Chapter 8 Hydro Energy -...

14
AUSTRALIAN ENERGY RESOURCE ASSESSMENT 225 High variability in rainfall, evaporation rates and temperatures occurs between years, resulting in Australia having very limited and variable surface water resources. Australia currently has 108 operating hydroelectric power stations with total installed capacity of 7.8 GW (figure 8.1). 8.1.3 Key factors in utilising Australia’s hydro energy resources Potential for the development of new large scale hydroelectricity facilities in Australia is limited. However, the upgrade and refurbishment of existing hydroelectricity infrastructure will increase efficiency and extend the life of facilities. There is potential for small scale hydroelectricity developments in Australia, and this is likely to be an important source of future growth in capacity. Water availability, competition for scarce water resources, and broader environmental factors are key constraints on future growth in Australian hydroelectricity generation. 8.1.4 Australia’s hydroelectricity market In 2007–08, Australia’s hydroelectricity use represented 0.8 per cent of total primary energy consumption and 4.5 per cent of total electricity generation. Hydroelectricity use has declined on average by 4.2 per cent per year between 1999–00 and 2007–08, largely as a result of an extended period of drought. Chapter 8 Hydro Energy 8.1.1 World hydro energy resources and market Global technically feasible hydro energy potential is estimated to be around 16 500 TWh per year. World hydroelectricity generation was 3078 TWh in 2007, and has grown at an average annual rate of 2.3 per cent since 2000. Hydro energy is the largest source of renewable energy, and currently contributes nearly 16 per cent of world electricity production. In the OECD region, hydroelectricity generation is projected by the IEA to increase at an average annual rate of only 0.7 per cent between 2007 and 2030, mainly reflecting limited undeveloped hydro energy potential. In non-OECD countries, hydroelectricity generation is projected by the IEA to increase at an average annual rate of 2.5 per cent between 2007 and 2030, reflecting large, undeveloped potential hydro energy resources in many of these countries. 8.1.2 Australia’s hydro energy resources Australia’s technically feasible hydro energy potential is estimated to be around 60 TWh per year. Australia is the driest inhabited continent on earth, with over 80 per cent of its landmass receiving an annual average rainfall of less than 600 mm per year and 50 per cent less than 300 mm per year. 8.1 Summary KEY MESSAGES Hydroelectricity is a mature electricity generation technology and an important source of renewable energy. Hydroelectricity is a significant energy source in a large number of countries, although its current share in total primary energy consumption is only 2.2 per cent globally and 0.8 per cent in Australia. Hydroelectricity is currently Australia’s major source of renewable electricity but there is limited potential for future further development. Water availability is a key constraint on future growth in hydroelectricity generation in Australia. Future growth in Australia’s hydroelectricity generation will be underpinned by the development of small scale hydroelectricity facilities and efficiency gains from the refurbishment of large scale hydro plants. The share of hydro in Australia’s total electricity generation is projected to fall to around 3.5 per cent in 2029–30.

Transcript of Chapter 8 Hydro Energy -...

Page 1: Chapter 8 Hydro Energy - data.daff.gov.audata.daff.gov.au/data/warehouse/pe_aera_d9aae_002/aeraCh_08.pdf · CHAPTER 8: HYDRO ENERGY AUSTRALIAN ENERGY RESOURCE ASSESSMENT 227 Hydroelectricity

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

225

• Highvariabilityinrainfall,evaporationratesandtemperaturesoccursbetweenyears,resultinginAustraliahavingverylimitedandvariablesurfacewaterresources.

• Australiacurrentlyhas108operatinghydroelectricpowerstationswithtotalinstalledcapacityof7.8GW(figure8.1).

8.1.3KeyfactorsinutilisingAustralia’shydroenergyresources• Potentialforthedevelopmentofnewlargescale

hydroelectricityfacilitiesinAustraliaislimited.However,theupgradeandrefurbishmentofexistinghydroelectricityinfrastructurewillincreaseefficiencyandextendthelifeoffacilities.

• ThereispotentialforsmallscalehydroelectricitydevelopmentsinAustralia,andthisislikelytobeanimportantsourceoffuturegrowthincapacity.

• Wateravailability,competitionforscarcewaterresources,andbroaderenvironmentalfactorsarekeyconstraintsonfuturegrowthinAustralianhydroelectricitygeneration.

8.1.4Australia’shydroelectricitymarket• In2007–08,Australia’shydroelectricityuse

represented0.8percentoftotalprimaryenergyconsumptionand4.5percentoftotalelectricitygeneration.Hydroelectricityusehasdeclinedonaverageby4.2percentperyearbetween1999–00and2007–08,largelyasaresultofanextendedperiodofdrought.

Chapter 8Hydro Energy

8.1.1Worldhydroenergyresourcesandmarket• Globaltechnicallyfeasiblehydroenergypotential

isestimatedtobearound16500TWhperyear.

• Worldhydroelectricitygenerationwas3078TWhin2007,andhasgrownatanaverageannualrateof2.3percentsince2000.

• Hydroenergyisthelargestsourceofrenewableenergy,andcurrentlycontributesnearly16percentofworldelectricityproduction.

• IntheOECDregion,hydroelectricitygenerationisprojectedbytheIEAtoincreaseatanaverageannualrateofonly0.7percentbetween2007and2030,mainlyreflectinglimitedundevelopedhydroenergypotential.

• Innon-OECDcountries,hydroelectricitygenerationisprojectedbytheIEAtoincreaseatanaverageannualrateof2.5percentbetween2007and2030,reflectinglarge,undevelopedpotentialhydroenergyresourcesinmanyofthesecountries.

8.1.2Australia’shydroenergyresources• Australia’stechnicallyfeasiblehydroenergy

potentialisestimatedtobearound60TWhperyear.

• Australiaisthedriestinhabitedcontinentonearth,withover80percentofitslandmassreceivinganannualaveragerainfalloflessthan600mmperyearand50percentlessthan300mmperyear.

8.1Summary

K E y m E s s a g E s

• Hydroelectricityisamatureelectricitygenerationtechnologyandanimportantsourceofrenewableenergy.

• Hydroelectricityisasignificantenergysourceinalargenumberofcountries,althoughitscurrentshareintotalprimaryenergyconsumptionisonly2.2percentgloballyand0.8percentinAustralia.

• HydroelectricityiscurrentlyAustralia’smajorsourceofrenewableelectricitybutthereislimitedpotentialforfuturefurtherdevelopment.

• WateravailabilityisakeyconstraintonfuturegrowthinhydroelectricitygenerationinAustralia.

• FuturegrowthinAustralia’shydroelectricitygenerationwillbeunderpinnedbythedevelopmentofsmallscalehydroelectricityfacilitiesandefficiencygainsfromtherefurbishmentoflargescalehydroplants.

• TheshareofhydroinAustralia’stotalelectricitygenerationisprojectedtofalltoaround3.5percentin2029–30.

Page 2: Chapter 8 Hydro Energy - data.daff.gov.audata.daff.gov.au/data/warehouse/pe_aera_d9aae_002/aeraCh_08.pdf · CHAPTER 8: HYDRO ENERGY AUSTRALIAN ENERGY RESOURCE ASSESSMENT 227 Hydroelectricity

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

226

• InABARE’slatestlong-termenergyprojectionsthatincludetheRenewableEnergyTarget,a5percentemissionsreductiontargetandothergovernmentpolicies,hydroelectricitygenerationisprojectedtoincreasefrom12TWhin2007–08to13TWhin2029–30,representinganaverageannualgrowthrateof0.2percent(figure8.2).

• Theshareofhydrointotalelectricitygenerationisprojectedtofallto3.5percentin2029–30.

• Hydroenergyisexpectedtobeovertakenbywindastheleadingrenewablesourceofelectricitygenerationduringtheoutlookperiod.

8.2Backgroundinformationandworldmarket8.2.1DefinitionsHydroelectricityiselectricalenergygeneratedwhenfallingwaterfromreservoirsorflowingwaterfromrivers,streamsorwaterfalls(runofriver)ischannelledthroughwaterturbines.Thepressureoftheflowingwaterontheturbinebladescausestheshafttorotateandtherotatingshaftdrivesanelectricalgeneratorwhichconvertsthemotionoftheshaftintoelectricalenergy.Mostcommonly,waterisdammedandthe

• In2007–08,hydroelectricitywasmainlygeneratedintheeasternstates,includingTasmania(57percentoftotalelectricitygeneration),NewSouthWales(21percent),Victoria(13percent)andQueensland(8percent).

Figure 8.1 MajorAustralianoperatinghydroelectricfacilitieswithcapacityofgreaterthan10MWsource: GeoscienceAustralia

%

0

1

2

3

4

5

6

7

Year

8

9

TWh

0

2

4

6

8

10

12

14

16

18

AERA 8.2

1999-00 2001-02 2003-04 2005-06 2007-08 2029-30

Electricity generation(TWh)

Share of total electricitygeneration (%)

Figure 8.2 Australia’shydroelectricitygenerationto2029–30source: ABARE2009a,2010

Page 3: Chapter 8 Hydro Energy - data.daff.gov.audata.daff.gov.au/data/warehouse/pe_aera_d9aae_002/aeraCh_08.pdf · CHAPTER 8: HYDRO ENERGY AUSTRALIAN ENERGY RESOURCE ASSESSMENT 227 Hydroelectricity

CHAPTER 8: HYDRO ENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

227

Hydroelectricityhasbeenusedinsomeformsincethe19thcentury.Themaintechnologicaladvantageofhydroelectricityisitsabilitytobeusedforeitherbaseorpeakloadelectricitygeneration,orboth.Inmanycountries,hydroisusedforpeakloadgeneration,takingadvantageofitsquickstart-upanditsreliability.Hydroelectricityisarelativelysimplebuthighlyefficientprocesscomparedwithothermeansofgeneratingelectricity,asitdoesnotrequirecombustion.

flowofwateroutofthedamtodrivetheturbinesiscontrolledbytheopeningorclosingofsluices,gatesorpipes.Thisiscommonlycalledpenstock.

Hydropoweristhemostadvancedandmaturerenewableenergytechnologyandprovidessomelevelofelectricitygenerationinmorethan160countriesworldwide.Hydroisarenewableenergysourceandhastheadvantagesoflowgreenhousegasemissions,lowoperatingcosts,andahighramprate(quickresponsetoelectricitydemand).

Box 8.1 HyDROElECTRICITyTECHNOlOGIES

Hydroelectricity generationTheenergycreateddependsontheforceorstrengthofthewaterflowandthevolumeofwater.Asaresult,thegreaterthedifferencebetweentheheightofthewatersource(head)andtheheightoftheturbineoroutflow,thegreaterthepotentialenergyofthewater.Hydropowerplantsrangefromverysmall(10MWorless)toverylargeindividualplantswithacapacityofmorethan2000MWandvastintegratedschemesinvolvingmultiplelargehydropowerplants.Hydropowerisasignificantsourceofbaseloadand,increasingly,peakloadelectricityinpartsofAustraliaandoverseas.

Riverspotentiallysuitableforhydropowergenerationrequirebothadequatewatervolumethroughriverflows,whichisusuallydeterminedbymonitoringusingstreamgauges,andasuitablesitefordamconstruction.InAustraliavirtuallyallhydropowerisproducedbystationsatwaterstoragescreatedbydamsinmajorrivervalleys.Manyhavefacilitiestopumpwaterbackintohigherstoragelocationsduringoff-peaktimesforre-useinpeaktimes.Insomecases,thehydroplantcanbebuiltonanexistingdam.Thedevelopmentofahydroresourceinvolvessignificanttimeandcostbecauseofthelargeinfrastructurerequirements.Thereisalsoarequirementforextensiveinvestigationoftheenvironmentalimpactofdammingtheriver.Thisgenerallyinvolvesconsiderationoftheentirecatchmentsystem.

Pumped storage hydroelectricitystoreselectricityintimesoflowdemandforuseintimesofhighdemandbymovingwaterbetweenreservoirs.Itiscurrentlytheonlycommercialmeansofstoringelectricityoncegenerated.Byusingexcesselectricitygeneratedintimesoflowdemandtopumpwaterintohigherstorages,theenergycanbestoredandreleasedbackintothelowerstorageintimesofpeakdemand.Pumped-storagesystemscanvarysignificantlyincapacitybutcommonlyconsistoftworeservoirssituatedtomaximisethedifferenceintheirlevelsandconnectedbyasystemofwaterwayswithapumping-generatingstation.Theturbinesmaybereversibleandusedforbothpumpingandgeneratingelectricity.

Pumpedstoragehydroelectricityisthelargest-

capacityformofgridenergystoragewhereitcanbeusedtocovertransientpeaksindemandandtoprovideback-uptointermittentrenewableenergysourcessuchaswind.Newconceptsinpumped-storageinvolvewindorsolarenergytopumpwatertodamsasheadstorage.

mini hydro schemesaresmall-scale(typicallylessthan10MW)hydroelectricpowerprojectsthattypicallyservesmallcommunitiesoradedicatedindustrialplantbutcanbeconnectedtoanelectricitygrid.SomesmallhydroschemesinNorthAmericaareupto30MW.Thesmallesthydroplantsoflessthan100kWaregenerallytermedmicrohydro.Minihydroschemescanbe‘run-of-river’,withnodamorwaterstorage(seebelow),ordevelopedusingexistingornewdamswhoseprimarypurposeislocalwatersupply,riverandlakewater-levelcontrol,orirrigation.Minihydroschemestypicallyhavelimitedinfrastructurerequiringonlysmallscalecapitalworks,andhencehavelowconstructioncostsandasmallerenvironmentalimpactthanlargerschemes.Smallscalehydrohashadhighrelativecosts($perMW)butisbeingconsideredbothforruralelectrificationinlessdevelopedcountriesandfurtherhydrodevelopmentsinOECDcountries,oftensupportedbyenvironmentalpoliciesandfavourabletariffsforrenewableenergy(Paish2002).MostrecenthydropowerinstallationsinAustralia,especiallyinVictoria,havebeensmall(mini)hydrosystems,commencingwiththeThompsonprojectin1989.

Run-of-river systemsrelyonthenaturalfall(head)andflowoftherivertogenerateelectricitythroughpowerstationsbuiltontheriver.largerun-of-riversystemsaretypicallybuiltonriverswithconsistentandsteadyflow.Theyaresignificantinsomeoverseaslocations,notablyCanadaandtheUnitedStates.Minirun-of-riverhydrosystemscanbebuiltonsmallstreamsorusepipedwaterfromriversandstreamsforlocalpowergeneration.Run-of-riverhydroplantscommonlyhaveasmallerenvironmental‘footprint’thanlargescalestoragereservoirs.ThelowerDerwentandMerseyForthhydrodevelopmentsinTasmania,forexample,eachcomprisingsixpowerstationsupto85MWcapacity,usetributaryinflowsandsmallstoragesinastep-likeseries.

Page 4: Chapter 8 Hydro Energy - data.daff.gov.audata.daff.gov.au/data/warehouse/pe_aera_d9aae_002/aeraCh_08.pdf · CHAPTER 8: HYDRO ENERGY AUSTRALIAN ENERGY RESOURCE ASSESSMENT 227 Hydroelectricity

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

228

8.2.2HydroelectricitysupplychainFigure8.3isarepresentationofhydroelectricitygenerationinAustralia.InAustraliavirtuallyallhydroelectricityisproducedbystationsatwaterstoragescreatedbydamsinmajorrivervalleys.Anumberhavefacilitiestopumpwaterbackintohigherstoragelocationsduringoff-peaktimesforre-useinpeaktimes.Electricitygeneratedbythewaterturbinesisfedintotheelectricitygridasbaseloadandpeakloadelectricityandtransmittedtoitsendusemarket.

8.2.3WorldhydroelectricitymarketHydroenergyisasignificantsourceoflowcostelectricitygenerationinawiderangeofcountries.Atpresent,productionislargelyconcentratedinChina,NorthAmerica,OECDEuropeandSouthAmerica.However,manyAfricancountriesareplanningtodeveloptheirconsiderablehydroenergypotentialtofacilitateeconomicgrowth.Worldhydroelectricitygenerationisprojectedtogrowatanaverageannualrateofaround2percentto2030,largelyreflectingtheincreaseduseofhydroelectricityindevelopingeconomies.

ResourcesMostcountrieshavesomepotentialtodevelophydroelectricity.Therearethreemeasurescommonlyusedtodefinehydroenergyresources:

• gross theoretical potential–hydroenergypotentialthatisdefinedbyhypothesisortheory,withnopracticalbasis.Thismaybebasedonrainfallorgeographyratherthanactualmeasurementofwaterflows.

• Technically feasible–hydroenergypotentialthatcanbeexploitedwithcurrenttechnologies.Thisissmallerthangrosstheoreticalpotential.

Hydroelectricitygenerationisoftenconsideredamaturetechnologywithlimitedscopeforfurtherdevelopment.Plantscanbebuiltonalargeorsmallscale,eachwithitsowncharacteristics:

• Large scale hydroelectricity plantsgenerallyinvolvethedammingofriverstoformareservoir.Turbinesarethenusedtocapturethepotentialenergyofthewaterasitflowsbetweenreservoirs.Thisisthemosttechnologicallyadvancedformofhydroelectricitygeneration.

• small scale hydroelectricity plants,includingmini(lessthan5MW),micro(lessthan500kW)andpicofacilities,arestillatarelativelyearlystageofdevelopmentinAustralia,andareexpectedtobethemainsourceoffuturegrowthinhydroelectricitygeneration.Whilethereisnouniversallyaccepteddefinitionofsmallscalehydroelectricprojects,smallprojectsaregenerallyconsideredasthosewithlessthan10MWcapacity.

Withinthesetwobroadclassesofhydroelectricfacilities,therearedifferenttypesoftechnologies,includingpumpedstorageandrun-of-river(box8.1).Thetypeofsystemchosenwillbedeterminedbytheintendeduseoftheplant(baseorpeakloadgeneration),aswellasgeographicalandtopographicalfactors.Eachsystemhasdifferentsocialandenvironmentalimpactswhichmustbeconsidered.

Inthisreport,electricitygeneratedfromwaveandtidalmovements(coastalandoffshoresources)istreatedseparatelytothatgeneratedbyharnessingthepotentialenergyofwaterinriversanddams(onshoresources).Waveandtidalenergyisdiscussedinchapter11.

End Use MarketProcessing, Transport,

StorageResources Exploration

AERA 8.3

Industry

Commercial

Residential

Domesticmarket

Development andProduction

ElectricityGeneration

Developmentdecision

Project

Resourcedefinition andsite selection

Storage

Figure 8.3 Australia’shydroenergysupplychainsource: ABAREandGeoscienceAustralia

Page 5: Chapter 8 Hydro Energy - data.daff.gov.audata.daff.gov.au/data/warehouse/pe_aera_d9aae_002/aeraCh_08.pdf · CHAPTER 8: HYDRO ENERGY AUSTRALIAN ENERGY RESOURCE ASSESSMENT 227 Hydroelectricity

CHAPTER 8: HYDRO ENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

229

• Economically feasible–technicallyfeasiblehydroenergypotentialwhichcanbeexploitedwithoutincurringafinancialloss.Thisisthenarrowestdefinitionofpotentialandthereforethesmallest.

Theworld’stotaltechnicallyexploitablehydroenergypotentialisestimatedtobearound16500TWhperyear(WEC2007).Regionswithhighprecipitation(rainfallormeltingsnow)andsignificanttopographicreliefenablinggoodwaterflowsfromhighertoloweraltitudestendtohavehigherpotential,whileregionsthataredrier,thatareflatordonothavestrongwaterflowshavelowerpotential.Asia,AfricaandtheAmericashavethehighestfeasiblepotentialforhydroelectricity(figure8.4).

China’shydroenergyresourcesarethelargestofanycountry.Chinaisestimatedtohaveatheoreticalpotentialofmorethan6000TWhperyear,approximatelydoublecurrentworldhydroelectricitygeneration,andeconomicallyfeasiblepotentialofmorethan1750TWhperyear(HydropowerandDams2009).Chinaisalsohometothelargestsinglehydroelectricityprojectintheworld,ThreeGorges.

0

Total

Asia

South America

Europe

Africa

Oceania

TWh/year10 000 20 000 30 000 40 000

North America

AERA 8.4

Gross theoreticalpotential

Technicallyfeasible

Economicallyfeasible

Figure 8.4 Worldhydroelectricitypotential,byregionsource: HydropowerandDams2009

0 1000 2000 4000 70003000 5000

TWh/year6000

AERA 8.5

China

United States

India

Brazil

Russian Federation

Canada

Indonesia

Peru

Congo

Columbia

Australia

Figure 8.5 Grosstheoreticalhydroelectricitypotential,majorcountries

source: HydropowerandDams2009

Table 8.1 Keyhydrostatistics

unit australia 2007–08

oECD 2008

World 2007

Primary energy consumptiona PJ 43.4 4654 11084

Shareoftotal % 0.8 2.0 2.2

Averageannualgrowth,from2000 % -4.2 -0.3 2.0

Electricity generation

Electricityoutput TWh 12 1293 3078

Shareoftotal % 4.5 12.2 15.6

Electricitycapacity GW 7.8 366.9 848.5

a Energyproductionandprimaryenergyconsumptionareidenticalsource: IEA2009a;ABARE2009a;HydropowerandDams2009

Whencompleted,thissitewillhaveacapacityof22500megawatts.Itgeneratedalmost50TWhofelectricityin2006(representingonlyaround31percentcapacityutilisation),morethanthreetimesAustralia’stotalhydroelectricitygeneration.

InAfrica,theDemocraticRepublicoftheCongohasthehighesthydroenergypotential,whileNorway’spotentialresourcesarethehighestinWesternEurope.InSouthAmerica,thehighesthydroenergypotentialisinBrazil,whereitexceeds2200TWhperyear.OthercountrieswithsubstantialpotentialincludeCanada,Chile,Colombia,Ethiopia,India,Mexico,Paraguay,TajikistanandtheUnitedStates.Nevertheless,almostallcountrieshavesomehydroenergypotential.

Australia’stheoreticalhydroenergypotential(265TWhperyear)isconsideredtoberelativelysmall,ranking27thintheworld(figure8.5).Highrainfallvariability,lowaverageannualrainfallovermostofthecontinent,andhightemperaturesandevaporationrateslimittheavailabilityofsurfacewaterresources(WEC2007).

Page 6: Chapter 8 Hydro Energy - data.daff.gov.audata.daff.gov.au/data/warehouse/pe_aera_d9aae_002/aeraCh_08.pdf · CHAPTER 8: HYDRO ENERGY AUSTRALIAN ENERGY RESOURCE ASSESSMENT 227 Hydroelectricity

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

230

developingtheirhydroenergypotential,andhave

becomeasourceofgrowth.

Totalinstalledhydroelectricitygenerationcapacityis

currentlyaround849GW,witharound158GWofnew

capacityunderconstructioninlate2008(Hydropower

andDams2009).Some25–30GWofnewlarge

scalehydroenergycapacitywereaddedin2008,

mostlyinChinaandIndia(Ren212009).Chinahas

theworld’slargestinstalledhydroelectricitycapacity

witharound147GW(17percentofworldcapacity),

followedbytheUnitedStates,Brazil,Canadaandthe

RussianFederation.Theseeconomiesaccountfor

halfoftheworld’sinstalledhydroelectricitygeneration

capacity.In2008therewerearound200large

(greaterthan60mhigh)damswithhydroelectricity

facilitiesunderconstruction.

Thetotalinstalledcapacityofsmallhydroenergyisestimatedtobeabout85GWworldwide(Ren212009).MostofthisisinChinawheresome4–6GWperyearhavebeenaddedforthepastseveralyears,butdevelopmentofsmallhydroplantshasalsooccurredinotherAsiancountries.

In2007,worldproductionofhydroelectricitywas3078TWh(around11000PJ).ThelargestproducerswereChina,Brazil,CanadaandtheUnitedStates(figure8.7a).Australiaranked31stintheworld.Hydroelectricityaccountedforalargeshareoftotal

Primary energy consumptionHydroelectricitygenerationhasbeengrowingglobally,reflectingitsincreasingpopularityindevelopingeconomiesasarelativelycheap,simpleandreliablesourceofenergy(figure8.6).

Hydroelectricitygenerationaccountedfor2.2percentoftotalprimaryenergyconsumptionin2007(table8.1).Worldhydroelectricityconsumptionhasgrownatanaverageannualrateof2percentbetween2000and2007.However,intheOECD,hydroelectricityconsumptionhasbeendecliningatanaverageannualrateof0.3percent.

ConsumptionofhydroelectricityhasalsodeclinedinAustraliaduetotheprolongedperiodofdrought,particularlyinNewSouthWalesandVictoria,thathasaffectedhydroelectricitygeneration.

Electricity generationHydroelectricityaccountedfor16percentofworldelectricitygenerationin2007.Hydroelectricity’sshareintotalelectricitygenerationhasdeclinedfrom22percentin1971to16percent(figure8.6),becauseofthehigherrelativegrowthofelectricitygenerationfromothersources.latinAmericancountriesaccountforthelargestproportionofhydroelectricitygeneration,followedbyOECDNorthAmerica.ThemostrapidgrowthinhydroelectricitygenerationhasbeeninChina,whichisnowthefourthlargestgenerator.ManyAfricaneconomiesarealso

%

0

4

8

12

16

20

24

28

TWh

0

500

1000

1500

2000

2500

3000

3500

1971 1975 1980 1985 1990 1995 2000 2005

Year

OECD North America

China OECD Pacific Middle EastLatin America

Former Soviet Union

OECD Europe

Africa

Asia (ex China) Non-OECD EuropeAERA 8.6

Share of totalelectricity generation (%)

Figure 8.6 Worldhydrogenerationandshareoftotalelectricitygenerationsource: IEA2009a

Page 7: Chapter 8 Hydro Energy - data.daff.gov.audata.daff.gov.au/data/warehouse/pe_aera_d9aae_002/aeraCh_08.pdf · CHAPTER 8: HYDRO ENERGY AUSTRALIAN ENERGY RESOURCE ASSESSMENT 227 Hydroelectricity

CHAPTER 8: HYDRO ENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

231

andTajikistaninAsia;AlbaniaandNorwayinEurope;andParaguayinSouthAmerica(HydropowerandDams2009).

outlook for the world hydroelectricity marketIntheIEAreferencecaseprojections,worldhydroelectricitygenerationisprojectedtoincreaseto4680TWhin2030,atanaverageannualrateof1.8percent(table8.2).HydroelectricitygenerationisprojectedtogrowintheOECDatanaverageannualrateof0.7percentandinnon-OECDcountriesbyanaverageannualrateof2.5percent.

ThegrowthinhydroelectricitygenerationintheOECDisexpectedtocomefromutilisationofremainingundevelopedhydroenergyresources.Growthisalsoexpectedtooccurinsmall(includingminiandmicro)andmediumscalehydroelectricityplants.Improvementsintechnologymayalsoimprovethereliabilityandefficiencyand,hence,outputofexistinghydroelectricityplants,aswouldrefurbishmentofageinginfrastructure.

Innon-OECDcountries,growthisexpectedtobeunderpinnedbythecostcompetitivenessofhydroelectricitycomparedwithothermeansofelectricitygeneration.Muchofthegrowthisexpectedtobeinsmallscalehydroelectricity,althoughthereareplansinmanyAfricancountriestobuildlargescalehydroelectricitygenerationcapacity.GrowthisalsoexpectedtooccurinAsia,particularlyChina.

Theimplementationofglobalclimatechangepoliciesislikelytoencouragethedevelopmentofhydroelectricityasarenewable,lowemissionsenergysource.IntheIEA’s450climatechangepolicyscenario,theshareofhydroinworldelectricitygenerationisprojectedtoincreaseto18.9percentin2030,comparedwith13.6percentinitsreferencecase.FortheOECDregions,underthisscenario,theshareofhydrointotalelectricitygenerationisprojectedtoincreaseto13.5percentin2030comparedwith11.2percentinthereferencecase.

electricitygenerationinsomeofthesecountriesincluding,mostnotably,Norway(98percent),Brazil(84percent),Venezuela(72percent),Canada(58percent)andSweden(44percent)(figure8.7b).

Hydroelectricitymeetsover90percentofdomesticelectricityrequirementsinanumberofothercountriesincluding:theDemocraticRepublicoftheCongo,Ethiopia,lesotho,Malawi,Mozambique,NamibiaandZambiainAfrica;Bhutan,Kyrgyzstan,laos,Nepal

0

TWh100 200 400 600300 500

China

Brazil

Canada

United States

Russian Federation

Norway

India

Venezuela

Japan

Sweden

Australia

a) Electricity output

0 10020 40 60 80

China

Brazil

Canada

United States

Russian Federation

Norway

India

Venezuela

Japan

Sweden

Australia

b) Share of total

%

AERA 8.7

Figure 8.7 Worldelectricitygenerationfromhydro,majorcountries,2007

source: IEA2009a

Table 8.2 IEAreferencecaseprojectionsforworldhydroelectricitygeneration

unit 2007 2030

oECD TWh 1258 1478

Shareoftotal % 12.2 11.2

Averageannualgrowth,2007–2030 % - 0.7

Non-oECD TWh 1820 3202

Shareoftotal % 19.9 15.2

Averageannualgrowth,2007–2030 % - 2.5

World TWh 3078 4680

Shareoftotal % 15.6 13.6

Averageannualgrowth,2007–2030 % - 1.8

source: IEA2009b

Page 8: Chapter 8 Hydro Energy - data.daff.gov.audata.daff.gov.au/data/warehouse/pe_aera_d9aae_002/aeraCh_08.pdf · CHAPTER 8: HYDRO ENERGY AUSTRALIAN ENERGY RESOURCE ASSESSMENT 227 Hydroelectricity

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

232

andTasmania(29percent)(figure8.9).TheSnowyMountainsHydro-electricScheme,withacapacityof3800MW,accountsforaroundhalfofAustralia’stotalhydroelectricitygenerationcapacitybutconsiderablylessofactualproduction.Therearealsohydroelectricityschemesinnorth-eastVictoria,Queensland,WesternAustralia,andamini-hydroelectricityprojectinSouthAustralia.Pumpedstorageaccountsforabout1490MW.

TheSnowyMountainsHydro-electricSchemeisoneofthemostcomplexintegratedwaterandhydroelectricityschemesintheworld.TheSchemecollectsandstoresthewaterthatwouldnormallyfloweasttothecoastanddivertsitthroughtrans-mountaintunnelsandpowerstations.ThewateristhenreleasedintotheMurrayandMurrumbidgeeRiversforirrigation.TheSnowyMountainsSchemecomprisessixteenmajordams,sevenpowerstations(twoofwhichareunderground),apumpingstation,145kmofinter-connectedtrans-mountaintunnelsand80kmofaqueducts.TheSnowyMountainsHydro-electricSchemeprovidesaround70percentofallrenewableenergythatisavailabletotheeasternmainlandgridofAustralia,aswellasprovidingpeakloadpower(SnowyHydro2007).

8.3Australia’shydroenergyresourcesandmarket

8.3.1HydroenergyresourcesAustraliaisthedriestinhabitedcontinentonearth,withover80percentofitslandmassreceivinganannualaveragerainfalloflessthan600mmperyearand50percentlessthan300mmperyear(figure8.8).Thereisalsohighvariabilityinrainfall,evaporationratesandtemperaturesbetweenyears,resultinginAustraliahavingverylimitedandvariablesurfacewaterresources.OfAustralia’sgrosstheoreticalhydroenergyresourceof265TWhperyear,onlyaround60TWhisconsideredtobetechnicallyfeasible(HydropowerandDams2009).Australia’seconomicallyfeasiblecapacityisestimatedat30TWhperyearofwhichmorethan60percenthasalreadybeenharnessed(HydropowerandDams2009).

ThefirsthydroelectricplantinAustraliawasbuiltinlauncestonin1895.Australiacurrentlyhas108operatinghydroelectricpowerstationswithtotalinstalledcapacityof7806MW.ThesecoincidewiththeareasofhighestrainfallandelevationandaremostlyinNewSouthWales(55percent)

Figure 8.8 AverageannualrainfallacrossAustraliasource: BureauofMeteorology

Page 9: Chapter 8 Hydro Energy - data.daff.gov.audata.daff.gov.au/data/warehouse/pe_aera_d9aae_002/aeraCh_08.pdf · CHAPTER 8: HYDRO ENERGY AUSTRALIAN ENERGY RESOURCE ASSESSMENT 227 Hydroelectricity

CHAPTER 8: HYDRO ENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

233

percentofAustralia’sprimaryenergyconsumptionin2007–08.Hydroelectricitygenerationdeclinedatanaverageannualrateof4.2percentbetween1999–2000and2007–08,theresultofaprolongedperiodofdrought.

Electricity generationIn2007–08,Australia’shydroelectricitygenerationwas12.1TWhor4.5percentoftotalelectricitygeneration(figure8.10).Overtheperiod1977–78to2007–08,hydroelectricitygenerationhastendedtofluctuate,reflectingperiodsofbeloworaboveaveragerainfall.However,theshareofhydrointotalelectricitygenerationhassteadilydeclinedoverthisperiodreflectingthehighergrowthofalternativeformsofelectricitygeneration.

TasmaniahasalwaysbeenthelargestgeneratorofhydroelectricityinAustralia,accountingfor57percentoftotalgenerationin2007–08(figure8.11).NewSouthWalesisthesecondlargest,accountingfor22percentoftotalelectricitygenerationin2007–08(sourcedmostlyfromtheSnowyMountainsHydro-electricScheme).Victoria,QueenslandandWesternAustraliaaccountfortheremainder.

ThehydroelectricitygenerationsysteminTasmaniacomprisesanintegratedschemeof28powerstations,numerouslakesandover50largedams.HydroTasmania,theownerofthemajorityofthesehydroelectricityplants,suppliesbothbaseloadandpeakpowertotheNationalElectricityMarket(NEM),firstlytoTasmaniaandthentheAustraliannetworkthroughBasslink,theunderseainterconnectorwhichrunsunderBassStrait.

8.3.2HydroelectricitymarketAustraliahasdevelopedmuchofitslargescalehydroenergypotential.ElectricitygenerationfromhydrohasdeclinedinrecentyearsbecauseofanextendedperiodofdroughtineasternAustralia,wheremosthydroelectricitycapacityislocated.HydroenergyisbecominglesssignificantinAustralia’sfuelmixforelectricitygeneration,asgrowthingenerationcapacityisbeingoutpacedbyotherfuels.

Primary energy consumptionAshydroenergyresourcesareusedtoproduceelectricity,whichisusedineithergridoroff-gridapplications,hydroenergyproductionisequivalenttohydroenergyconsumption.Hydroaccountedfor0.8

Figure 8.9 MajorAustralianoperatinghydroelectricfacilitieswithcapacityofgreaterthan10MW.Numbersindicatesitesreferredtoinsection8.4.2

source: GeoscienceAustralia

Page 10: Chapter 8 Hydro Energy - data.daff.gov.audata.daff.gov.au/data/warehouse/pe_aera_d9aae_002/aeraCh_08.pdf · CHAPTER 8: HYDRO ENERGY AUSTRALIAN ENERGY RESOURCE ASSESSMENT 227 Hydroelectricity

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

234

Figure 8.10 Australia’shydrogenerationandshareoftotalelectricitygeneration

source: ABARE2009a

TWh

0

5

10

15

20

%

0

5

10

15

20

Electricity generation (TWh)

Year

AERA 8.10

1977-78 2007-082002-031997-981992-931987-881982-83

Share of total electricity generation (%)

Figure 8.11 Australia’shydroconsumptionbystate,2007–08

source: ABARE2009a

New South Walesand ACT 21.9%

Victoria13.1%

Queensland7.7%

WesternAustralia

0.4%

Tasmania56.9%

AERA 8.11

New South Walesand ACT 53.7%

Tasmania28.7%

Queensland8.3%

Victoria8.9%

Western Australia andSouth Australia 0.4%

AERA 8.12

>500 MW, 3

50-100MW, 16

10-50MW, 20

<10 MW, 60

a) State

b) Size

100-250MW, 8

250-500MW, 5

New South Walesand ACT 53.7%

Tasmania28.7%

Queensland8.3%

Victoria8.9%

Western Australia andSouth Australia 0.4%

AERA 8.12

>500 MW, 3

50-100MW, 16

10-50MW, 20

<10 MW, 60

a) State

b) Size

100-250MW, 8

250-500MW, 5

Figure 8.12 Installedhydrocapacitybystateandsize,2009source: GeoscienceAustralia

Installed electricity generation capacityAustraliahasonly3hydroelectricityplantswith

acapacityof500MWormore,allofwhicharelocated

intheSnowyMountainsHydro-electricScheme(figure

8.12).ThelargesthydroelectricityplantinAustralia

hasacapacityof1500MW,whichismid-sizedby

internationalstandards.Morethan75percent

ofAustralia’sinstalledhydroelectricitycapacityis

containedin16hydroelectricityplantswithacapacity

of100MWormore.Attheotherendofthescale,

therearesome60smallandmini-hydroelectricityplants(lessthan10MWcapacity)withacombinedcapacityofjustover150MW.

However,installedhydroelectricitygenerationcapacitydoesnotdirectlyreflectactualelectricitygeneration.ThesmallerinstalledcapacityinTasmaniaproducesmorethandoubletheoutputoftheSnowyMountainsHydro-electricScheme.Tasmaniaistheonlystatethatuseshydroelectricityasthemainmeansofelectricitygeneration.

Page 11: Chapter 8 Hydro Energy - data.daff.gov.audata.daff.gov.au/data/warehouse/pe_aera_d9aae_002/aeraCh_08.pdf · CHAPTER 8: HYDRO ENERGY AUSTRALIAN ENERGY RESOURCE ASSESSMENT 227 Hydroelectricity

CHAPTER 8: HYDRO ENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

235

thisislimitedbytheregion’sremotenessfrominfrastructureandmarketsandtheseasonalflowsoftherivers.

Upgrading and refurbishing ageing hydro infrastructure in australia will result in capacity and efficiency gainsManyofAustralia’shydroelectricpowerstationsarenowmorethan50yearsoldandwillrequirerefurbishmentinthenearfuture.Thiswillinvolvesignificantexpenditureoninfrastructure,includingthereplacementandrepairofequipment.Therefurbishmentofplantswillincreasetheefficiencyanddecreasetheenvironmentalimpactsofhydroelectricity.Furthertechnologydevelopmentswillbefocusedonefficiencyimprovementsandcostreductionsinbothnewandexistingplants(box8.2).

TheSnowyHydroSchemeiscurrentlyundergoingamaintenanceandrefurbishmentprocess,atacostofapproximatelyA$300million(inrealterms)oversevenyears(SnowyHydro2009).Themodernisationwillincludethereplacementofageingandhighmaintenanceequipment,increasingtheefficiencyandcapacityofturbines,andensuringthecontinuedreliableoperationofthecomponentsystemsofthescheme.

RefurbishmentofthepowerstationatlakeMargaret,Tasmania–oneofAustralia’soldesthydroelectricityfacilities(commissionedin1914)–commencedin2008.Themainobjectiveoftheprojectwastorepairtheoriginalwoodenpipeline,whichhaddeteriorated

8.4Outlookto2030forAustralia’shydroenergyresourcesandmarketAlthoughbenefitingfromtheRenewableEnergyTargetandincreaseddemandforrenewableenergy,growthinAustralia’shydroelectricitygenerationisexpectedtobelimitedandoutpacedbyotherrenewables,especiallywindenergy.Futuregrowthinhydroelectricitygenerationcapacityislikelytocomemainlyfromtheinstallationofsmallscaleplants.WateravailabilitywillbeakeyconstraintonthefutureexpansionofhydroelectricityinAustralia.

8.4.1KeyfactorsinfluencingtheoutlookOpportunitiesforfurtherhydroelectricitygenerationinAustraliaareofferedbyrefurbishmentandefficiencyimprovementsatexistinghydroelectricityplants,andcontinuedgrowthofsmall-scalehydroelectricityplantsconnectedtothegrid.Hydroelectricitygenerationisalow-emissionstechnology,butfuturegrowthwillbeconstrainedbywateravailabilityandcompetitionforscarcewaterresources.

Hydroelectricity is a mature renewable electricity generation technology with limited scope for further large scale development in australiaMostofAustralia’sbestlargescalehydroenergysiteshavealreadybeendevelopedor,insomecases,arenotavailableforfuturedevelopmentbecauseofenvironmentalconsiderations.ThereissomepotentialforadditionalhydroenergygenerationusingthemajorriversofnorthernAustraliabut

Box 8.2HyDROElECTRICITyCOSTS

Hydroelectricity generation costs Themostsignificantcostindevelopingahydroresourceistheconstructionofthenecessaryinfrastructure.Infrastructurecostsincludethedamsaswellasthepowerplantitself.Buildingtheplantonanexistingdamwillsignificantlyreducecapitaloutlays.Costsincurredinthedevelopmentphaseofahydrofacilityinclude(Forouzbakhshet.al.2007):

• Civil costs–constructionofthecomponentsoftheprojectincludingdams,headponds,andaccessroads.

• Electro mechanical equipment costs–themachineryofthefacility,includingturbines,generatorsandcontrolsystems.

• Power transmission line costs –installationofthetransmissionlines.

Indirectcostsincludeengineering,design,supervision,administrationandinflationimpactsoncostsduringtheconstructionperiod.Constructionofsmallandmediumplantscantakebetween1to

6years,whileforlargescaleplantsitcantakeupto30years(forexample,theSnowyHydroSchemetook25yearstobuild).

ThecostsofbuildingAustralianhydroelectricitygenerationplantshavebeenvaried.TheSnowyHydroscheme,Australia’slargesthydroelectricityscheme,wasconstructedoveraperiodof25yearsatacostofA$820million(SnowyHydro2007).Australia’smostrecentmajorhydroelectricdevelopment,theBogongproject(site1,figure8.9),commencedconstructionin2006andwascommissionedinlate2009atacostofaround$234million.Theproject–whichincludesthe140MWBogongpowerstation,a6.9kmtunnel,headworksanda220kVtransmissionline–willprovidefastpeakingpower.Incomparison,theOrdRiverhydroelectricityscheme,whichwasbuiltontheexistingdamwhichcreatedlakeArgyleinWesternAustralia,wasconstructedatacostofA$75million(PacificHydro2009).Whilethisplantisrelativelysmall

Page 12: Chapter 8 Hydro Energy - data.daff.gov.audata.daff.gov.au/data/warehouse/pe_aera_d9aae_002/aeraCh_08.pdf · CHAPTER 8: HYDRO ENERGY AUSTRALIAN ENERGY RESOURCE ASSESSMENT 227 Hydroelectricity

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

236

(HydroTasmania2008).Theprojectinvolvedadditionalmaintenanceonthedam,minorupgradeofthemachines,aswellasreplacementofatransformer.Thisupgrade,completedinlate2009,costabout$14.7milliontogain8.4MWofcapacityatacapitalspendrateof$1.75millionperMW,considerablylessthanthecostsofnewplant.WorkhascommencedontheredevelopmentofthelowerMargaretPowerStation(HydroTasmania2009).

small scale hydro developments are likely to be an important source of future growth in australiaWiththeexceptionoftheBogongproject(seeProposeddevelopmentprojectsinsection8.4.2),mosthydroelectricityplantsinstalledinAustraliainrecentyearshavebeenminihydroschemes.Theseplantshavetheadvantageoflowerwaterrequirementsandasmallerenvironmentalimpactthanlargerschemes,especiallythosewithlargestoragedams.

AlthoughmostofAustralia’smostfavourablehydroelectricitysiteshavebeendeveloped,minihydroelectricityplantsarepotentiallyviableonsmallerriversandstreamswherelargedamsarenottechnicallyfeasibleorenvironmentallyacceptable.Theycanalsoberetro-fittedtoexistingwaterstorages.Atpresentminihydroplantsaccountforonlyaround2percentofinstalledhydrocapacity.Research,developmentanddemonstrationactivityislikelytoincreasethecostcompetitivenessofsmallscalehydroschemesinthefuture(box8.3).

surface water availability and competition for scarce water resources will be a key constraint to future hydro developments in australia Australiahasahighvariabilityofrainfallacrossthecontinent(figure8.8).Thismeansthatannualinflowstostoragescanvarybyupto50percentandseasonalvariationscanbeextreme.OngoingdroughtinmuchofsoutheasternAustraliahasseenasubstantialdeclineinwaterlevelsinthemajorstoragesinNewSouthWales(notablytheSnowyMountainsscheme),VictoriaandTasmaniaanddecliningcapacityfactorsforhydroelectricitystations.WaterlevelsinstoragesacrossAustraliahavedeclined

toanaverageofbelow50percentofcapacity(NationalWaterCommission2007).CloudseedinghasbeenusedintheSnowyMountainsandinTasmaniatoaugmentwatersupplies.

ClimatechangemodelssuggesttheoutlookforsoutheasternAustraliaisfordrierconditionswithreducedrainfallandhigherevaporation,andahigherfrequencyoflargestorms(BOM2009;IPPC2007;Batesetal.2008).Reducedprecipitationandincreasedevaporationareprojectedtointensifyby2030,leadingtowatersecurityproblemsinsouthernandeasternAustraliainparticular(Hennessyetal.2007).TheclimatechangeprojectionsfurtherexacerbatetheproblemofAustralia’sdryclimatewithlowandvariablerainfall,lowrunoffandunreliablewaterflowsandmeanthatthereisonlylimitedpotentialforfurthermajorhydrodevelopmentinmainlandAustralia.SomeofthispotentialislocatedintheriversinnorthernAustralia,butthisislimitedbytheinconsistencyofwaterflowsinthisregion(periodsoflowrainfallalongwithperiodsofflooding).

Competitionforwaterresourceswillalsoaffecttheavailabilityofwaterforhydroelectricitygeneration.Demandforwaterforurbanandagriculturalusesisprojectedtoincrease.Itislikelythattheseusesforscarcewaterresourceswilltakeprecedenceoverhydroelectricitygeneration.Generatorsfaceincreasingdemandstobalancetheirneedsagainsttheneedforgreaterwatersecurityforcitiesandmajorinlandtowns.Themaintenanceofenvironmentalflowstoensuretheenvironmentalsustainabilityofriversystemsbelowdamsisalsoanimportantfutureconsiderationwhichmayfurtherconstraingrowthofhydroelectricitygeneration.

WaterpoliciesmayalsoplayaroleinthefuturedevelopmentofhydroelectricityinAustralia.Policiesthatlimittheavailabilityofwatertohydroelectricitygenerators,restricttheflowofwaterintodams,requiregeneratorstoletwateroutofdams,orprioritisetheuseofwaterforagriculturecouldchangetheviabilityofmanyhydroelectricgenerators,andlimitfuturegrowth.TheextendeddroughtinmuchofAustraliahasledtowaterrestrictionsbeingputintoplaceinmostcapitalcities,andregulationoftheMurray-Darlingbasinriversystemshasstrengthened.

(30MW),itdemonstratesthepotentialreductioninconstructioncostswhereanexistingdamcanbeused.

Whilehydroelectricityhashighconstructionandinfrastructurecosts,ithasalowcostofoperationcomparedtomostothermeansofelectricitygeneration.IntheOECD,capitalcostsofhydroelectricplantsareestimatedatUS$2400perkW,andoperatingcostsareestimatedatbetweenUS$0.03andUS$0.04perkWh(IEA2008).Fornon-OECD

countries,capitalcostsareoftenbelowUS$1000

perkW.Theoperatingcostsofsmallhydroelectricity

facilitiesareestimatedatbetweenUS$0.02and

US$0.06perkWh.Operatingandcapitalcosts

dependonthesizeandtype(forexample,run-of-river)

ofplant,andwhetheritincludespumpedstorage

capabilities.Mosthydroelectricplantshavealifetime

ofover50years,duringwhichminimalmaintenance

orrefurbishmentisrequired,sotherelativelyhigh

capitalcostsareamortisedoveralongperiod.

Page 13: Chapter 8 Hydro Energy - data.daff.gov.audata.daff.gov.au/data/warehouse/pe_aera_d9aae_002/aeraCh_08.pdf · CHAPTER 8: HYDRO ENERGY AUSTRALIAN ENERGY RESOURCE ASSESSMENT 227 Hydroelectricity

CHAPTER 8: HYDRO ENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

237

Box 8.3TECHNOlOGyDEVElOPMENTSINHyDROElECTRICITy

8.4.2OutlookforhydroelectricitymarketHydroelectricityisprojectedtocontinuetobeanimportantsourceofrenewableenergyinAustraliaovertheoutlookperiod.

InABARE’slatestlong-termenergyprojectionsthatincludetheRenewableEnergyTarget,a5percentemissionsreductiontargetandothergovernmentpolicies(ABARE2010),hydroelectricitygenerationisprojectedtoincreaseonlyslightlybetween2007–08and2029–30,representinganaverageannualgrowthrateof0.2percent.In2029–30,hydroisprojectedtoaccountfor3.5percentofAustralia’stotalelectricitygeneration,and0.6percentofprimary

Researchisbeingundertakentoimprove

efficiency,reducecosts,andtoimprovethe

reliabilityofhydroelectricitygeneration.There

aredifferentresearchneedsforsmallandlarge

scalehydro(table8.3).Smallhydropowerplants,

includingmicroandpicoplants,areincreasingly

seenasaviablesourceofpowerbecauseoftheir

lowerdevelopmentcostsandwaterrequirements,

andtheirlowerenvironmentalfootprint.Smallscale

hydropowerplantsrequirespecialtechnologies

toincreasetheefficiencyofelectricitygeneration

andtherebyminimiseboththeoperatingcosts

andenvironmentalimpactsofhydroelectricity

generation(ESHA2006).

Theenvironmentalimpactsofhydroelectricity

arealsobeinginvestigated,andwaystomitigate

theseimpactsdeveloped.Thisincludesthe

developmentofnewandimprovedturbines

designedtominimisetheimpactonfishandother

aquaticlifeandtoincreasedissolvedoxygeninthe

water.Theintroductionofgreaselessbearingsintheturbineswouldreducetheriskofpetroleumproductsenteringthewater,andisalsocurrentlybeinginvestigated(EERE2005).

Table 8.3 Technologyimprovementsforhydropower

Large hydro small hydro

Equipment low-headtechnologies,includingin-streamflowCommunicateadvancesinequipment,devicesandmaterials

Equipment Turbineswithlessimpactonfishpopulationslow-headturbinesIn-streamflowtechnologies

operation and maintenance Increasinguseofmaintenance-freeandremoteoperationtechnologies

operation and maintenance Developpackageplantsrequiringonlylimitedoperationandmaintenance

Hybrid systems Wind-hydrosystemsHydrogen-assistedhydrosystems

source: IEA2008

energyconsumption(figure8.13).Thepotentialforreturnofhydroelectricityoutputtopre-2006levelswillbestronglyinfluencedbyclimateandbywateravailability.

Proposed development projectsBasedonHydropowerandDams(2009),thereareseveralcurrenthydroprojectdevelopmentsinAustralia:

• A20MWhydroplantiscurrentlyunderconstructionattheDartmouthregulatingdaminVictoria(Site2,figure8.9).

• Thenextstageofredevelopmentofthe8.4MWlakeMargaretpowerstationinTasmaniahasbeenapprovedbytheboardofHydroTasmania(Site3,figure8.9).

• HydroTasmaniaConsultinghasbeenawardedacontracttosupplyandconstructsixminihydroplantsforMelbourneWaterwithatotalcapacityof7MW,producingupto40GWhperyear.

8.5ReferencesABARE(AustralianBureauofAgriculturalandResourceEconomics),2009a,AustralianEnergyStatistics,Canberra,August

ABARE,2009b,Majorelectricitydevelopmentprojects–Octoberlisting,Canberra,November

ABARE,2010,Australianenergyprojectionsto2029–30,ABAREresearchreport10.02,preparedfortheDepartmentofResources,EnergyandTourism,Canberra

GeoscienceAustralia,2009,mapofoperatingrenewableenergygeneratorsinAustralia,Canberra

%

0

1

2

3

4

5

6

7

Year

8

9

TWh

0

2

4

6

8

10

12

14

16

18

AERA 8.2

1999-00 2001-02 2003-04 2005-06 2007-08 2029-30

Electricity generation(TWh)

Share of total electricitygeneration (%)

Figure 8.13 Australia’shydroelectricitygenerationto2029–30source: ABARE2009a,2010

Page 14: Chapter 8 Hydro Energy - data.daff.gov.audata.daff.gov.au/data/warehouse/pe_aera_d9aae_002/aeraCh_08.pdf · CHAPTER 8: HYDRO ENERGY AUSTRALIAN ENERGY RESOURCE ASSESSMENT 227 Hydroelectricity

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

238

HydroTasmania,2009,AnnualandSustainabilityReport,2009,<http://www.hydro.com.au/documents/Corporate/Annual%20Reports/2009/Hydro_AR.html>

IEA(InternationalEnergyAgency),2008,Energytechnologyperspectives:scenariosandstrategiesto2050,OECD,Paris

IEA,2009a,WorldEnergyBalances,2009,OECD,Paris

IEA,2009b,WorldEnergyOutlook2009,OECD,Paris

IEA,2009,WorldEnergyOutlook,OECD,Paris

IntergovernmentalPanelonClimateChange(IPCC),2007,IPCCFourthAssessmentReport:ClimateChange2007(AR4),Geneva,<http://www.ipcc.ch/publications_and_data/publications_and_data_reports.htm>

NationalWaterCommission,2007,AbaselineassessmentofwaterresourcesfortheNationalWaterInitiative–level2Assessment,Canberra,May

PacificHydro,2009,OrdRiverHydrofactsheet,Melbourne,<http://www.pacifichydro.com.au/en-us/our-projects/australia--pacific/ord-river-hydro-project.aspx>

PaishO,2002,Smallhydropower:technologyandcurrentstatus.RenewableandSustainableEnergyReviews,vol.6,pp.537–556,Elsevier,Amsterdam

Ren21,2009,Renewablesglobalstatusreport,2009update,RenewableEnergyPolicyNetworkforthe21stCentury,Paris

SnowyHydro,2007,SnowyMountainsScheme,Sydney,<http://www.snowyhydro.com.au/levelTwo.asp?pageID=66&parentID=4>

SnowyHydro,2009,SchemeModernisationProject,Sydney,<http://www.snowyhydro.com.au/levelTwo.asp?pageID=340&parentID=4>

WEC(WorldEnergyCouncil),2007,SurveyofEnergyResources2007,london,September

BatesBC,KundzewiczZW,WuS&PalutikofJP(eds),2008,Climatechangeandwater,IPCCTechnicalPaperVI,IPCCSecretariat,Geneva,<http://www.ipcc.ch/publications_and_data/publications_and_data_technical_papers_climate_change_and_water.htm>

BureauofMeteorology(BOM),2009,TheGreenhouseEffectandClimateChange,BOM,Melbourne,<http://www.bom.gov.au/info/GreenhouseEffectAndClimateChange.pdf>

EERE,2005,Hydropowerresearchanddevelopment,EnergyEfficiencyandRenewableEnergy,USDepartmentofEnergy,Washington,August

EgreD&MilewskiJ,2002,Thediversityofhydropowerprojects,EnergyPolicy,vol.30,pp.1225–1230

ESHA,2006,StateoftheArtofSmallHydropowerinEU-25,EuropeanSmallHydropowerAssociation,Belgium

ForouzbakhshF,HosseiniSMH&VakilianM,2007,Anapproachtotheinvestmentanalysisofsmallandmediumhydro-powerplants,EnergyPolicy,vol.35,pp.1013–1024,Elsevier,Amsterdam

HennessyK,FitzharrisB,BatesBC,HarveyN,HowdenSM,Hughesl,SalingerJ&Warrick,R,2007,AustraliaandNewZealand.ClimateChange2007:Impacts,AdaptationandVulnerability.ContributionofWorkingGroupIItotheFourthAssessmentReportoftheIntergovernmentalPanelonClimateChange,MlParry,OFCanziani,JPPalutikof,PJvanderlindenandCEHansoneds.,CambridgeUniversityPress,Cambridge,UK,507-540

HydropowerandDams,2009,WorldAtlas2008,TheInternationalJournalonHydropower&Dams,Aqua~MediaInternational,Surrey

HydroTasmania,2008,lakeMargaretPowerScheme,Hobart,<http://www.hydro.com.au/documents/Energy/lake_Margaret_FAQ_200811.pdf>