Chapter 7 Linear Programming

28
Chapter 7 Linear Programming (3) Pipage Rounding Ding-Zhu Du

description

Chapter 7 Linear Programming. Ding-Zhu Du. (3) Pipage Rounding. Pipage Rounding. example. Maximum Coverage. ILP Formulation. Alternative Formulation 1. Alternative Formulation 2. Relationship. Proof. Relationship. Proof. 0. 1. Relaxation. Pipage Rounding. Property. Theorem. - PowerPoint PPT Presentation

Transcript of Chapter 7 Linear Programming

Page 1: Chapter 7 Linear Programming

Chapter 7Linear Programming

(3) Pipage Rounding

Ding-Zhu Du

Page 2: Chapter 7 Linear Programming

Pipage Rounding

example

Page 3: Chapter 7 Linear Programming

Maximum Coverage

.by hit in subsets of weight total themaximize to||with

subset a find ,integer positive a and in subsetson function

weight enonnegativ with },...,1{set a of subsets of family aGiven

XCpX

IXpCw

nIC

Page 4: Chapter 7 Linear Programming

ILP Formulation

.10

}1,0{

,

,,...,1 , s.t.

max

1

1

j

i

n

ii

Siji

m

jjj

z

x

px

mjzx

zw

j

Page 5: Chapter 7 Linear Programming

Alternative Formulation 1

}1,0{

, s.t.

},1min{)( max

1

1

i

n

ii

m

j Siij

x

px

xwxLj

Page 6: Chapter 7 Linear Programming

Alternative Formulation 2

}1,0{

, s.t.

))1(1()( max

1

1

i

n

ii

m

jSi ij

x

px

xwxFj

Page 7: Chapter 7 Linear Programming

Relationship

.10for ),1min(11

|)|(

)1(

1)1(1

11 where

)()(

jjj

j

j

j

Sii

Sii

Sii

k

Sii

j

k

Sii

Sii

xxcxck

x

Skk

x

x

ec

xcLxF

Proof.

Page 8: Chapter 7 Linear Programming

Relationship

.1for ),1min(1

1111

|)|(

)1(

1)1(1

11 where

)()(

jj

j

j

j

Sii

Sii

k

k

Sii

j

k

Sii

Sii

xxcckk

x

Skk

x

x

ec

xcLxF

Proof.

Page 9: Chapter 7 Linear Programming

).1

1()1

11()( So,

[0,1].in concave and increasing monotone is )(

.1

11)1( ,0)0(

.11)(Set

ez

kzzg

zg

kgg

k

zzg

k

k

k

.0)1

(1)1()(''

.01)1

(1)('

2

11

kk

zkzg

k

z

kk

zkzg

k

kk

0 1

Page 10: Chapter 7 Linear Programming

Relaxation

.10

, s.t.

},1min{)( max

1

1

i

n

ii

m

j Siij

x

px

xwxLj

.10

00

,

,,...,1 , s.t.

max

1

1

j

i

n

ii

Siji

m

jjj

z

x

px

mjzx

zw

j

).( in time computed

becan * optimalAn 5.3nO

x

Page 11: Chapter 7 Linear Programming

Pipage Rounding

10 * ix*ix

otherwise.

)()( if 'Set

).*,*1min(* ),*,*1min(*

),*,*1min(* ),*,*1min(*

and ,,for * Define

).( 1*0 and 1*0 Choose

z

zFyFyx

xxxzxxxz

xxxyxxxy

jkixzy

jixx

kjjjkjkk

jkjjjkkk

iii

jk

Page 12: Chapter 7 Linear Programming

Property

.*)( ,*)(

and ,,for *)( where

.t.convex w.r is ))(( because

*)()'(

jjkk

ii

xxxx

jkixx

xF

xFxF

)0(*

),1min( where)(

),1min( where)(

22

11

xx

xxxz

xxxy

kj

jk

Page 13: Chapter 7 Linear Programming

Theorem

.)/11(*)()/11(*)()()(

Then rounding. pipageby obtainedsolution integer thebe Let

.ionapproximat)1/( has problem coverage weight Maximum

optexLexFxFxL

x

ee

Proof

Page 14: Chapter 7 Linear Programming

Pipage Rounding

framework

Page 15: Chapter 7 Linear Programming

Integer Programming

.for }1,0{

for s.t.

)( max

)(

Eex

UVvpx

xF

e

vve

e

.for }1,0{

for s.t.

)( max

)(

Eex

UVvpx

xL

e

vve

e

)()(

,solution feasibleinteger For

xLxF

x

).,,(graph bipartite aConsider EUVG

Page 16: Chapter 7 Linear Programming

Relaxation

.for 10

for s.t.

)( max

)(

Eex

UVvpx

xF

e

vve

e

.for 10

for s.t.

)( max

)(

Eex

UVvpx

xL

e

vve

e

)()( xLcxF Solve easily to obtain Optimal solution

By ɛ-convexity, obtain an integer solution from , by pipage rounding, such that

*x*x x

*)()( xFxF optcxLcxFxFxL *)(*)()()(

Page 17: Chapter 7 Linear Programming

Pipage Rounding

.subgraph bipartiteConsider xH

V U10 ijx

cycle. aor path maximal aeither , Find R

Page 18: Chapter 7 Linear Programming

R

V U

.in cycle aor path maximal aeither , Find xHR

Page 19: Chapter 7 Linear Programming

otherwise )(

))(())(( if )('

feasible. is )( ],,[for Then

)).1(min,min(min

)),1(min,min(minSet

. if

, if

, if

)(

settingby )( Define

. and matchings twointo Decompose

2

211

21

2

1

2

1

21

12

21

x

xFxFxx

x

xx

xx

Mex

Mex

Rex

x

x

MMR

eMeeMe

eMeeMe

e

e

e

e

Page 20: Chapter 7 Linear Programming

ɛ-convexity

. .t.convex w.r is ))(( ,any For xFR

))).(()),((max())((

],,[-any for Thus,

21

21

xFxFxF

Page 21: Chapter 7 Linear Programming

Pipage Rounding

Applications

2009. 238,-pp.229 9,MobiHoc200

theof Proc.in Networks,Mesh WirelessRadio-Multi

Channel-Multiin Monitoring Optimal Bagchi, S. andShin D.

Page 22: Chapter 7 Linear Programming

sets. selected

by covered radios normal ofnumber themaximize toas so

from ones most at with from sets most at Choose

. },,...,1|{

. channelon tuned of ratio monitoring

anyby covered becan that radios normal ofset the

.,...,1 channel a to tunedbecan radio monitoringEach

radios. monitoring has Each

}.,...,,...,,...,{

.,..., radios normal has Each

.,..., nodes monitoring ofset a and

,..., nodes normal ofset aConsider

1

11

11

1

1

1

1

ii

m

i iiji

i

ij

ii

ann

a

aiiii

m

n

StSk

SScjSS

jv

S

cj

tv

uuuuU

uuau

vvm

uun

n

i

Page 23: Chapter 7 Linear Programming

}.,...,1{, },1,0{

},...,1{ },1,0{

},...,1{ ,1

,

},...,1{ , s.t.

max

1

1 1

:,

1

cJjIiy

nlx

mIiy

ky

nlyx

x

ij

l

c

jij

m

i

c

jij

Sujiijl

n

ll

ijl

Page 24: Chapter 7 Linear Programming

sets. selected

by covered radios normal ofnumber themaximize toas so

from ones most at with from sets most at Choose

. },,...,1|{

. channelon tuned of ratio monitoring

anyby covered becan that radios normal ofset the

.,...,1 channel a to tunedbecan radio monitoringEach

radios. monitoring has Each

}.,...,,...,,...,{

.,..., radios normal has Each

.,..., nodes monitoring ofset a and

,..., nodes normal ofset aConsider

1

11

11

1

1

1

1

ii

m

i iiji

i

ij

ii

ann

a

aiiii

m

n

StSk

SScjSS

jv

S

cj

tv

uuuuU

uuau

vvm

uun

n

i

},...,{ 1 nuuU

nodes

1

nodes

Page 25: Chapter 7 Linear Programming

}.,...,1{, },1,0{

},...,1{ },1,0{

},...,1{ ,1

, s.t.

),1min()( max

1

1 1

1 :,

cJjIiy

nlx

mIiy

ky

yyL

ij

l

c

jij

m

i

c

jij

n

l Sujiij

ijl

jy1

ijy

j

jiS

1S

Page 26: Chapter 7 Linear Programming

jy1

ijy

}.,...,1{, },1,0{

},...,1{ },1,0{

},...,1{ ,1

, s.t.

))1(1()( max

1

1 1

1 :,

cJjIiy

nlx

mIiy

ky

yyF

ij

l

c

jij

m

i

c

jij

n

l Sujiij

ijl

Page 27: Chapter 7 Linear Programming

edges. only two containspath maximaleach because

convexity - has )(

).()1

1()(

yF

yLe

yF

.)1

1()( with solution

ion approximatan get can werounding, pipageWith

opte

yLy

Theorem

Page 28: Chapter 7 Linear Programming

Thanks, End