. When two or more chains compete for the longest, the choice

    goes to the one with the greater number of side groups.

    7. Complex side groups (usually > 4 carbons) are named

    systematically

    a. Start numbering at the carbon attached to the parent chain.

     b. Enclose name in parentheses.

    2,4,6-Trimethyl-5-propyloctane

    4-(1-Methylethyl)-5-(1,2-dimethylpropyl)

    decane12

    3

    1

    2

  • 8/15/2019 Chapter2-6-Chem207

    34/72

    Chem 207 B. R. Kaafarani 34

    Multiple complex

    functional groups

    are denoted by

    brackets and amultiplicity denoted

    not by di, tri, tetra,

    etc, but by bis, tris,

    tetrakis, pentakis,hexakis, etc. These

    are alphabetized in

    the name.

    5,6-Bis(1,2-dimethylpropyl)dodecane

    7,8-Bis(1,2-dimethylpropyl)-3,3,10-trimethyldodecane

  • 8/15/2019 Chapter2-6-Chem207

    35/72

    B. R. Kaafarani 35Chem 211 B. R. Kaafarani 35

    What is the IUPACname of the following

    compound?

       3    ‐   E  t   h  y   l    ‐  4

        ‐  (   1 ,  2 . . .

       3    ‐   E

      t   h  y   l    ‐   5    ‐  m  e  t   h . . .

       3    ‐   E

      t   h  y   l    ‐   5    ‐  m  e  t   h . . .

       4    ‐  (   1    ‐   E  t   h  y   l  p  r  o  p . . .

       2 ,  3 ,   5    ‐  t  r   i  m  e  t   h  y . . .

        N  o  n  e

       o  f   t   h  e

       a   b . . .

    0% 0% 0%0%0%0%

    1.3-Ethyl-4-(1,2-dimethylpropyl)-5-

    methylundecane

    2.3-Ethyl-5-methyl-4-pentylundecane

    3.3-Ethyl-5-methyl-4-(1,2-

    dimethylpropyl)undecane

    4.4-(1-Ethylpropyl)-2,3,5-trimethylundecane

    5.2,3,5-trimethyl-4-pentylundecane

    6.None of the above Countdown3

  • 8/15/2019 Chapter2-6-Chem207

    36/72

    Chem 207 B. R. Kaafarani 36

    Cyclopentane Cyclohexane

    Cycloalkanes are alkanes that contain a ring of 

    three or more carbons.

    Count the number of carbons in the ring, and add

    the prefix cyclo to the IUPAC name of the unbranched

    alkane that has that number of carbons.

    2.15. Cycloalkane (CnH2n) Nomenclature

  • 8/15/2019 Chapter2-6-Chem207

    37/72

    Chem 207 B. R. Kaafarani 37

    Ethylcyclopentane

    CH2CH3

    Name any alkyl groups on the ring in the usual way.

    List substituents in alphabetical order and count in the

    direction that gives the lowest numerical locant at the first

    point of difference.

    3-Ethyl-1,1-dimethylcyclohexane

    CH2CH3

    H3C CH3

    Cycloalkanes

  • 8/15/2019 Chapter2-6-Chem207

    38/72

    Chem 207 B. R. Kaafarani 38

    When the ring contains fewer carbon atoms than

    an alkyl group attached to it, the compound is

    named as an alkane, and the ring is treated as a

    cycloalkyl substituent.

    3-Cyclopentyl-5-methyloctane

  • 8/15/2019 Chapter2-6-Chem207

    39/72

    B. R. Kaafarani 39Chem 208 B. R. Kaafarani 39

    What is the IUPAC parent

    name of the followingCompound?

       C  y  c   l  o

      p  r  o  p  a  n  e 

      C  y  c   l  o

      p  e  n  t  a  n  e

        H  e  p  t  a  n  e

        H  e  x  a  n  e

    0% 0%0%0%

    1. Cyclopropane

    2. Cyclopentane

    3. Heptane

    4. Hexane

    Countdown

    3

  • 8/15/2019 Chapter2-6-Chem207

    40/72

    B. R. Kaafarani 40Chem 208 B. R. Kaafarani 40

    What is the IUPAC name of the following compound?

       1 ,  1 ,  2 ,  3    ‐   T  e  t  r  a  c . . .

       1 ,  2 ,  4 ,  4    ‐   T  e  t  r  a  c . . .

       1 ,  1 ,  2 ,  4    ‐   T  e  t  r  a  c . . .

       1 ,  2 ,  4 ,  4    ‐   T  e  t  r  a  c . . .

    25% 25%25%25%

    Countdown

    3

    1. 1,1,2,3-

    Tetracyclopropylpropane

    2. 1,2,4,4-Tetracyclopropylpropane

    3. 1,1,2,4-Tetracyclopropylbutane

    4. 1,2,4,4-Tetracyclopropylbutane

  • 8/15/2019 Chapter2-6-Chem207

    41/72

    Chem 207 B. R. Kaafarani 41

    Boiling Points of Alkanes

    2.17. Physical Properties of Alkanes and

    Cycloalkanes

    Governed by strength of intermolecular attractive

    forces.

     Alkanes are nonpolar, so dipole-dipole and dipole-

    induced dipole forces are absent.

    Only forces of intermolecular attraction are induced

    dipole-induced dipole forces.

  • 8/15/2019 Chapter2-6-Chem207

    42/72

    Chem 207 B. R. Kaafarani 42

    Induced dipole-Induced dipole

    attractive forces

    + – +  – 

    Two nonpolar molecules.

    Center of positive charge and center of negative

    charge coincide in each.

    Movement of electrons creates an instantaneous

    dipole in one molecule (left).

  • 8/15/2019 Chapter2-6-Chem207

    43/72

    Chem 207 B. R. Kaafarani 43

    + – +  – 

    + – +  – 

    The result is a small attractive force between the two molecules.

    Temporary dipole in one molecule (left) induces a complementary

    dipole in other molecule (right).

    Induced dipole-Induced dipole attractive forces

  • 8/15/2019 Chapter2-6-Chem207

    44/72

    Chem 207 B. R. Kaafarani 44

    Boiling Points

    Increase with increasing number of carbons:

    - More atoms, more electrons, more

    opportunities for induced dipole-induceddipole forces.

    Heptane

    bp 98°C

    Octane

    bp 125°C

    Nonane

    bp 150°C

    Boiling Points

  • 8/15/2019 Chapter2-6-Chem207

    45/72

    Chem 207 B. R. Kaafarani 45

    Boiling Points

    Decrease with chain branching:

    - Branched molecules are more compact

    with smaller surface area— fewer points of  contact with other molecules.

    Octane: bp 125°C

     

    2-Methylheptane: bp 118°C

    2,2,3,3-Tetramethylbutane: bp 107°C

  • 8/15/2019 Chapter2-6-Chem207

    46/72

    Chem 207 B. R. Kaafarani 46

     All alkanes burn in air to give

    carbon dioxide and water.

    2.18Chemical Properties:

    Combustion of Alkanes

  • 8/15/2019 Chapter2-6-Chem207

    47/72

    Chem 207 B. R. Kaafarani 47

    Heats of Combustion

    Increase with increasing number of carbons:

    - More moles of O2 consumed, more moles

    of CO2 and H2O formed.

    Decrease with chain branching:

    - Branched molecules are more stable (have

    less potential energy) than their unbranched

    isomers.

    f C

  • 8/15/2019 Chapter2-6-Chem207

    48/72

    Chem 207 B. R. Kaafarani 48

    4817 kJ/mol

    5471 kJ/mol

    6125 kJ/mol

    654 kJ/mol

    654 kJ/mol

     

    Heptane

    Octane

    Nonane

    Heats of Combustion

    H t f C b ti

  • 8/15/2019 Chapter2-6-Chem207

    49/72

    Chem 207 B. R. Kaafarani 49

    5471 kJ/mol

    5466 kJ/mol

    5458 kJ/mol

    5452 kJ/mol

     

    5 kJ/mol

    8 kJ/mol

    6 kJ/mol

    Heats of Combustion

  • 8/15/2019 Chapter2-6-Chem207

    50/72

    Chem 207 B. R. Kaafarani 50

    Important Point

    Isomers can differ in respect to their stability.

    Equivalent statement:Isomers differ in respect to their potential energy.

    Differences in potential energy can be measuredby comparing heats of combustion.

    Figure 2 17

  • 8/15/2019 Chapter2-6-Chem207

    51/72

    Chem 207 B. R. Kaafarani 51

    8CO2 + 9H2O

    5452 kJ/mol5458 kJ/mol

    5471 kJ/mol

    5466 kJ/mol

    O2+25

    2

     

    Figure 2.17

    O2+25

    2 O2+25

    2

    O2+ 252

  • 8/15/2019 Chapter2-6-Chem207

    52/72

    Chem 207 B. R. Kaafarani 52

    2.19. Oxidation-Reduction inOrganic Chemistry

    Oxidation of carbon corresponds to an increasein the number of bonds between carbon and

    oxygen and/or a decrease in the number of  

    carbon-hydrogen bonds.

    O

  • 8/15/2019 Chapter2-6-Chem207

    53/72

    Chem 207 B. R. Kaafarani 53

    Increasing oxidation

    state of carbon

    -4 -2 0 +2 +4

    H

    H

    H

    C H

    H

    H

    H

    C OH

    O

    C HH

    O

    COHH

    O

    COHHO

  • 8/15/2019 Chapter2-6-Chem207

    54/72

    Chem 207 B. R. Kaafarani 54

    Increasing oxidation

    state of carbon

    -3 -2 -1

    HC CH

    C C

    H

    H H

    H

    C C H

    HH

    H H

    H

  • 8/15/2019 Chapter2-6-Chem207

    55/72

    Chem 207 B. R. Kaafarani 55

    Fortunately, we rarely need to calculate the

    oxidation state of individual carbons in a molecule .

    We often have to decide whether a process is an

    oxidation or a reduction.

    Generalization

  • 8/15/2019 Chapter2-6-Chem207

    56/72

    Chem 207 B. R. Kaafarani 56

    X Yoxidation

    reduction

    C C

    Generalization

    X less electronegative than carbon.

    Y more electronegative than carbon.

    Oxidation of carbon occurs when a bond between

    carbon and an atom which is less electronegative

    than carbon is replaced by a bond to an atom that

    is more electronegative than carbon. The reverseprocess is reduction.

  • 8/15/2019 Chapter2-6-Chem207

    57/72

    Chem 207 B. R. Kaafarani 57

    CH3Cl HClCH4 Cl2+ +Oxidation

    + 2Li LiClCH3Cl CH3Li +

    Reduction

    Examples

    2.20. sp2 Hybridization and Bonding in Ethylene

  • 8/15/2019 Chapter2-6-Chem207

    58/72

    Chem 207 B. R. Kaafarani 58

    C2H4

    H2C=CH2

    Structure of Ethylene

    - Planar 

    - Bond angles: close to 120°

    - Bond distances: C—H = 110 pm

    C=C = 134 pm

    sp2 Orbital Hybridization

  • 8/15/2019 Chapter2-6-Chem207

    59/72

    Chem 207 B. R. Kaafarani 59

    2s

    2p

    p y

    2p

    2s

    Mix together (hybridize)

    the 2s orbital and two of

    the three 2p orbitals

    Promote an electron from

    the 2s to the 2p orbital.

    sp2 Orbital Hybridization

  • 8/15/2019 Chapter2-6-Chem207

    60/72

    Chem 207 B. R. Kaafarani 60

    2p

    2s

    p y

    2 sp2

    3 equivalent half-filled sp2

    hybrid orbitals plus 1 p

    orbital left unhybridized.

    sp2 Orbital Hybridization

  • 8/15/2019 Chapter2-6-Chem207

    61/72

    Chem 207 B. R. Kaafarani 61

    y

    sp2 Orbital H bridi ation

  • 8/15/2019 Chapter2-6-Chem207

    62/72

    Chem 207 B. R. Kaafarani 62

    sp2 Orbital Hybridization

    2 sp2

    p

    Bonding in Ethylene

  • 8/15/2019 Chapter2-6-Chem207

    63/72

    Chem 207 B. R. Kaafarani 63

    -Bonding in Ethylene

    2 sp2

    The unhybridized p orbital of

    carbon is involved in

    bonding to the other carbon.

    p

    B di i Eth lB di i Eth l

  • 8/15/2019 Chapter2-6-Chem207

    64/72

    Chem 207 B. R. Kaafarani 64

      

    Bonding in Ethylene     Bonding in EthyleneBonding in Ethylene

    22 spsp22

    pp

    each carbon has an unhybridized 2each carbon has an unhybridized 2pp orbitalorbital

    axis of orbital is perpendicular to the plane of theaxis of orbital is perpendicular to the plane of the  bondsbonds

    Chem 211 B. R. Kaafarani 64

    B di i Eth lBonding in Ethylene

  • 8/15/2019 Chapter2-6-Chem207

    65/72

    Chem 207 B. R. Kaafarani 65

      

    Bonding in Ethylene     Bonding in EthyleneBonding in Ethylene

    22 spsp22

    pp

    side-by-side overlap of half-filledside-by-side overlap of half-filled

    pp orbitals gives aorbitals gives a bondbond

    double bond in ethylene has adouble bond in ethylene has a

     component and acomponent and a  componentcomponent

    Chem 211 B. R. Kaafarani 65

    2.21. sp Hybridization and Bonding in Acetylene

    Structure of Acetylene

  • 8/15/2019 Chapter2-6-Chem207

    66/72

    Chem 207 B. R. Kaafarani 66

    C2H2

    HC CH

    Structure of Acetylene

    - Linear 

    - Bond angles: 180°

    - Bond distances: C—H = 106 pm

    CC = 120 pm

    sp Orbital Hybridization

  • 8/15/2019 Chapter2-6-Chem207

    67/72

    Chem 207 B. R. Kaafarani 67

    2s

    2p

    Promote an electronfrom the 2s to the 2p

    orbital.

    2p

    2s

    Mix together (hybridize)the 2s orbital and one of

    the three 2p orbitals

    sp Orbital Hybridization

  • 8/15/2019 Chapter2-6-Chem207

    68/72

    Chem 207 B. R. Kaafarani 68

    2p

    2s

    2 sp

    2 p

    2 equivalent half-filled sp

    hybrid orbitals plus 2 p

    orbitals left unhybridized.

    sp Orbital Hybridization

  • 8/15/2019 Chapter2-6-Chem207

    69/72

    Chem 207 B. R. Kaafarani 69

    sp Orbital Hybridization

  • 8/15/2019 Chapter2-6-Chem207

    70/72

    Chem 207 B. R. Kaafarani 70

    sp Orbital Hybridization

    2 sp

    2 p

    -Bonding in Acetylene

  • 8/15/2019 Chapter2-6-Chem207

    71/72

    Chem 207 B. R. Kaafarani 71

    Bonding in Acetylene

    The unhybridized p orbitals of carbon are involved in separate

    bonds to the other carbon.

    2 sp

    2 p

    Bonding in AcetyleneBonding in Acetylene

  • 8/15/2019 Chapter2-6-Chem207

    72/72

    Chem 207 B. R. Kaafarani 72

      

    Bonding in Acetylene     Bonding in AcetyleneBonding in Acetylene

    22 spsp

    22 pp

    Chem 207 B. R. Kaafarani 72