Chapter 8 Linear Algebraic Equations and Matrices.

41
Chapter 8 Chapter 8 Linear Algebraic Linear Algebraic Equations and Matrices Equations and Matrices
  • date post

    20-Dec-2015
  • Category

    Documents

  • view

    261
  • download

    13

Transcript of Chapter 8 Linear Algebraic Equations and Matrices.

Page 1: Chapter 8 Linear Algebraic Equations and Matrices.

Chapter 8Chapter 8

Linear Algebraic Equations Linear Algebraic Equations and Matricesand Matrices

Page 2: Chapter 8 Linear Algebraic Equations and Matrices.

Three individuals connected by bungee cords

Page 3: Chapter 8 Linear Algebraic Equations and Matrices.

Free-body diagramsFree-body diagrams

Newton’s Newton’s second lawsecond law

0xxkgm

0xxkxxkgm

0xkxxkgm

2333

1222332

111221

)(

)()(

)(

gmxkxk

gmxkxkkxk

gmxkxkk

33323

23323212

122121

)(

)(

Rearrange the equations

[K] {x} = {b}

Page 4: Chapter 8 Linear Algebraic Equations and Matrices.

Newton’s second law – equation of motionNewton’s second law – equation of motion

Kirchhoff’s current and voltage rules

Mass-spring system

(similar to bungee jumpers)

Resistor circuits

Page 5: Chapter 8 Linear Algebraic Equations and Matrices.

Solved single equations previously

Now consider more than one variable and more than one equation

0xf

0x,...,x,xf

0x,...,x,xf0x,...,x,xf

n21n

n212

n211

Linear Algebraic EquationsLinear Algebraic Equations

Page 6: Chapter 8 Linear Algebraic Equations and Matrices.

Linear equations and constant coefficients

aij and bi are constants

nnnn22n11n

2nn2222121

1nn1212111

bxa...xaxa

bxa...xaxabxa...xaxa

Linear SystemsLinear Systems

Page 7: Chapter 8 Linear Algebraic Equations and Matrices.

nnnn22n11n

2nn2222121

1nn1212111

RFa...FaFa

RFa...FaFa

RFa...FaFa

Forces on a TrussForces on a TrussMost obvious example in Civil Engineeringtrusses: force balance at joints

F1

F2F3

R

Page 8: Chapter 8 Linear Algebraic Equations and Matrices.

}{}]{[][]][[ bxA or bxA

n

2

1

n

2

1

nn2n1n

n22221

n11211

b

b

b

x

x

x

aaa

aaa

aaa

Mathematical backgroundMathematical background

It is convenient to write system of equations in matrix-vector form

Page 9: Chapter 8 Linear Algebraic Equations and Matrices.

mn4m3m2m1m

n444434241

n334333231

n224232221

n114131211

aaaaa

aaaaa

aaaaa

aaaaa

aaaaa

A

Matrix NotationsMatrix Notations

Column 4

Row 3

(second index)

(first index)

Page 10: Chapter 8 Linear Algebraic Equations and Matrices.

Scalars, Vectors, MatricesScalars, Vectors, Matrices

MATLAB treat variables as “matrices”

Matrix (m n) - a set of numbers arranged in rows (m) and columns (n)

Scalar : 1 1 matrixRow Vector : 1 n matrix ( [b] or b )Column Vector : m 1 matrix ( [c] or {c} )

227150

592342

5231

D

217

32

025

bbc

21732025bb 275a

T

..

..][

.

.

.

][}{][

...][.][

Page 11: Chapter 8 Linear Algebraic Equations and Matrices.

Square matrix, m = nParticularly important when solving simultaneous

equations in engineering applications

aii – principle or main diagonal

44434241

34333231

24232221

14131211

aaaa

aaaa

aaaa

aaaa

A][

Square MatrixSquare Matrix

Page 12: Chapter 8 Linear Algebraic Equations and Matrices.

Transpose

In MATLAB, transpose is A

Trace is sum of diagonal elementsIn MATLAB, trace(A)

44434241

34333231

24232221

14131211

aaaa

aaaa

aaaa

aaaa

A][

44342414

43332313

42322212

41312111

T

aaaa

aaaa

aaaa

aaaa

A][

Matrix OperationsMatrix Operations

Page 13: Chapter 8 Linear Algebraic Equations and Matrices.

Matrix TransposeMatrix Transpose

4231234

2

1

3

324yx

639

426

8412

213

3

2

4

yx

2

1

3

y' ;

3

2

4

x

213y ;324x

)())(())((*

*

Page 14: Chapter 8 Linear Algebraic Equations and Matrices.

43016

31254

02381

15822

64125

B

jigd

ihfc

gfeb

dcba

A

][

][

• symmetric matrices

Special MatricesSpecial Matrices

aij = aji

[A]T = [A]

Page 15: Chapter 8 Linear Algebraic Equations and Matrices.

44

33

22

11

a

a

a

a

A][

• Diagonal matrix • Identity matrix

1

1

1

1

I ][

Special MatricesSpecial Matrices

[A][I] = [I][A] = [A]

Page 16: Chapter 8 Linear Algebraic Equations and Matrices.

Banded matrix – all elements are zero, with the exception of a band centered on the main diagonal

Special MatricesSpecial Matrices

4443

343332

232221

1211

aa

aaa

aaa

aa

A][Tridiagonal – three

non-zero bands

Page 17: Chapter 8 Linear Algebraic Equations and Matrices.

• lower triangular

44434241

333231

2221

11

aaaa

aaa

aa

a

A][

• upper triangular

44

3433

242322

14131211

a

aa

aaa

aaaa

A][

Special MatricesSpecial Matrices

Page 18: Chapter 8 Linear Algebraic Equations and Matrices.

Matrix Operation RulesMatrix Operation Rules

Matrix identity

[A] = [B] if and only if aij = bij for all i and j

Matrix Addition and Subtraction

[C] = [A] + [B] Cij = Aij + Bij

[C] = [A] [B] Cij = Aij Bij

Page 19: Chapter 8 Linear Algebraic Equations and Matrices.

Addition and SubtractionAddition and Subtraction

Commutative [A] + [B] = [B] + [A] [A] [B] = [B] + [A]

Associative ( [A] + [B] ) + [C] = [A] + ( [B] + [C] ) ( [A] + [B] ) [C] = [A] + ( [B] [C] ) ( [A] [B] ) + [C] = [A] + ([B] + [C] )

Page 20: Chapter 8 Linear Algebraic Equations and Matrices.

Multiplication of Matrix by a ScalarMultiplication of Matrix by a Scalar

6132

0725

3124

4231

aaaa

aaaa

aaaa

aaaa

A

44434241

34333231

24232221

14131211

][

3051510

0351025

1551020

2010155

gagagaga

gagagaga

gagagaga

gagagaga

gAAgB

44434241

34333231

24232221

14131211

][][][

g = 5

Page 21: Chapter 8 Linear Algebraic Equations and Matrices.

Visual depiction of how the rows and columns line up in matrix multiplication

Matrix MultiplicationMatrix Multiplication

Page 22: Chapter 8 Linear Algebraic Equations and Matrices.

Matrix MultiplicationsMatrix Multiplications

Recall how matrix multiplication works

lficleibldia

kfhckehbkdha

jfgcjegbjdga

fed

cba

li

kh

jg

flekdjfiehdg

clbkajcibhag

li

kh

jg

fed

cba

[A]*[B] [B]*[A]

Page 23: Chapter 8 Linear Algebraic Equations and Matrices.

Matrix multiplication can be performed only if the inner dimensions are equal

Matrix MultiplicationMatrix Multiplication

Page 24: Chapter 8 Linear Algebraic Equations and Matrices.

Interior dimensions have to be equal

For a vector

We will be using square matrices

kikjji CBA

ijji bxA

nnnn bxA

Matrix MultiplicationMatrix Multiplication

Page 25: Chapter 8 Linear Algebraic Equations and Matrices.

MATLABMATLAB

In Fortran, the matrix multiplication have to be done by Do Loops

In MATLAB, it is automatic

A*B = C Note no period ‘.’ (not element-by-element operation)

For vectors

A*x = b

Page 26: Chapter 8 Linear Algebraic Equations and Matrices.

Matrix MultiplicationMatrix Multiplication

Associative

( [A] [B] ) [C] = [A] ( [B] [C] )Distributive

[A] ( [B] + [C] ) = [A] [B] + [A] [C]

([A] + [B] ) [C] = [A] [C] + [B] [C] Not generally commutative

[A] [B] [B] [A]

Page 27: Chapter 8 Linear Algebraic Equations and Matrices.

Matrix InverseMatrix Inverse

Matrix division is undefined However, there is a matrix inverse for

non-singular square matrices

[A]1 [A] = [A] [A]1 = [I]

Multiplication of a matrix by the inverse is analogous to division

Page 28: Chapter 8 Linear Algebraic Equations and Matrices.

1000

0100

0010

0001

aaaa

aaaa

aaaa

aaaa

A

44434241

34333231

24232221

14131211

44434241

34333231

24232221

14131211

aaaa

aaaa

aaaa

aaaa

A

AugmentationAugmentation

Whatever you do to left-hand-side, do to the right-hand side (useful when solving system of equations)

Page 29: Chapter 8 Linear Algebraic Equations and Matrices.

444434241

334333231

224232221

114131211

baaaa

baaaa

baaaa

baaaa

bA

Augmented MatrixAugmented Matrix

4444343242141

3434333232131

2424323222121

1414313212111

bxaxaxaxa

bxaxaxaxa

bxaxaxaxa

b xaxaxaxa

Page 30: Chapter 8 Linear Algebraic Equations and Matrices.

MATLAB Matrix ManipulationsMATLAB Matrix Manipulations

>> A = [1 5 3 -4; 2 5 6 -1; 3 4 -2 5; -1 3 2 6]

A =

1 5 3 -4

2 5 6 -1

3 4 -2 5

-1 3 2 6

>> A'

ans =

1 2 3 -1

5 5 4 3

3 6 -2 2

-4 -1 5 6

Create a matrix

Matrix transpose

Page 31: Chapter 8 Linear Algebraic Equations and Matrices.

MATLAB Matrix ManipulationsMATLAB Matrix Manipulations

>> x = [5 1 -2 3];

>> y = [2 -1 4 2];

>> z = [3 -2 1 -5];

>> B = [x; y; x; z]

B =

5 1 -2 3

2 -1 4 2

5 1 -2 3

3 -2 1 -5

>> C = A + B

C =

6 6 1 -1

4 4 10 1

8 5 -4 8

2 1 3 1

>> C = C – B ( = A)C =

1 5 3 -4

2 5 6 -1

3 4 -2 5

-1 3 2 6

Matrix Concatenation

Addition and Subtraction

Page 32: Chapter 8 Linear Algebraic Equations and Matrices.

MATLAB Matrix ManipulationsMATLAB Matrix Manipulations

A =

1 5 3 -4

2 5 6 -1

3 4 -2 5

-1 3 2 6

B =

5 1 -2 3

2 -1 4 2

5 1 -2 3

3 -2 1 -5

>> A*B

ans =

18 7 8 42

47 5 3 39

28 -13 19 -14

29 -14 16 -21

>> A.*B

ans =

5 5 -6 -12

4 -5 24 -2

15 4 4 15

-3 -6 2 -30

Matrix multiplication and element-by-element operation

A*B A*B A.*B A.*B

Page 33: Chapter 8 Linear Algebraic Equations and Matrices.

MATLAB Matrix ManipulationsMATLAB Matrix Manipulations

>> D = [2 4 3 1; 3 -5 1 2; 1 -1 3 2]

D =

2 4 3 1

3 -5 1 2

1 -1 3 2

>> A*D

??? Error using ==> *

Inner matrix dimensions must agree.

>> D*A

ans =

18 45 26 9

-6 0 -19 10

6 18 -5 24

A =

1 5 3 -4

2 5 6 -1

3 4 -2 5

-1 3 2 6

Inner dimension must agree

A*D D*A

Page 34: Chapter 8 Linear Algebraic Equations and Matrices.

MATLAB Matrix ManipulationsMATLAB Matrix Manipulations

>> A = [1 5 3 -4; 2 5 6 -1; 3 4 -2 5; -1 3 2 6]

>> format short; AI = inv(A)

AI =

-0.2324 0.2520 0.1606 -0.2467

0.2428 -0.1397 0.0457 0.1005

-0.1436 0.2063 -0.0862 0.0104

-0.1123 0.0431 0.0326 0.0718

>> A*AI

ans =

1.0000 0 0 -0.0000

-0.0000 1.0000 0 0.0000

0.0000 0 1.0000 -0.0000

0.0000 0 0.0000 1.0000

Matrix Inverse

Page 35: Chapter 8 Linear Algebraic Equations and Matrices.

MATLAB Matrix ManipulationsMATLAB Matrix Manipulations

>> A = [1 5 3 -4; 2 5 6 -1; 3 4 -2 5; -1 3 2 6]>> I = eye(4)I = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1>> Aug = [A I]Aug = 1 5 3 -4 1 0 0 0 2 5 6 -1 0 1 0 0 3 4 -2 5 0 0 1 0 -1 3 2 6 0 0 0 1>> [n, m] = size(Aug)n = 4m = 8

Matrix Augmentation

Page 36: Chapter 8 Linear Algebraic Equations and Matrices.

Bungee JumpersBungee Jumpers

gm

gm

gm

x

x

x

kk0

kkkk

0kkk

0xxkgm

0xxkxxkgm

0xkxxkgm

3

2

1

3

2

1

33

3322

221

2333

1222332

111221

)(

)(

)(

)()(

)(

[K] {x} = {b}

Jumper Mass (kg) Spring constant (N/m) Unstretched cord length (m)

Top (1) 60 50 20

Middle (2) 70 100 20

Bottom (3) 80 50 20

Page 37: Chapter 8 Linear Algebraic Equations and Matrices.

>> k1 = 50; k2 = 100; k3 = 50;>> K=[k1+k2 -k2 0;-k2 k2+k3 -k3;0 -k3 k3]K = 150 -100 0 -100 150 -50 0 -50 50>> format short>> g = 9.81; mg = [60; 70; 80]*gmg = 588.6000 686.7000 784.8000

>> x=K\mgx = 41.2020 55.9170 71.6130

>> xi = [20; 40; 60]; >> xf = xi + xxf = 61.2020 95.9170 131.6130

>> x = inv(K)*mgx = 41.2020 55.9170 71.6130

k1 = 50

k2 = 100 stiffer cord

k3 = 50

Final positions of bungee jumpers

Page 38: Chapter 8 Linear Algebraic Equations and Matrices.

1

4

2 3

5

F14

F23F12

F24

F45

H1

F35

F25

V3V1

TRUSSTRUSS

W = 100 kg

Page 39: Chapter 8 Linear Algebraic Equations and Matrices.

Statics: Force BalanceStatics: Force Balance

0FFFF

0FFF

0FFFF

0FFF

0FFF

0FVF

0FFFFF

100FFF

0FFHF

0FVF

4535255x

35255y

4524144x

24144y

35233x

3533y

252423122x

25242y

141211x

1411y

coscos

sinsin

coscos

sinsin

cos

sin

coscos

sinsin

sin

sin

,

,

,

,

,

,

,

,

,

,

Node 1

Node 2

Node 3

Node 4

Node 5

Page 40: Chapter 8 Linear Algebraic Equations and Matrices.

Exampe: Forces in a Simple TrussExampe: Forces in a Simple Truss

0

0

0

0

0

0

0

100

0

0

F

F

F

F

F

F

F

V

H

V

1coscos0000000

0sinsin0000000

100cos0cos0000

000sin0sin0000

0cos00100000

0sin00000100

00coscos101000

00sinsin000000

00000cos1010

00000sin0001

45

35

25

24

23

14

12

3

1

1

Page 41: Chapter 8 Linear Algebraic Equations and Matrices.

function [A, b]=Truss(alpha, beta, gamma, delta)

A = zeros(10,10);A(1,1) = 1; A(1,5) = sin(alpha);A(2,2) = 1; A(2,4) = 1; A(2,5) = cos(alpha);A(3,7) = sin(beta); A(3,8) = sin(gamma);A(4,4) = -1; A(4,6) = 1; A(4,7) = -cos(beta); A(4,8) = cos(gamma);A(5,3)= 1; A(5,9) = sin(gamma);A(6,6) = -1; A(6,9) = -cos(delta);A(7,5) = -sin(alpha); A(7,7)=-sin(beta);A(8,5) = -cos(alpha); A(8,7) = cos(beta); A(8,10)=1;A(9,8) = -sin(gamma); A(9,9) = -sin(delta);A(10,8) = -cos(gamma); A(10,9) = cos(delta); A(10,10) = -1;

b = zeros(10,1); b(3,1)=100;f = A\b

Define Matrices A and b in script file

[A]{ f } = {b} { f } = [A]1 {b}