Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform 8.3 Mathematical describing of...

38
Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform Mathematical describing of the sampling syst 8.4 Time-domain analysis of the sampling systems The root locus of the sampling control syste 8.6 The frequency response of the samp ling control systems he design of the “least-clap” sampling syst

Transcript of Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform 8.3 Mathematical describing of...

Page 1: Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform 8.3 Mathematical describing of the sampling systems 8.4 Time-domain analysis of the.

Chapter 8 Discrete (Sampling) System

8.1 Introduction

8.2 Z-transform

8.3 Mathematical describing of the sampling systems

8.4 Time-domain analysis of the sampling systems

8.5 The root locus of the sampling control systems

8.6 The frequency response of the sampling control systems8.7 The design of the “least-clap” sampling systems

Page 2: Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform 8.3 Mathematical describing of the sampling systems 8.4 Time-domain analysis of the.

Chapter 8 Discrete (Sampling) System

Make a analog signal to be a discrete signal shown as in Fig.8.1 .

t

x(t)

0 t1 t2 t3 t4 t5 t6

Fig.8.1 signal sampling

x(t)x*(t)

x(t) —analog signal .x*(t) —discrete signal .

8.1.2 Ideal sampling switch —sampler

Sampler —the device which fulfill the sampling. Another name —the sampling switch — which works like a switch shown as in Fig.8.2 . T

t

x*(t)

0 t

x(t)

0

Fig.8.2 sampling switch

8.1.3 Some terms1. Sampling period T— the time interval of the signal sampling: T = ti+1 - ti .

8.1 Introduction8.1.1 Sampling

Page 3: Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform 8.3 Mathematical describing of the sampling systems 8.4 Time-domain analysis of the.

8.1.3 Some terms2. Sampling frequency ωs — ωs = 2π fs = 2π / T .

3. Periodic Sampling — the sampling period Ts = constant.

4. Variable period sampling — the sampling period Ts≠constant. 5. Synchronous sampling —not only one sampling switch in a system, but all work Synchronously.

6. Multi-rate sampling.

7. Opportunity(Random) sampling.

We mainly discuss the periodic and synchronous sampling in chapter 8.8.1.4 Sampling (or discrete) control system

There are one or more discrete signals in a control system —

the sampling (or discrete) control system. For example the

digital computer control system:

Page 4: Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform 8.3 Mathematical describing of the sampling systems 8.4 Time-domain analysis of the.

A/D D/Acomputer process

measure

r(t) c(t)e(t)

-e*(t) u*(t) u (t)

Fig.8.3 computer control system

8.1.5 Sampling analysis

Expression of the sampling signal:

8.1 Introduction

)()()()()()()(*

00

kTtkTxkTttxttxtx

kkT

It can be regarded as Fig.8.4:

Page 5: Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform 8.3 Mathematical describing of the sampling systems 8.4 Time-domain analysis of the.

0 t

x*(t)

t

x(t)

0

T

t

δT(t)

0

× =

modulating pulse(carrier)

modulated wave

Modulation signal

Fig.8.4 sampling process

x(t) x*(t)

Tdtt

Tdtet

Tdtet

TC

TeT

eCkTttbecause

Ttjk

T

T

T

tjkTn

sk

tjk

k

tjkn

kT

ss

ss

1)(

1)(

1)(

1

/2 1

)()( :

0

0

0

0

2/

2/

0

8.1.5 Sampling analysis

We have:

Page 6: Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform 8.3 Mathematical describing of the sampling systems 8.4 Time-domain analysis of the.

ks

st

ks

Laplace

tiontransformak

kjXT

jX*txofspectrumfrequencyThe

dtetxtxLsXhere

jksXT

sXeT

txtxtsjk

)]([1

)( :)(*

)()]([)( :

)(1

)(* 1

)()(*

0

This means: for the frequency spectrum of x(t) shown in Fig.8.5, the frequency spectrum of x*(t) is like as Fig.8.6.

)( jX

maxmax

Fig.8.5Fig.8.6

)(* jX

max

max s

s2

Filter Only: max2 s

)( jX could be

reproduced

8.1.5 Sampling analysis

Page 7: Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform 8.3 Mathematical describing of the sampling systems 8.4 Time-domain analysis of the.

If the analog signal could be whole restituted from the sampling signal, the sampling frequency must be satisfied : s

maxmax 2

Tors

. 2 ,

.

. :

s

max

Trequencysampling f

eriodsampling pT

alnalog signy of the am frequencthe maximuhere

s

8.1.7 zero-order hold

Usually the controlled process require the analog signals, so we need a discrete-to-analog converter shown in Fig.8.5.

discrete-to-analog converter

x*(t) xh(t) Fig.8.7D/A convert

So we have:

8.1.6 Sampling theorem ( Shannon’s theorem)

8.1 Introduction

Page 8: Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform 8.3 Mathematical describing of the sampling systems 8.4 Time-domain analysis of the.

x*(t)x(t)

xh(t)

Fig.8.9

The action of the zero-order hold is shown in Fig.8.9.

The unity pulse response of the zero-order hold is shown in Fig.8.10.

The mathematic expression of xh(t) :

TktkTkTxtxh )1( )()(

The transfer function of the zero-order hold can be obtained from the unity pulse response:

s

eTttLsG

Ts

1)(1)(1)( T

Fig.8.10

t

g(t)

ω

A(ω) )(

Fig.8.8

To put the ideal frequency response inpractice is difficult, the zero -order hold is usually adopted.

8.1.7 zero-order hold The ideal frequency response of the D/A converter is shown in Fig.8.8.

Page 9: Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform 8.3 Mathematical describing of the sampling systems 8.4 Time-domain analysis of the.

The frequency response of the zero-order hold, which is shown in Fig.8.11, is:

8.1.7 zero-order hold

)2/()(2/

)2/sin()(1

)(TjGT

TTjG

j

ejG

Tj

)( ,)( jGjG

s

s2 s3

T

0

Fig.8.11

)( jG

)( jG

8.1 Introduction

8.2 Z-transform8.2.1 DefinitionExpression of the sampled signal: )()()(*

0

kTtkTxtxk

Using the Laplace transform:

0

)()(*k

kTsekTxsx

Define: Tsez

Page 10: Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform 8.3 Mathematical describing of the sampling systems 8.4 Time-domain analysis of the.

We have the Z-transform:

0

)()(*)()(k

kzkTxtxZtxZzX

8.2.2 Z-transforms of some common signals

The Z-transforms of some common signals is shown in table 8.1.

8.2 Z-transform

1cos2

)cos(cos

1cos2

sinsin

1)1(

1

11)(1

11)(

)()()(

222

222

22

Tzz

Tzz

s

st

Tzz

Tz

st

ez

z

se

z

Tz

st

z

zst

t

zXsXtx

Tt

Table 8.1

8.2.3 characteristics of Z- transform

The characteristics of Z-transform is given in table 8.2.

Page 11: Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform 8.3 Mathematical describing of the sampling systems 8.4 Time-domain analysis of the.

)()(

)()()()(nconvolutio Real

)()1lim()(lim value Final

)(lim)(lim value Initial

)()(

)()(

)()(

)()()(

)()()(

)()()()(

)()(

21

02121

1

0

1

0

1

0

22112211

zXzX

iTkTxiTxZtxtxZ

zXztx

zXtx

zXtxa

zXtxedz

zdXTzttx

ziTxzXzkTtx

zmTiTxzXzmTtx

zXkzXktxktxk

zXtx

k

i

zt

zt

a

zz

kzez

t

m

i

imm

m

i

im

T

Table 8.2

Page 12: Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform 8.3 Mathematical describing of the sampling systems 8.4 Time-domain analysis of the.

m

a

zz

k

T

T

zez

t

T

T

T

zmkt

z

zzT

z

Tz

dz

dTzt

az

z

z

za

ez

Tze

z

Tzte

ezz

ze

ez

z

z

ze

zXtx

T

t

)(

)1(

)1(

)1(

1

)()1(

))(1(

)1(

11

)()(

3

2

22

22

Table 8.3

Using the characteristics of Z-transform we can conveniently deduce the Z-transforms of some signals.

Such as the examples shown in table 8.3:

8.2.3 characteristics of Z-transform

Page 13: Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform 8.3 Mathematical describing of the sampling systems 8.4 Time-domain analysis of the.

n

iTa

i

n

n

n

iez

zKzXthen

as

K

as

K

as

K

asasas

A(s)X(s)If

1

2

2

1

1

21

)( :

)())(( :

Example 8.1

TT ez

z

ez

z

z

z

sssZ

sss

sZ

2

515

1

10

2

5

1

1510

)2)(1(

)4(5

2. Residues approaches

of X(s)r polesFor q-ordeez

zsXas

sqR

ResiduesRez

zsXreszX

Tsq

iq

q

asi

n

ii

as

n

iTs

i

i

)()(

lim)1(

1

)()(

1

1

11

8.2 Z-transform8.2.4 Z-transform methods

1. Partial-fraction expansion approaches

Page 14: Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform 8.3 Mathematical describing of the sampling systems 8.4 Time-domain analysis of the.

22

10

22

)1(

1

10

10lim

)12(

1

)1(

10

)1(

10

T

T

Tsss

Ts

ez

Tzez

z

z

ez

z

ssez

z

ssssZ

8.2.5 Inverse Z-transform

transformInverse z-zXZkTx )()( 1

1. Partial-fraction expansion approaches

n

i

kTai

TaTaTaTaTa

i

n

eKkTXthen

es

zK

ez

zK

esezez

A(z)X(z)If

1

21

)( :

)())(( :

2121

Example 8.2

8.2.4 Z-transform methods

Page 15: Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform 8.3 Mathematical describing of the sampling systems 8.4 Time-domain analysis of the.

kTTT

T

eez

z

z

zZ

ezz

ezZkTx 2

21

2

21 1

1))(1(

)1()(

2. Power-series approaches

)3()2()()( :

)( :

321

33

22

11

TtKTtKTtKkTXthen

zKzKzKzB

A(z)X(z)If

Example 8.4

)3(375.6)2(75.4)(5.31

375.675.45.31

5.05.1

12)(

3211

23

231

TtTtTt

zzzZ

zzz

zzZkTx

Example 8.3

8.2.5 Inverse Z-transform

Page 16: Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform 8.3 Mathematical describing of the sampling systems 8.4 Time-domain analysis of the.

3. Residues approaches

of X(z)r polesFor q-ordezzXazzq

R

ResiduesRzzXreskTx

kqiq

q

azi

n

ii

n

i

k

i

)()(

lim)1(

1

)()(

11

1

11

1

8.2.5 Inverse Z-transform

Example 8.5

1

1221 )1(

)5.0)(1()5.0)(1(

z

k

zzz

zz

zz

zZ

5.0

12

)5.0()5.0)(1(

z

k

zzz

zz

T

kT

)5.0(2

Page 17: Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform 8.3 Mathematical describing of the sampling systems 8.4 Time-domain analysis of the.

8.3 Mathematical modeling of the sampling systems

8.3.1 Difference equation

For a nth-order differential equation:

)()()()(

)()()()()(

11

1

10

12

2

21

1

1

trbtrdt

dbtr

dt

dbtr

dt

db

tcatcdt

datc

dt

datc

dt

datc

dt

d

mmm

m

m

m

nnn

n

n

n

n

n

Make:

fferenceForward di1th-orderT

kckckc

T

kTcTkctc

dt

d

)(

T

)()1(

)()1()(

Chapter 8 Discrete (Sampling) System

Page 18: Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform 8.3 Mathematical describing of the sampling systems 8.4 Time-domain analysis of the.

fferenceForward dith-orderT

c(k))c(k)-c(k

T

)-c(k)c(kT

kc

T

kc

dt

tdc

dt

d

dt

tcd

2

1221

)()(

)()(

22

22

2

2

2

Or :

ifferencebackward d1th-orderT

kckckc

dt

tdc

)(

T

)1()()(

ifferencebackward dth-orderT

)c(k)c(kc(k)-

T

)c(k)-c(kT

kc

T

kc

dt

tcd

2

2121

)()(

)(

22

22

2

2

2

8.3.1 Difference equation

Page 19: Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform 8.3 Mathematical describing of the sampling systems 8.4 Time-domain analysis of the.

A nth-order differential equation can be transformed into a nth-order difference equation by the backward or forward difference:

)()1()2()1()(

)()1()2()1()(

1210

121

mkrmkrkrkrkr

nkcnkckckckc

mm

nn

8.3.1 Difference equation

To get the solution of the difference equation is very simple by the recursive algorithm.Example 8.6

)12(

)15(

ss

sK

r e e

c

)(mTc

Fig.8.12

T

T

K = 10, T = 0.5s, r(t) = 1(t) Determine the output c*(mT).

For the sampling systemshown in Fig.8.12, Assume:

Solution

Page 20: Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform 8.3 Mathematical describing of the sampling systems 8.4 Time-domain analysis of the.

8.3.1 Difference equation

)1(5

)(5

)2(2

)1(4

)(2

222

keT

Kke

T

KTKkc

Tkc

T

Tkc

T

T

: ionence equatThe differ

)1(2

5)(

2

5)2(

2

2)1(

2

4)(

2

keT

KTke

T

KTKTkc

Tkc

T

Tkc

)2(2

2)1(

2

4)1(

2

5)(

2

5)(

2

kcT

kcT

Tke

T

KTke

T

KTKTkc

)()(

5)()(

2 )12(

)15(

)(

)(2

2

tKedt

tdeK

dt

tdc

dt

tcd

ss

sK

se

sC

)()( ;)1()(

5)(

5

)1()()( ;

)2()1(2)(2

)(2

22

2

kKetKeT

kekeK

dt

tdeK

T

kckc

dt

tdc

T

kckckc

dt

tcd

Page 21: Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform 8.3 Mathematical describing of the sampling systems 8.4 Time-domain analysis of the.

If c(0) = 0, applying the recursive algorithm we have:

8.3.1 Difference equation

)2(8.0)1(8.1)1(10)(11)( kckckekekc

For K = 10, T = 0.5s, we have:

Consider e*(k) = r(k) - c(k) = 1 -c(k): )2(

60

4)1(

60

4175.1)( kckckc

……

75.1)1(60

4)0(

60

4175.1)1( ccc

554.0)0(60

4)1(

60

4175.1)2( ccc

255.1)1(60

4)2(

60

4175.1)3( ccc

)2(60

4)1(

60

4175.1)( mcmcmc

Page 22: Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform 8.3 Mathematical describing of the sampling systems 8.4 Time-domain analysis of the.

8.3.2 Z-transfer (pulse) function

Definition: Z-transfer (pulse) function — the ratio of the Z-transformation of the output signal versus input signal for the linear sampling systems in the zero-initial conditions, that is:

)(

)()(

zR

zCzG

1. The Z-transfer function of the open-loop system

TG1(s)

r(t)G2(s) c(t)

c*(t)

G1(z)G2(z)R(z) C(z)

G1(s) G2(s)

T T

r(t)c(t)

c*(t)

G1G2(z)R(z) C(z)

G1G2(z) =Z [ G1(s)G2(s) ]

8.3 Mathematical modeling of the sampling systems

G1(z) =Z [ G1(s)] G2(z) =Z [ G2(s)]

Page 23: Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform 8.3 Mathematical describing of the sampling systems 8.4 Time-domain analysis of the.

G(s)r c

-H(s)

rG2(s)

c-

G1(s)

H(s)

r-

G2(s)c

G1(s)

H(s)

r c-

G(s)

H(s)

r-

cG(s)

H(s)

)()()( )(

)()()( sHsGZzGH

zGH

zGzRzC

1

)()()( )(

)()( sGsRZzRG

zGH

zRGzC

1

)()(

)()()(

zHzG

zGzRzC

1

)(

)()()(

zHGG

zGzRGzC

21

21

1

)()(

)()()()(

zHGzG

zGzGzRzC

21

21

1

8.3.2 Z-transfer (pulse) function

2. The z-transfer function of the closed-loop system

Page 24: Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform 8.3 Mathematical describing of the sampling systems 8.4 Time-domain analysis of the.

r

-G1(s)

H2(s)

G2(s) c

H1(s)

- G3(s)

r-

G3(s)c

G2(s)

H(s)

G1(s)

r

-G2(s)

cG1(s)

H2(s)

H1(s)

)()()()(1

)()()()(

132

321

zHzGzGzG

zGzGzRGzC

)()()(1

)()()()(

22112

21

zHGzGzHG

zGzGzRzC

)()()()(1

)()()()(

2312132

321

zHGGzGzHGzG

zGzGzRGzC

8.3.2 Z-transfer (pulse) function

Page 25: Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform 8.3 Mathematical describing of the sampling systems 8.4 Time-domain analysis of the.

Chapter 8 Discrete (Sampling) System8.4 Time-domain analysis of the sampling systems8.4.1 The stability analysis

The characteristic equation of the sampling control systems:0)(1 zGH

0)(1 TsTs eGHez∵

Suppose: TjTjTTs eeeejs )( In s-plane, α need to be negative for a stable system, it means:

1 TTs eze

So we have:

The sufficient and necessary condition of the stability for the sampling control systems is: The roots zi of the characteristic equation 1+GH(z)=0 must all be inside the unity circle of the z-plane, that is: 1iz

1. The stability condition

Page 26: Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform 8.3 Mathematical describing of the sampling systems 8.4 Time-domain analysis of the.

1

Re

Imz-plane

Stable zone

Fig.8.4.1

The graphic expression of the stability

condition for the sampling control systems

is shown in Fig.8.4.1.

2. The stability criterionIn the characteristic equation 1+GH(z)=0, substitute z with

1

1

w

wz —— W (bilinear) transformation.

We can analyze the stability of the sampling control systems the same as we did in chapter 3 (Routh criterion in the w-plane) .

)( ) (

101 0

)1(

2

)1(

1

1

1

1

1

1

1

: , , :

2222

2222

22

z-planele of the unit circinside theethe w-planofft halffor the le

yxyx

yx

yj

yx

yx

jyx

jyx

jyx

jyx

z

zjw

thenjyxzjwsupposeProof

8.4.1 The stability analysis

unstable zone

critical stability

Page 27: Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform 8.3 Mathematical describing of the sampling systems 8.4 Time-domain analysis of the.

0368.0368.1

632.01)(1

2

zz

KzzG

Determine K for the stable system.Solution :

0)632.0736.2(264.16320 0368.0368.1

632.01

2

KwKw.

zz

Kz

K

KK.

nh criteriof the RoutIn terms o

632.0736.2

264.1

632.0736.26320

:

We have: 0 < K < 4.33.

1

1

w

wzmake

8.4.2 The steady state error analysis

The same as the calculation of the steady state error in Chapter 3, we can use the final value theorem of the z-transform:

)()1(lim1

zEzez

ss

8.4.1 The stability analysis

Example 8.7

Page 28: Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform 8.3 Mathematical describing of the sampling systems 8.4 Time-domain analysis of the.

8.4.2 The steady state error analysis

)(1

)(

)(1

)()()()()()(

zG

zR

zG

zGzRzRzczRzE

G(s)r c

-e

Fig.8.4.2

For the stable system shown in Fig.8.4.2

*

2

*

*

11

1

1

)(1

)()1(lim)()1(lim

a

v

p

zzss

K

T

K

TK

zG

zRzzEze

)()1(lim ;)1(

)1()( )(

)()1(lim ;)1(

)( )(

)(lim ;1

)()(1)(

2

1

*3

22

1

*2

1

*

zGzKz

zzTzRttr

zGzKz

TzzRttr

zGKz

zzRttr

za

zv

zp

Page 29: Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform 8.3 Mathematical describing of the sampling systems 8.4 Time-domain analysis of the.

Z.o.h —Zero-order hold.)5(

)( 1

ss

KsGsT

2) If r(t) = 1+t, determine ess= ?1) Determine K for the stable system.

Solution

Example 8.8

8.4.2 The steady state error analysis

52555)1(

)5()1(

)5(

1)(

2

2

s

K

s

K

s

KZe

ss

KZe

ss

K

s

eZzG

Ts

Ts

Ts1)

)0067.0)(1(

2135.02067.2

5

2515

)1(5)1(

2

1

521

zz

zzK

ez

Kz

z

Kz

z

KTzz

T

T

r- G (s)

cZ.o.hT

e

Page 30: Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform 8.3 Mathematical describing of the sampling systems 8.4 Time-domain analysis of the.

0)4202.2067.10()1.5739.993(0.9932 1

1

0)2135.00335.0()0335.52067.2()5(

0)0067.0)(1(

2135.02067.2

51)(1

:

2

2

KwKww

wz

KzKz-K

zz

zzKzG

m the systequation ofteristic eThe charec

8.4.2 The steady state error analysis

16.40 K

2)

KK

T

K

T

Ke

Kz

zzKzGzK

zz

zzKzGK

vpss

zzv

zzp

5

2.00

1

1

2.0)0067.0(

2135.02067.2

5lim)()1(lim

)0067.0)(1(

2135.02067.2

5lim)(lim

1T**

2

11

*

2

11

*

Page 31: Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform 8.3 Mathematical describing of the sampling systems 8.4 Time-domain analysis of the.

8.4 Time-domain analysis of the sampling systems8.4.3 The unit-step response analysis

n

i

T

kT

ii

n

i i

i

n

pAAkTcthen

pz

zA

z

zA

z

z

pspsps

zAzRzzCsuppose

10

1

0

21

)()( :

1

1)())((

)()()()( :

Fig.8.4.3

Analyzing c(kT) we have the graphic expression of C(kT) is shown in Fig.8.4.3.

Im

Re1

Page 32: Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform 8.3 Mathematical describing of the sampling systems 8.4 Time-domain analysis of the.

Chapter 8 Discrete (Sampling) System

8.5 The root locus of the sampling control systems

The plotting procedure of the root loci of the sampling systems are the same as that we introduced in chapter 4.

But the analysis of the root loci of the sampling systems is different from that we discussed in chapter 4 (imaginary axis of the s-plane ←→ the unit circle of the z-plane).

8.6 The frequency response of the sampling control systems

The analysis and design methods of the frequency response of the sampling systems are the same as that we discussed respect-ively in chapter 5 , chapter 6, only making:

jvww

wz

and 1

1

Here: v — the counterfeit frequency

Page 33: Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform 8.3 Mathematical describing of the sampling systems 8.4 Time-domain analysis of the.

8.7 The design of the “least-clap” sampling systems

The transition process of the sampling control systems can be finished in the minimum sampling periods—the “least-clap” systems.

For the system shown in Fig.8.6.1.

We have:

8.7.1 design of D(z)

Chapter 8 Discrete (Sampling) System

r- G (s)

cD(z)

Fig.8.6.1

e

)()(1

1)(1

)(

)()(

)()(1

)()(

)(

)()(

zGzDz

zR

zEzezGzD

zGzD

zR

zCz

)()(

)(1

)(1)(

)()(

zzG

z

zzG

zzD

e

e

Page 34: Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform 8.3 Mathematical describing of the sampling systems 8.4 Time-domain analysis of the.

8.7.1 design of D(z)

31

1122

21

1

1

)1(

)1()()(

)1()( ;

1

1)()(1)(

:

z

zzTzRttr

z

TzzRtr(t)

zzRttr

signalinputtheFor

havewe

2

2

1)(

)(

)(1)(

ttr

ttr

ttr

31e

321

21e

21

1e

1

)1()( 33)(

)1()( 2)(

1)( )(

zzorzzzz

zzorzzz

zzorzz

)()(

)(1

)(1)(

)()(

zzG

z

zzG

zzD

e

e

Page 35: Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform 8.3 Mathematical describing of the sampling systems 8.4 Time-domain analysis of the.

8.7.1 design of D(z)

Proof:

0 )()1(lim :

1)( )(

1

)()(1

1)( :

)1(

)(

)()(1

1)1(lim

)()()(1

1)()()(

1

1

1

11

1

ssz

ss

e

vzss

e

ezAzethen

zBandzB

z

zGzDzIf

z

zA

zGzDze

zRzGzD

zRzzE

periods. minimum the in

ended be can response system the of processtransient The

The responses of the “least-clap” System are shown in Fig.8.6.2.

Fig.8.6.2

1c*(t)

t

T 2T

c*(t)

t

T 2T 3T

c*(t)

t

3T2TT

Page 36: Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform 8.3 Mathematical describing of the sampling systems 8.4 Time-domain analysis of the.

8.7.1 design of D(z)

Example 8.9For the system shown in Fig.8.6.3

)1(

10)(

1)(

sssG

s

esG

Ts

h

Determine D(z), make the system to be the “least-clap” system for r(t) = t.

)718.01)(1(

)5.01)(368.01(543.0

)()(

)(1)(

)1()( )1(

)()(

)368.01)(1(

)718.01(68.3)()()(

11

11

2121

1

11

11

zz

zz

zzG

zzD

zzz

TzzRttr

zz

zzsGsGZzG

e

e

e

h

r-

G (s)c

Gh(s)D(z)

e

TT

Fig.8.6.3

u

Solution

Page 37: Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform 8.3 Mathematical describing of the sampling systems 8.4 Time-domain analysis of the.

8.7.2 The realization of D(z)

8.7 The design of the “least-clap” sampling systems

To illustrate by example 8.10

Example 8.10 To realize D(z) for Example 8.9

)718.01)(1(

)5.01)(368.01(543.0

)(

)()(

11

11

zz

zz

zE

zUzDSolution

)]5.01)(368.01(543.0)[()]718.01)(1)[(( 1111 zzzEzzzU

)(1.0)(471.0)(543.0)(718.0)(282.0)( 2121 zEzzEzzEzUzzUzzU

)2(718.0)1(282.0)2(1.0)1(471.0)(543.0)( kukukekekeku

We can program the computer in terms of above formula to realize D(z).

Page 38: Chapter 8 Discrete (Sampling) System 8.1 Introduction 8.2 Z-transform 8.3 Mathematical describing of the sampling systems 8.4 Time-domain analysis of the.

Chapter 8 Discrete (Sampling) System

Exercises: p820 ~ E13.11; E13.14; P13.12; p13.18; AP13.2

)5(

10)(

sssGIn example 8.9, if

and respectively for r(t)=1(t); t; t2 .