Chapter 5 Trigonometric Equations · 2013. 5. 13. · 5/13/13 Audacity Obj: SWBAT simplify and...

40
MATHPOWER TM 12, WESTERN EDITION 5.4 5.4.1 Chapter 5 Trigonometric Equations

Transcript of Chapter 5 Trigonometric Equations · 2013. 5. 13. · 5/13/13 Audacity Obj: SWBAT simplify and...

  • MATHPOWERTM 12, WESTERN EDITION

    5.4

    5.4.1

    Chapter 5 Trigonometric Equations

  • 5/13/13 Audacity

    Obj: SWBAT simplify and verify/prove trig identities

    Bell Ringer:

    • Write the equation of a sinusoid that has amplitude 4,

    frequency 2/pi, phase shift pi/2; vertical shift up of 8.

    • Find the amplitude, period, frequency, phase shift and

    vertical translation for the sinusoid y = 6cos(3x-4) -9

    HW Requests:

    WS 14.3 Trig Identities

    Homework:

    WS Trig Identities WS 3.4

    #1-8 We did #1 in class

    Look at WS 14.3 again

    Education is Power!

    Dignity without compromise!

  • 5.4.3

    Basic Trigonometric Identities

    Quotient Identities

    tan sin

    coscot

    cos

    sin

    Reciprocal Identities

    sin 1

    csccos

    1

    sectan

    1

    cot

    Pythagorean Identities

    sin2 + cos2 = 1 tan2 + 1 = sec2 cot2 + 1 = csc2

    sin2 = 1 - cos2

    cos2 = 1 - sin2

    tan2 = sec2 - 1 cot2 = csc2 - 1

  • 4

    Trigonometric identities

    • sin2A + cos2A = 1

    • 1 + tan2A = sec2A

    • 1 + cot2A = cosec2A

    • sin(A+B) = sinAcosB + cosAsin B

    • cos(A+B) = cosAcosB – sinAsinB

    • tan(A+B) = (tanA+tanB)/(1 – tanAtan B)

    • sin(A-B) = sinAcosB – cosAsinB

    • cos(A-B)=cosAcosB+sinAsinB

    • tan(A-B)=(tanA-tanB)(1+tanAtanB)

    • sin2A =2sinAcosA

    • cos2A=cos2A - sin2A

    • tan2A=2tanA/(1-tan2A)

    • sin(A/2) = ±{(1-cosA)/2}

    • Cos(A/2)= ±{(1+cosA)/2}

    • Tan(A/2)= ±{(1-cosA)/(1+cosA)}

  • Identities can be used to simplify trigonometric expressions.

    Simplifying Trigonometric Expressions

    cos sin tan

    cos sin

    sin

    cos

    cos

    sin2

    cos

    cos 2 sin2

    cos

    1

    cos

    sec

    a)

    Simplify.

    b) cot2

    1 sin2

    cos 2

    sin2 cos

    2

    1

    1

    sin2

    csc2

    5.4.5

    cos 2

    sin2

    1

    cos2

  • 5.4.6

    Simplifing Trigonometric Expressions

    c) (1 + tan x)2 - 2 sin x sec x

    1 2 tanx tan2x 2

    sinx

    cosx

    1 tan2x 2tanx 2 tanx

    sec2x

    d) cscx

    tan x cot x

    1

    sinx

    sinx

    cos x

    cosx

    sinx

    1

    sinx

    sin2x cos

    2x

    sinxcos x

    1

    sinx

    sinx cos x

    1

    cos x

    1

    sinx

    1

    sinx cos x

    (1 tanx)2

    2 sinx1

    cosx

  • 1. sinx x sinx = sin2x

    cos 1

    cos

    cos 2

    cos

    1

    cos

    cos 2 1

    cos

    sinA cos A 2

    sin2A 2sinAcos A cos

    2A

    1 2sinAcos A

    cos A

    sinA1

    sinA

    cos A

    sinA

    sinA

    1

    = cosA

    Trigonometric Identities [cont’d]

    5.4.4

    2.

    3.

    4.

  • 5.4.7

    Proving an Identity

    Steps in Proving Identities

    1. Start with the more complex side of the identity and work

    with it exclusively to transform the expression into the

    simpler side of the identity.

    2. Look for algebraic simplifications:

    • Do any multiplying , factoring, or squaring which is

    obvious in the expression. Remember conjugates.

    • Reduce two terms to one, either add two terms or

    factor so that you may reduce. 3. Look for trigonometric simplifications:

    • Look for familiar trig relationships.

    • If the expression contains squared terms, think

    of the Pythagorean Identities. • Transform each term to sine or cosine, if the

    expression cannot be simplified easily using other ratios.

    4. Keep the simpler side of the identity in mind.

  • 22 sincoscosecsin Establish the following identity:

    In establishing an identity you should NOT move things

    from one side of the equal sign to the other. Instead

    substitute using identities you know and simplifying on

    one side or the other side or both until both sides match.

    22 sincoscosecsin

    Let's sub in here using reciprocal identity

    22 sincossin

    1sin

    22 sincos1

    We often use the Pythagorean Identities solved for either sin2 or cos2.

    sin2 + cos2 = 1 solved for sin2 is sin2 = 1 - cos2 which is our

    left-hand side so we can substitute.

    22 sinsin

    We are done!

    We've shown the

    LHS equals the

    RHS

  • cos1

    sincotcosec

    Establish the following identity:

    Let's sub in here using reciprocal identity and quotient

    identity

    Another trick if the

    denominator is two terms

    with one term a 1 and the

    other a sine or cosine,

    multiply top and bottom of

    the fraction by the

    conjugate and then you'll

    be able to use the

    Pythagorean Identity on

    the bottom

    We worked on

    LHS and then

    RHS but never

    moved things

    across the = sign

    cos1

    sincotcosec

    cos1

    sin

    sin

    cos

    sin

    1

    cos1

    sin

    sin

    cos1

    combine fractions

    cos1

    cos1

    cos1

    sin

    sin

    cos1

    2cos1

    cos1sin

    sin

    cos1

    FOIL

    denominator

    2sin

    cos1sin

    sin

    cos1

    sin

    cos1

    sin

    cos1

  • 5.4.8

    Proving an Identity

    Prove the following:

    a) sec x(1 + cos x) = 1 + sec x

    = sec x + sec x cos x

    = sec x + 1

    1 + sec x

    L.S. = R.S.

    b) sec x = tan x csc x

    sinx

    cos x

    1

    sinx

    1

    cos x

    secx

    secx

    L.S. = R.S.

    c) tan x sin x + cos x = sec x

    sinx

    cos x

    sinx

    1 cosx

    sin2 x cos 2 x

    cos x

    1

    cos x

    secx

    secx

    L.S. = R.S.

  • d) sin4x - cos4x = 1 - 2cos2 x

    = (sin2x - cos2x)(sin2x + cos2x)

    = (1 - cos2x - cos2x)

    = 1 - 2cos2x

    L.S. = R.S.

    1 - 2cos2x

    e)

    1

    1 cos x

    1

    1 cosx 2 csc

    2x

    (1 cos x) (1 cosx)

    (1 cosx)(1 cos x)

    2

    (1 cos2

    x)

    2

    sin2x

    2csc2x

    2csc2x

    L.S. = R.S.

    Proving an Identity

    5.4.9

  • Proving an Identity

    5.4.10

    f)

    cos A

    1 sinA

    1 sinA

    cos A 2 secA

    cos 2 A (1 sinA)(1 sinA)

    (1 sinA)(cos A)

    cos 2 A (1 2sinA sin2 A)

    (1 sinA)(cos A)

    cos 2 A sin2 A 1 2sinA

    (1 sinA)(cos A)

    2 2sinA

    (1 sinA)(cos A)

    2(1 sinA)

    (1 sinA)(cos A)

    2

    (cos A)

    2secA

    2secA

    L.S. = R.S.

  • Trigonometric Identities End Trig Identities

  • Trigonometric Identities

  • Trigonometric Identities

  • Trigonometric Identities

  • Trigonometric Identities

  • Trigonometric Identities

  • Trigonometric Identities

  • Trigonometric Identities

  • Trigonometric Identities

  • Trigonometric Identities

  • Trigonometric Identities

  • Trigonometric Identities

  • Trigonometric Identities

  • Trigonometric Identities

  • Trigonometric Identities

  • Trigonometric Identities

    ** just combined fractions

  • Trigonometric Identities

  • Trigonometric Identities

    Squared both sides…

  • Trigonometric Identities

  • Trigonometric Identities

    Square root of both sides…

  • Using Exact Values to Prove an Identity

    5.4.11

    Consider sinx

    1 cos x

    1 cosx

    sinx.

    b) Verify that this statement is true for x =

    6.

    a) Use a graph to verify that the equation is an identity.

    c) Use an algebraic approach to prove that the identity is true

    in general. State any restrictions.

    y 1 cos x

    sinxy

    sinx

    1 cos xa)

  • sinx

    1 cos x

    1 cosx

    sinx

    1

    2

    1 3

    2

    b) Verify that this statement is true for x =

    6.

    sin

    6

    1 cos

    6

    1

    2

    2

    2 3

    1

    2 3

    1 cos

    6

    sin

    6

    1 3

    2

    1

    2

    2 3

    2

    2

    1

    2 3

    2 3

    1

    2 3

    2 3

    2 3

    2 3

    4 3

    2 3

    Rationalize the

    denominator:

    1

    2 3

    L.S. = R.S.

    Using Exact Values to Prove an Identity [cont’d]

    5.4.12

    Therefore, the identity is

    true for the particular

    case of x

    6.

  • c) Use an algebraic approach to prove that the identity is true

    in general. State any restrictions.

    Using Exact Values to Prove an Identity [cont’d]

    5.4.13

    sinx

    1 cos x

    1 cosx

    sinx

    sinx

    1 cos x

    1 cos x

    1 cos x

    sinx(1 cosx)

    1 cos2

    x

    sinx(1 cosx)

    sin2x

    1 cos x

    sinx

    1 cos x

    sinx

    L.S. = R.S.

    Note the left side of the

    equation has the restriction

    1 - cos x ≠ 0 or cos x ≠ 1.

    Therefore, x ≠ 0 + 2 n, where n is any integer.

    The right side of the

    equation has the restriction

    sin x ≠ 0. x = 0 and Therefore, x ≠ 0 + 2n

    and x ≠ + 2n, where n is any integer.

    Restrictions:

  • Proving an Equation is an Identity

    Consider the equation sin2 A 1

    sin2

    A sinA 1

    1

    sinA.

    b) Verify that this statement is true for x = 2.4 rad.

    a) Use a graph to verify that the equation is an identity.

    c) Use an algebraic approach to prove that the identity is true

    in general. State any restrictions.

    y sin2 A 1

    sin2

    A sinAy 1

    1

    sinA

    a)

    5.4.14

  • b) Verify that this statement is true for x = 2.4 rad.

    Proving an Equation is an Identity [cont’d]

    sin2 A 1

    sin2

    A sinA 1

    1

    sinA

    (sin 2.4)2 1

    (sin 2.4)2

    sin2.4

    = 2.480 466

    1

    1

    sin 2.4

    = 2.480 466

    Therefore, the equation is true for x = 2.4 rad.

    L.S. = R.S.

    5.4.15

  • 5.4.16

    Proving an Equation is an Identity [cont’d]

    sin2 A 1

    sin2

    A sinA 1

    1

    sinA

    c) Use an algebraic approach to prove that the identity is true

    in general. State any restrictions.

    (sinA 1)(sinA 1)

    sinA(sinA 1)

    (sinA 1)

    sinA

    sinA

    sinA

    1

    sinA

    1 1

    sinA

    1 1

    sinA

    L.S. = R.S.

    Note the left side of the

    equation has the restriction:

    sin2A - sin A ≠ 0

    A 0, or A

    2

    Therefore, A 0 2 n or

    A + 2n, or

    A

    2 2 n, where n is

    any integer.

    The right side of the

    equation has the restriction

    sin A ≠ 0, or A ≠ 0.

    Therefore, A ≠ 0, + 2 n, where n is any integer.

    sin A(sin A - 1) ≠ 0

    sin A ≠ 0 or sin A ≠ 1

  • A trigonometric equation is an equation that involves

    at least one trigonometric function of a variable. The

    equation is a trigonometric identity if it is true for all

    values of the variable for which both sides of the

    equation are defined.

    Trigonometric Identities

    Prove that tan sin

    cos.

    y

    x

    y

    r

    x

    r

    y

    r

    r

    x

    y

    x

    L.S. = R.S. 5.4.2

    Recall the basic

    trig identities:

    sin y

    r

    cos x

    r

    tan y

    x