CHAPTER 5 ANALYSIS AND INTERPRETATION OF...

130
82 CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATA 5.1 INTRODUCTION An overview on Nanotechnology has been presented in Chapter 3 projecting the dimensions of the subject. It has been noticed that the literature on Nanotechnology are being published in multi channels of communication and the same are covered in secondary sources. In this chapter, the published Nanotechnology literature has been analysed quantitatively by using various scientometrics/bibliometrics indicators and other statistical techniques. A brief description on those scientometricss/bibliometrics indicators and statistical techniques has been explained in Chapter 4. The Nanotechnology literature covered in SciVerse Scopus for the period of 30 years i.e. 1981-2010 has been considered for the purpose of the quantitative analysis. 5.2 QUANTUM OF LITERATURE IN NANOTECHNOLOGY The quantum of literature in Nanotechnology for the study period of 30 years (1981-2010) has been analysed based on yearwise, and further by five years block period. The analysis by approach has been shown in Figure 5.1

Transcript of CHAPTER 5 ANALYSIS AND INTERPRETATION OF...

Page 1: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

82

CHAPTER 5

ANALYSIS AND INTERPRETATION OF DATA

5.1 INTRODUCTION

An overview on Nanotechnology has been presented in Chapter 3

projecting the dimensions of the subject. It has been noticed that the literature

on Nanotechnology are being published in multi channels of communication

and the same are covered in secondary sources. In this chapter, the published

Nanotechnology literature has been analysed quantitatively by using various

scientometrics/bibliometrics indicators and other statistical techniques. A

brief description on those scientometricss/bibliometrics indicators and

statistical techniques has been explained in Chapter 4.

The Nanotechnology literature covered in SciVerse Scopus for the

period of 30 years i.e. 1981-2010 has been considered for the purpose of the

quantitative analysis.

5.2 QUANTUM OF LITERATURE IN NANOTECHNOLOGY

The quantum of literature in Nanotechnology for the study period of

30 years (1981-2010) has been analysed based on yearwise, and further by

five years block period. The analysis by approach has been shown in Figure

5.1

Page 2: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

83

Figure 5.1 Data Analysis

Page 3: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

84

5.2.1 Quantum of Literature in Nanotechnology Vs Year

The quantum of literature in Nanotechnology that are included in

Scopus database by yearwise has been shown in Table 5.1

Table 5.1 Quantum of Literature in Nanotechnology Vs Year

S.No. Years No. of Records % Cumulative Cum. %

1 1981 123 0.01 123 0.012 1982 169 0.02 292 0.033 1983 213 0.02 505 0.054 1984 385 0.04 890 0.095 1985 365 0.04 1255 0.136 1986 242 0.03 1497 0.167 1987 386 0.04 1883 0.208 1988 308 0.03 2191 0.249 1989 306 0.03 2497 0.27

10 1990 645 0.07 3142 0.3411 1991 923 0.10 4065 0.4412 1992 1173 0.13 5238 0.5713 1993 2026 0.22 7264 0.7914 1994 2572 0.28 9836 1.0715 1995 3940 0.43 13776 1.5016 1996 9587 1.05 23363 2.5417 1997 11864 1.29 35227 3.8418 1998 14313 1.56 49540 5.4019 1999 17853 1.95 67393 7.3520 2000 21305 2.32 88698 9.6721 2001 26976 2.94 115674 12.6122 2002 32965 3.60 148639 16.2123 2003 42085 4.59 190724 20.8024 2004 58636 6.39 249360 27.1925 2005 75531 8.24 324891 35.4326 2006 88912 9.70 413803 45.1327 2007 101623 11.08 515426 56.2128 2008 117721 12.84 633147 69.0529 2009 131840 14.38 764987 83.4330 2010 151427 16.51 916414 100

TOTAL 916414 100

Page 4: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

85

There are 9,16,414 articles appeared during the period of 1981-2010

in Nanotechnology, with an average publication per year works out 30,547.

The output of Nanotechnology in this field increased from 123 papers in the

year 1981 to 1,51,427 papers in the year 2010. The ratio of growth works out

1:1,231. There exists step growth every year between 2000 and 2010. Initially

the growth comparing to the total output seems to be minimal. However 5%

to 12% of publications increase every year can be seen from 2003 onwards. A

line graph showing quantum of literature published during the study period is

show in Figure 5.2.

Figure 5.2 Quantum of Literature in Nanotechnology Vs Year

The cure itself indicates the quantum of literature is in parabolic

nature.

Page 5: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

86

5.2.2 Growth Ratio of Literature in Nanotechnology Vs Year

The ratio of growth on Nanotechnology progress over the previous

period has been calculated and the same is shown in Table 5.2

Table 5.2 Growth Ratio of Literature in Nanotechnology Vs Year

S.No. Years No. of Records Growth Ratio

1 1981 123 --

2 1982 169 1 : 1.373 1983 213 1 : 1.264 1984 385 1 : 1.815 1985 365 1 : 0.956 1986 242 1 : 0.667 1987 386 1 : 1.608 1988 308 1 : 0.809 1989 306 1 : 0.99

10 1990 645 1 : 2.1111 1991 923 1 : 1.4312 1992 1173 1 : 1.2713 1993 2026 1 : 1.7314 1994 2572 1 : 1.2715 1995 3940 1 : 1.5316 1996 9587 1 : 2.4317 1997 11864 1 : 1.2418 1998 14313 1 : 1.2119 1999 17853 1 : 1.2520 2000 21305 1 : 1.1921 2001 26976 1 : 1.2722 2002 32965 1 : 1.2223 2003 42085 1 : 1.2824 2004 58636 1 : 1.3925 2005 75531 1 : 1.2926 2006 88912 1 : 1.1827 2007 101623 1 : 1.1428 2008 117721 1 : 1.1629 2009 131840 1 : 1.1230 2010 151427 1 : 1.15

Page 6: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

87

Figure 5.3 Growth Ratio of Literature in Nanotechnology Vs Year

The growth ratio varies from 0.66 to 2.43. From the table 5.2 it is

observed that from the year 1997 to till 2010 it shows that hardly any change

in the growth ratio of publications. There exists steep growth of publication

can be seen over the period 2000-2004 and steep increase can be seen

between the years 1992-1995. (Figure 5.3). However linear trend persists

since 1996.

5.2.3 Relative Growth Rate (RGR) and Doubling Time (Dt) Vs Year

Relative Growth Rate (RGR) and Doubling Time (Dt) has been

administrated to Nanotechnology literature. The description given in Chapter

4, RGR (Formula 4.1) is a measure to study the increase in number of articles

over the period (Mahapatra 1985) and Doubling time is the time required for a

quantity to double in size or value.

Page 7: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

88

The chronological distribution, RGR, and Dt, publications in the

field of Nanoscience and Nanotechnology during the period 1981–2010 has

been shown in Table 5.3. It can be seen that the Dt is doubled during the

second decade. When the RGR is constant, the quantity undergoes

exponential growth and has a constant Dt or period which can be calculated

directly from the growth rate.

Further it can be seen from the Table 5.3 that there is a fluctuation in

RGR during the period of study. The year 1982 has noticed RGR as 0.86.

Since then it has decreased drastically and shows a fluctuation trend. The

year 2010 has seen RGR as 0.18. It is interesting to note that the RGR in

1981 was 0.90 where as 2010 it has come down to 0.18 (Figure 5.4).

Page 8: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

89

Table 5.3 Relative Growth Rate and Doubling time Vs Year

S.

NoYear

No. of

RecordsCumulative W1 W2

11

21yearaa

R

RGRDt

1 1981 123 123 0.00 4.81 -- --

2 1982 169 292 4.81 5.68 0.86 0.80

3 1983 213 505 5.68 6.22 0.55 1.27

4 1984 385 890 6.22 6.79 0.57 1.22

5 1985 365 1255 6.79 7.13 0.34 2.02

6 1986 242 1497 7.13 7.31 0.18 3.93

7 1987 386 1883 7.31 7.54 0.23 3.02

8 1988 308 2191 7.54 7.69 0.15 4.57

9 1989 306 2497 7.69 7.82 0.13 5.30

10 1990 645 3142 7.82 8.05 0.23 3.02

11 1991 923 4065 8.05 8.31 0.26 2.69

12 1992 1173 5238 8.31 8.56 0.25 2.73

13 1993 2026 7264 8.56 8.89 0.33 2.12

14 1994 2572 9836 8.89 9.19 0.30 2.29

15 1995 3940 13776 9.19 9.53 0.34 2.06

16 1996 9587 23363 9.53 10.06 0.53 1.31

17 1997 11864 35227 10.06 10.47 0.41 1.69

18 1998 14313 49540 10.47 10.81 0.34 2.03

19 1999 17853 67393 10.81 11.12 0.31 2.25

20 2000 21305 88698 11.12 11.39 0.27 2.52

21 2001 26976 115674 11.39 11.66 0.27 2.61

22 2002 32965 148639 11.66 11.91 0.25 2.76

23 2003 42085 190724 11.91 12.16 0.25 2.78

24 2004 58636 249360 12.16 12.43 0.27 2.59

25 2005 75531 324891 12.43 12.69 0.26 2.62

26 2006 88912 413803 12.69 12.93 0.24 2.86

27 2007 101623 515426 12.93 13.15 0.22 3.16

28 2008 117721 633147 13.15 13.36 0.21 3.37

29 2009 131840 764987 13.36 13.55 0.19 3.66

30 2010 151427 916414 13.55 13.73 0.18 3.84

TOTAL 916414

Page 9: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

90

Figure 5.4 Relative Growth Rate and Doubling time Vs Year

The Doubling time (Dt) (Formula 4.2) has also shown a fluctuation

trend when calculated by year wise. The Dt was 0.80 in 1982 and increased

to 2.02 in 1985. Since then there exist fluctuation trends up to 1989 (5.30).

Since 1996 it has shown an increasing trend. In other words, in 1996 it was

1.31 and since then it gradually increased and in 2010 it was 3.84

(Figure 5.4).

5.3 FIVE YEARS BLOCK

The total period of 30 years has been divided into five years per

block. There by it forms six block years. Quantum of Literature, Growth

Ratio and Relative Growth Rate (Formula 4.1) and Doubling time (Formula

4.2) has been calculated for the Six Five Years Block Period.

Page 10: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

91

5.3.1 Quantum of Literature in Nanotechnology Vs Five Years Block

The distribution of literature in Nanotechnology by Five Years

Block Period is shown in Table 5.4.

Table 5.4 Quantum of Literature in Nanotechnology Vs Five Years Block

S.No. 5 Years Block No. of Records % Cumulative Cum. %

1 1981-1985 1255 0.14 1255 0.142 1986-1990 1887 0.21 3142 0.343 1991-1995 10634 1.16 13776 1.504 1996-2000 74922 8.17 88698 9.675 2001-2005 236193 25.76 324891 35.436 2006-2010 591523 64.51 916414 100.00

TOTAL 916414 100

Only 1.50% of the publications were found during the first three

block years i.e. 1981-1995. During the fourth block year it can be seen that

8.17% of publications appeared. A steep rise in the publication trend noticed

from 2001 onwards. 90% of Nanotechnology publications can be seen during

the period 2001-2010.

5.3.2 Growth Ratio Vs Five Years Block

The distribution of articles and ratio of progress over the previous

five years period has been calculated and the same is shown in Table 5.5

Table 5.5 Growth Ratio of Vs Five Years Block

S.No. 5 Years Block No. of Records Growth Ratio

1 1981-1985 1255 -2 1986-1990 1887 1 : 1.503 1991-1995 10634 1 : 1.644 1996-2000 74922 1 : 7.055 2001-2005 236193 1 : 3.156 2006-2010 591523 1 : 2.50

TOTAL 916414

Page 11: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

92

The growth ratio varies from 1.50 to 7.05. The growth ratio during

the block year 1996-2000 seems to be 7.05. The exponential growth of

publication can be seen over the period 1996-2000, even though the ratio of

the growth is declining. The total output is in exponential growth i.e. 2,36,193

articles appeared in 2001-2005 block year followed by 5,91,523 during the

block year 2006-2010.

5.3.3 Annual Average Growth Rate Vs Five Years Block

The annual average growth rate of literature in Nanotechnology is

calculated (Gupta 2009) for five years block and the same is shown in Table

5.6.

Table 5.6 Annual Average Growth Rate of Vs Five Years Block

S.No. Five Year Block No. of Records AAGR*

1 1981-1985 1255 0.79

2 1986-1990 1887 5.37

3 1991-1995 10634 8.93

4 1996-2000 74922 14.99

5 2001-2005 236193 20.39

6 2006-2010 591523 25.63

TOTAL 916414

*AAGR – Annual Average Growth Rate

The average annual publication growth rate of 25.63% is during the

last five year period 2006-2010. During 1981-1990 the annual average

publication growth rate is >1 and 5.37 during next five years period. Overall

annual average publication growth rate is 0.61 which is less than the first

years period. (Table 5.6)

Page 12: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

93

5.3.4 Relative Growth Rate and Doubling time Vs Five Years Block

The Relative Growth Rate (Formula 4.1) and Doubling time

(Formula 4.2) has also been analysed for the Five Years Block Period and the

same is shown in Table 5.7.

Table 5.7 Relative Growth Rate and Doubling time Vs Five Years

Block

S.No Year No. of

Records

Cumulative W1 W2-1 -1

(aa yearR

1- 2RGR

Dt

1 1981-1985 1255 1255 0.00 7.13 -- --

2 1986-1990 1887 3142 7.13 8.05 0.92 0.76

3 1991-1995 10634 13776 8.05 9.53 1.48 0.47

4 1996-2000 74922 88698 9.53 11.39 1.86 0.37

5 2001-2005 236193 324891 11.39 12.69 1.30 0.53

6 2006-2010 591523 916414 12.69 13.73 1.04 0.67

Total 916914 13.73

Figure 5.5 Relative Growth Rate and Doubling time Vs Five Years

Block

Page 13: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

94

RGR increased from the rate of 0.92 from the period 1981-1985 to

1.04 during the period 2006-2010. The corresponding Dt for different block

periods reduced from 0.76 during the block period 1986-1990 to 0.67 during

the block period 2006-2010. Even though the rate of growth of publication

has been increased, the corresponding Dt seems to be decreased (Figure 5.5).

5.4 G20 COUNTRIES

Growth of literature on Nanotechnology has been analysed among

G20 countries. G19 countries and the European Union (consists of 27

countries) has been analysed to find the growth of literature.

5.4.1 G20 Countries Vs Year

The G20 countrywise distribution of Nanotechnology has been

shown in Table 5.8.

Table 5.8 G20 Countries Vs Year

S.No G20 Countries No. of Records % Cumulative Cum. %

1 United States 191090 20.84 191090 20.84

2 China 153100 16.70 344190 37.54

3 Japan 92363 10.07 436553 47.61

4 Germany 72825 7.94 509378 55.55

5 France 52947 5.77 562325 61.33

6 Korea 46640 5.09 608965 66.41

7

United

Kingdom 46597 5.08 655562 71.50

8 Italy 31648 3.45 687210 74.95

9 India 30777 3.36 717987 78.30

10 Russia 30733 3.35 748720 81.66

11 Canada 23833 2.60 772553 84.26

Page 14: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

95

Table 5.8 (Continued)

12 Australia 16976 1.85 789529 86.11

13 Brazil 12209 1.33 801738 87.44

14

European

Union 10163 1.11 811901 88.55

15 Turkey 6226 0.68 818127 89.23

16 Mexico 6113 0.67 824240 89.89

17 Argentina 3302 0.36 827542 90.25

18 South Africa 1816 0.20 829358 90.45

19 Saudi Arabia 1183 0.13 830541 90.58

20 Indonesia 424 0.05 830965 90.63

21 Others 85449 9.37 916914 100

Total 916414 100

Figure 5.6 G20 Countries Vs Year

Page 15: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

96

It is seen from the Table 5.8 that a maximum 20.84% publications

were from United States. It is followed by China (16.70%) and India occupies

9th position with total production of 3.36% More than 55.55% of articles

appeared from four countries viz., United States, China, Japan and German.

The Figure 5.6 clearly shows that the publication share of G20 countries.

5.4.2 G20 Countries Vs Five Years Block

Further the quantum of literature among G20 countries has further

been analysed for Five Years Block period and the same is show in Table 5.9

Table 5.9 G20 Countries Vs Five Years Block

Five Years Block Period No. of Records(%)S.No.

G20 Countries 1981-19851986-19901991-19951996-20002001-20052006-2010 Total

1United States

178(14.18)

586(31.05)

3330(31.31)

21039(28.08)

49894(21.12)

116063(19.62)

191090(20.84)

2China

2(0.16)

16(0.85)

981(9.23)

8057(10.75)

36420(15.42)

107624(19.21)

153100(17.35)

3Japan

61(4.86)

137(7.26)

1141(10.73)

9106(12.15)

28458(12.05)

53460(9.04)

92363(10.07)

4Germany

50(3.98)

159(8.43)

900(8.46)

8394(11.20)

20232(8.57)

43090(7.28)

72825(7.94)

5France

55(4.38)

142(7.53)

787(7.40)

5848(7.81)

14000(5.93)

32115(5.43)

52947(5.77)

6Korea

0(0.00)

2(0.11)

81(0.76)

1939(2.59)

10809(4.58)

33809(5.72)

46640(5.09)

7United Kingdom

36(2.87)

109(5.78)

496(4.66)

4865(6.49)

11913(5.04)

29178(4.93)

46597(5.08)

8Italy

50(3.98)

68(3.60)

338(3.18)

2804(3.74)

8413(3.56)

19975(3.38)

31648(3.45)

9India

20(1.59)

37(1.96)

145(1.36)

1402(1.87)

5747(2.43)

23426(3.96)

30777(3.36)

10Russia

11(0.88)

20(1.06)

287(2.70)

3737(4.99)

8821(3.73)

17857(3.02)

30733(3.35)

11Canada

14(1.12)

36(1.91)

206(1.94)

1831(2.44)

6201(2.63)

15545(2.63)

23833(2.60)

Page 16: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

97

Table 5.9 (Continued)

12Australia

11(0.88)

14(0.74)

95(0.89)

1080(1.44)

3500(1.48)

12276(2.08)

16976(1.85)

13Brazil

2(0.16)

2(0.11)

213(2.00)

1214(1.62)

3052(1.29)

7726(1.31)

12209(1.33)

14European Union

11(0.88)

18(0.95)

49(0.46)

748(1.00)

2405(1.02)

6932(1.17)

10163(1.11)

15Turkey

0(0.00)

5(0.26)

19(0.18)

214(0.29)

1025(0.43)

4963(0.84)

6226(0.68)

16Mexico

5(0.40)

7(0.37)

43(0.40)

486(0.65)

1524(0.65)

4048(0.68)

6113(0.67)

17Argentina

0(0.00)

3(0.16)

12(0.11)

290(0.39)

838(0.35)

2159(0.36)

3302(0.36)

18South Africa

0(0.00)

5(0.26)

7(0.07)

88(0.12)

321(0.14)

1395(0.24)

1816(0.20)

19Saudi Arabia

0(0.00)

0(0.00)

1(0.01)

45(0.06)

91(0.04)

1046(0.18)

1183(0.13)

20Indonesia

0(0.00)

0(0.00)

2(0.02)

12(0.02)

58(0.02)

352(0.06)

424(0.05)

21Others

749(59.68)

521(27.61)

1501(14.11)

1723(2.30)

22471(9.51)

58484(8.87)

85449(8.72)

Total1255(100)

1887(100)

10634(100)

74922(100)

236193(100)

591523(100)

916414(100)

In most of G20 countries, the growth of literature gaining

momentum in first two or three block years and finds decline momentums in

the remaining block year. It can be seen in the case of United States. The

output reaches maximum in third block year i.e. 1991 – 95 and finds declining

momentum during the block period 2006-2010. This is evident in the case of

Japan, Germany, France, United Kingdom, Russia and Brazil. In countries

like China, Korea, India, Canada, Australia, it can be seen that

nanotechnology is gaining momentum, in a study phase. In the case of Italy

the growth rate is uniform in all the block years and seems to linear in nature.

(Table 5.9)

5.4.3 Growth Ratio of G20 Countries Vs Five Years Block

The percentail growth cannot provide reality sometime among the

G20 countries. Therefore growth ratio has been calculated for the block year

period among the G20 countries and the same is shown in Table 5.10

Page 17: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

98

Table 5.10 Growth Ratio of G20 Countries Vs Five Years Block

Five Years Block Period - Growth ratioS.No. G20 Countries

1986-1990 1991-1995 1996-2000 2001-2005 2006-2010

1 United States 586(0.30)

3330(0.18)

21039(0.16)

49894(0.42)

116063(0.43)

2 China 16(0.13)

981(0.02)

8057(0.12)

36420(0.22)

107624(0.34)

3 Japan 137(0.45)

1141(0.12)

9106(0.13)

28458(0.32)

53460(0.53)

4 Germany 159(0.31)

900(0.18)

8394(0.11)

20232(0.41)

43090(0.47)

5 France 142(0.39)

787(0.18)

5848(0.13)

14000(0.42)

32115(0.44)

6 Korea 2(0.00)

81(0.02)

1939(0.04)

10809(.018)

33809(0.32)

7 United Kingdom 109(0.33)

496(0.22)

4865(0.10)

11913(0.41)

29178(0.41)

8 Italy 68(0.74)

338(0.20)

2804(0.12)

8413(0.33)

19975(0.42)

9 India 37(0.54)

145(0.26)

1402(0.10)

5747(0.24)

23426(0.25)

10 Russia 20(0.55)

287(0.07)

3737(0.08)

8821(0.42)

17857(0.49)

11 Canada 36(0.39)

206(0.17)

1831(0.11)

6201(0.30)

15545(0.40)

12 Australia 14(0.79)

95(0.15)

1080(0.09)

3500(0.31)

12276(0.35)

13 Brazil 2(1.00)

213(0.01)

1214(0.18)

3052(0.40)

7726(0.40)

14 European Union 18(0.61)

49(0.37)

748(0.07)

2405(0.31)

6932(0.35)

15 Turkey 5(0.00)

19(0.26)

214(0.09)

1025(0.21)

4963(0.21)

16 Mexico 7(0.71)

43(0.16)

486(0.09)

1524(0.32)

4048(0.38)

17 Argentina 3(0.00)

12(0.25)

290(0.04)

838(0.35)

2159(0.39)

18 South Africa 5(0.00)

7(0.71)

88(0.08)

321(0.27)

1395(0.23)

19 Saudi Arabia 0(0.00)

1(0.00)

45(0.02)

91(0.49)

1046(0.09)

20 Indonesia 0(0.00)

2(0.00)

12(0.17)

58(0.21)

342(0.16

21 Others 521(1.44)

1501(0.35)

1723(0.87)

22471(0.08)

58484(0.38)

Total 1887 10634 74922 236193 591523

Page 18: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

99

The growth ratio of United States during the period 1996-2000 is

very low 0.16 but during the period 2006-2010 it seems to be 0.43. Overall

the growth ratio during the period 1996-2000 is low compared to the period

2006-2010. This obviously indicates that the research application are still in

progress.

5.4.4 Annual Average Growth Rate of G20 Countries Vs Five Years

Block

The annual average publication growth rate of G20 countries were

calculated by over the previous five years period of G20 countries and the

same is shown in Table 5.11

Table 5.11 Annual Average Growth Rate of G20 Countries Vs Five

Years Block

Five Years Block Period - Growth ratioS.No. G20 Countries

1986-1990 1991-1995 1996-2000 2001-2005 2006-2010

1 United States586

(0.23)3330(0.31)

21039(0.40)

49894(0.42)

116063(0.47)

2 China16

(0.10)981

(0.27)8057(0.36)

36420(0.42)

107624(0.47)

3 Japan137

(0.16)1141(0.27)

9106(0.36)

28458(0.41)

53460(0.42)

4 Germany159

(0.18)900

(0.26)8394(0.36)

20232(0.38)

43090(0.41)

5 France142

(0.17)787

(0.25)5848(0.34)

14000(0.36)

32115(0.40)

6 Korea2

(0.02)81

(0.16)1939(0.30)

10809(0.37)

33809(0.41)

7 United Kingdom109

(0.16)496

(0.23)4865(0.34)

11913(0.36)

29178(0.40)

8 Italy68

(0.10)338

(0.21)2804(0.31)

8413(0.35)

19975(0.38)

Page 19: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

100

Table 5.11(Continued)

9 India37

(0.10)145

(0.21)1402(0.31)

5747(0.35)

23426(0.38)

10 Russia20

(0.08)287

(0.21)3737(0.32)

8821(0.34)

17857(0.37)

11 Canada36

(0.11)206

(0.19)1831(0.29)

6201(0.34)

15545(0.37)

12 Australia14

(0.04)95

(0.16)1080(0.27)

3500(0.31)

12276(0.37)

13 Brazil2

(-1.00)213

(0.20)1214(0.27)

3052(0.31)

7726(0.37)

14 European Union18

(0.07)49

(0.13)748

(0.25)2405(0.29)

6932(0.34)

15 Turkey5

(0.06)19

(0.10)214

(0.20)1025(0.26)

4963(0.33)

16 Mexico7

(0.02)43

(0.13)486

(0.23)1524(0.27)

4048(0.31)

17 Argentina3

(0.04)12

(0.08)290

(0.21)838

(0.24)2159(0.28)

18 South Africa5

(0.06)7

(0.02)88

(0.16)321

(0.21)1395(0.27)

19 Saudi Arabia0

(-1.00)1

(0.00)45

(0.14)91

(0.14)1046(0.27)

20 Indonesia0

(-1.00)2

(0.02)12

(0.08)58

(0.14)342

(0.22)

21 Others521

(-2.21)1501(0.27)

1723(0.20)

22471(0.41)

58484(0.44)

Total1887(0.25)

10634(0.37)

74922(0.46)

236193(0.51)

591523(0.55)

Countries like Korea achieved the fastest average annual publication

growth rate of 0.02 to 0.41 during the 30 years period 1981-2010. Brazil,

Saudi Arabia, Indonesia shows the negative value during the initial period and

it gradually raises and reached 0.34, 0.27, 0.22 respectively. India shows

study growth ranges between 0.10 and 0.38 during the study period.

(Table 5.11).

Page 20: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

101

5.4.5 Activity Index of G20 Countries

Activity Index (AI) suggested by Price (1981) and elaborated by

Karki and Garg (1997) has been used. To measure the relative research effort

of a country to a given field, a detailed account of the Activity Index (AI)

(Formula 4.7) has been presented in Chapter 4.

The quantum of literature published by country wise in five years

block periods along with the Activity Index is presented in Table 5.12.

Table 5.12 Activity Index of G20 Countries Vs Five Year Block

Five Years Block Period No. of Records(%)

S.No.

G 20

Countries 1981-19851986-19901991-19951996-20002001-20052006-2010 Total

1 UnitedStates

178(68.02)

586(148.93)

3330(150.18)

21039(134.67)

49894(101.31)

116063(94.10) 191090

2 China 2(0.95)

16(5.08)

981(55.22)

8057(64.37)

36420(92.3)

107624(108.91) 153100

3 Japan 61(48.23)

137(72.03)

1141(106.46)

9106(120.59)

28458(119.54)

53460(89.67) 92363

4 Germany 50(50.13)

159(106.03)

900(106.50)

8394(140.98)

20232(107.79)

43090(91.67) 72825

5 France 55(75.85)

142(130.25)

787(128.09)

5848(135.10)

14000(102.59)

32115(93.97) 52947

6 Korea 0(0.00)

2(2,08)

81(14.97)

1939(50.85)

10809(89.92)

33809(112.30) 46640

7 UnitedKingdom

36(56.41)

109(113.60)

496(91.73)

4865(127.7)

11913(99.19)

29178(97.01) 46597

8 Italy 50(115.36)

68(104.35)

338(92.04)

2804(108.37)

8413(103.14)

19975(97.78) 31648

9 India 20(47.45)

37(58.38)

145(40.6)

1402(55.72)

5747(72.45)

23426(117.92) 30777

10 Russia 11(26.14)

20(31.60)

287(80.48)

3737(148.73)

8821(111.36)

17857(90.02) 30733

11 Canada 14(42.89)

36(73.36)

206(74.49)

1831(93.97)

6201(100.95)

15545(101.05) 23833

Page 21: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

102

Table 5.12 (Continued)

12 Australia 11(47.32)

14(40.05)

95(48.23)

1080(77.82)

3500(79.99)

12276(112.03) 16976

13 Brazil 2(11.96)

2(7.96)

213(150.35)

1214(121.62)

3052(96.99)

7726(98.04) 12209

14 EuropeanUnion

11(79.03)

18(86.01)

49(41.55)

748(90.02)

2405(91.82)

6932(105.67) 10163

15 Turkey 0(0.00)

5(39.00)

19(26.30)

214(42.04)

1025(63.88)

4963(123.50) 6226

16 Mexico 5(59.73)

7(55.61)

43(60.62)

486(97.24)

1524(96.73)

4048(102.59) 6113

17 Argentina 0(0.00)

3(44.12)

12(31.32)

290(107.42)

838(98.47)

2159(101.30) 3302

18 SouthAfrica

0(0.00)

5(133.71)

7(33.22)

88(59.27)

321(68.58)

1395(119.01) 1816

19 SaudiArabia

0(0.00)

0(0.00)

1(7.28)

45(46.53)

91(29.85)

1046(136.98) 1183

20 Indonesia 0(0.00)

0(0.00)

2(40.65)

12(34.62)

58(53.07)

352(128.62) 424

21 Others 749(640.06)

521(296.11)

1501(151.38)

1723(24.66)

22471(102.03)

58484(106.04) 85449

Total 1255 1887 10634 74922 236193 591523 916414

Figure 5.7 Activity Index of G20 countries

Page 22: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

103

In Table 5.12 Activity Index (AI) for G20 has been calculated to

analyse how G20 countries research performance changes over different block

years. Comparison of India’s research performance with world’s research

performance has also been made by using Formula 4.8

The data reveals that the G20 countries efforts in Nanotechnology

research an average productivity than world’s average. The Activity Index

(AI) was peek in 3rd Block of United States (150.18). Further it was observed

that the Activity Index (AI) has reflected fluctuation trend during the study

period (Figure 5.7) The values of the Activity Index in six blocks indicates

that there is a considerable fluctuation for almost all the countries from one

block period to another block period, although the total number of

publications from one block period to another increases. The total number of

publications in the 1st block was 1,255 and in the 6th block it rose up to

5,91,523 which reveal a gradual increase of total publications from one block

to another block period.

5.5 LANGUAGEWISE DISTRIBUTION OF LITERATURE IN

NANOTECHNOLOGY

The language-wise distribution of literature in Nanotechnology is

shown in Table 5.13.

The scholarly communication is effective through English language

in almost all the countries irrespective of the native language of a country.

This phenomenon is not an exception to the subject of Nanotechnology. The

maximum of 94.23% of the total research output were only in English. This

is followed by Chinese (3.82%) and Japanese (0.59%) language.

Page 23: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

104

Table 5.13 Languagewise Distribution of Literature in Nanotechnology

S.No. Language

No. of

Records % Cumulative

Cum.

%

1 English 863545 94.23 863545 94.23

2 Chinese 35044 3.82 898589 98.05

3 Japanese 5422 0.59 904011 98.654 German 3054 0.33 907065 98.98

5 Russian 2007 0.22 909072 99.20

6 French 1628 0.18 910700 99.387 Korean 1246 0.14 911946 99.51

8 Spanish 976 0.11 912922 99.62

9 Portuguese 658 0.07 913580 99.69

10 Polish 545 0.06 914125 99.7511 Italian 314 0.03 914439 99.78

12 Ukrainian 304 0.03 914743 99.82

13 Czech 191 0.02 914934 99.8414 Turkish 119 0.01 915053 99.85

15 Romanian 113 0.01 915166 99.86

16 Hungarian 104 0.01 915270 99.8817 Croatian 78 0.01 915348 99.88

18 Serbian 77 0.01 915425 99.89

19 Slovene 65 0.01 915490 99.90

20 Slovak 47 0.01 915537 99.9021 Others 877 0.10 916414 100

Total 916414 100

It is significant to note that some contributions are published in

more than one language simultaneously. In other words the publications were

in Italian, Japanese, German and French are published in English language

too. (Figure 5.8)

Page 24: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

105

Figure 5.8 Languagewise distribution of Literature in Nanotechnology

5.5.1 Languagewise Distribution Vs Five Year Block

The study has been extended to five years block period and the same

is shown in Table 5.14 along with percentage of growth . Percentage values

are indicated within parentheses.

Page 25: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

106

Table 5.14 Languagewise Distribution Vs Five Years Block

S.No. Language 1981- 1985 1986-1990 1990- 1995 1996- 2000 2001- 2005 2006-2010 Total

1 English1026

(81.75)1672

(88.61)10124(95.20)

69607 (92.91)

219342(92.87)

561774(94.97)

863545(95.94)

2 Chinese1

(0.08)5

(0.26)87

(0.82)2680(3.58)

10445(4.42)

21826(3.69)

35044(3.82)

3 Japanese9

(0.72)30

(1.59)86

(0.81)746

(1.00)2218(0.94)

2333(0.39)

5422(0.59)

4 German23

(1.83)25

(1.32)50

(0.47)428

(0.57)1332(0.56)

1196(0.20)

3054(0.33)

5 Russian12

(0.96)6

(0.32)77

(0.72)672

(0.90)825

(0.35)415

(0.07)2007(0.22)

6 French14

(1.12)26

(1.38)39

(0.37)271

(0.36)546

(0.23)732

(0.12)1628(0.18)

7 Korean0

(0.00)0

(0.00)0

(0.00)107

(0.14)126

(0.05)1013(0.17)

1246(0.14)

8 Spanish1

(0.08)5

(0.26)6

(0.06)55

(0.07)333

(0.14)576

(0.10)976

(0.11)

9 Portuguese1

(0.08)0

(0.00)4

(0.04)17

(0.02)216

(0.09)420

(0.07)658

(0.07)

10 Polish6

(0.48)5

(0.26)0

(0.00)21

(0.03)158

(0.07)355

(0.06)545

(0.06)

11 Italian13

(1.04)17

(0.90)14

(0.13)29

(0.04)121

(0.05)120

(0.02)314

(0.03)

12 Ukrainian0

(0.00)0

(0.00)0

(0.00)6

(0.01)116

(0.05)182

(0.03)304

(0.03)

13 Czech2

(0.16)0

(0.00)3

(0.03)9

(0.01)69

(0.03)108

(0.02)191

(0.02)

14 Turkish0

(0.00)1

(0.05)0

(0.00)4

(0.01)24

(0.01)90

(0.02)119

(0.01)

15 Romanian0

(0.00)1

(0.05)0

(0.00)5

(0.01)39

(0.02)68

(0.01)113

(0.01)

16 Hungarian0

(0.00)0

(0.00)0

(0.00)11

(0.01)51

(0.02)42

(0.01)104

(0.01)

17 Croatian0

(0.00)0

(0.00)0

(0.00)1

(0.00) 25(0.01) 52(0.01)78

(0.01)

18 Serbian1

(0.08)1

(0.05)1

(0.01)3

(0.00)5

(0.00)66

(0.01)77

(0.01)

19 Slovene0

(0.00)4

(0.21)6

(0.06)12

(0.02)18

(0.01)25

(0.00)65

(0.01)

20 Slovak0

(0.00)1

(0.05)0

(0.00)7

(0.01)14

(0.01)25

(0.00)47

(0.01)

21 Others146

(11.63)88

(4.66)137

(1.29)231

(0.31)170

(0.07)105

(0.02)877

(0.10)

Total1255(100)

1887(100)

10634(100)

74922(100)

236193(100)

591523(100)

916414(100)

The English language publications are increasing over the block

years which indicate that those who have contributed in their native language

also started publishing their research output in English.

Page 26: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

107

5.5.2 Languagewise distribution of G20 countries

The languagewise distribution of G20 countries further analysed

that they prefer to publish their research publications and the same is shown

in Table 5.15.

The United States scientists publish their articles in Chinese,

Japanese, German, Russian, French, Korean, Spanish, etc. In the case of

India, it can be seen that the publication appeared in Chinese, Japanese,

German, Russian and Spanish. It can be indicated that there exist publication

other than English too.

Page 27: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

108

Table 5.15 Languagewise distribution of G20 countries

S.No.Languages ENG CHI JAP GER RUS FRE KOR SPA POR POL ITAL UKR CZE TUR ROM HUN CRO SER SLO SLOKOthers Total

1 United States 190495 385 32 64 17 22 19 17 9 2 5 3 0 2 0 2 0 2 0 0 14 191090

2 China 118868 34098 43 12 2 5 25 0 0 0 0 0 7 0 0 0 2 0 0 0 38 153100

3 Japan 87548 195 4503 12 6 3 5 3 0 1 1 0 0 1 0 0 0 0 0 0 85 92363

4 Germany 71154 75 6 1465 32 23 0 15 8 9 1 1 1 1 0 1 4 2 0 2 25 72825

5 France 51902 62 48 16 5 816 2 52 6 0 0 0 0 2 3 0 0 0 0 0 33 52947

6 Korea 45460 34 17 0 0 1 1033 0 0 0 0 0 0 12 0 0 0 0 0 0 83 46640

7 United Kingdom 46428 57 9 32 8 9 0 20 2 0 5 5 0 0 1 0 2 1 0 0 18 46597

8 Italy 31354 5 2 6 3 6 0 3 1 0 247 0 0 0 0 0 0 0 0 0 21 31648

9 India 30703 2 2 7 1 0 0 2 1 0 1 0 0 1 1 0 0 1 0 0 55 30777

10 Russia 29885 10 1 7 795 2 0 0 1 0 0 2 0 1 0 0 0 0 0 0 29 30733

11 Canada 23089 5 2 0 0 654 0 0 0 0 0 0 0 0 0 0 0 0 0 0 83 23833

12 Australia 16832 50 3 2 1 2 2 0 0 1 0 1 0 0 0 0 1 1 0 0 80 16976

13 Brazil 11653 0 0 2 0 2 0 27 484 0 0 0 0 0 0 0 0 0 0 0 41 12209

14 European Union 9942 2 1 27 1 27 0 8 0 7 19 0 114 0 1 1 1 1 0 10 1 10163

15 Turkey 6109 1 1 2 2 1 0 3 0 0 0 0 0 85 1 0 0 0 0 0 21 6226

16 Mexico 5805 2 1 0 1 2 0 212 2 0 1 0 0 0 0 0 0 1 0 0 86 6113

17 Argentina 3210 0 0 1 0 4 0 72 3 0 0 0 0 0 0 0 0 0 0 0 12 3302

18 South Africa 1803 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 12 1816

19 Saudi Arabia 1180 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1183

20 Indonesia 423 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 424

21 Others 79702 60 750 1398 1133 48 160 541 141 525 34 292 69 14 106 100 68 68 65 35 140 85449

TOTAL 863545 35044 5422 3054 2007 1628 1246 976 658 545 314 304 191 119 113 104 78 77 65 47 877 916414

Page 28: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

109

5.6 BIBLIOGRAPHIC FORMS OF LITERATURE IN

NANOTECHNOLOGY

The distribution of Nanotechnology research output according to

bibliographic forms is shown in Table 5.16.

Table 5.16 Bibliographic Form of Literature in Nanotechnology

S.No. Bibliographic Form No. of Records % Cumulative Cum. %

1 Article 635873 69.39 635873 69.39

2 Conference Paper 193419 21.11 829292 90.49

3 Review 36572 3.99 865864 94.48

4 Short Survey 3565 0.39 869429 94.87

5 Editorial 3245 0.35 872674 95.23

6 Conference Review 3095 0.34 875769 95.56

7 Note 3026 0.33 878795 95.89

8 Letter 2139 0.23 880934 96.13

9 Erratum 1806 0.20 882740 96.33

10 Article in Press 888 0.10 883628 96.42

11 Book 130 0.01 883758 96.44

12 Business Article 58 0.01 883816 96.44

13 Abstract Report 35 0.00 883851 96.45

14 Patent 11 0.00 883862 96.45

15 Report 10 0.00 883872 96.45

16 Others 32542 3.55 916414 100

TOTAL 916414 100

Page 29: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

110

It is observed that the scientific research output largely published in

subject periodicals and sometimes as conference proceedings. Of course,

some of those papers presented in conferences are further updated and

published in journals of the respective branch of knowledge. In this study it is

observed from Table 5.16 that more than half of the contributions (69.39%)

are journal articles, and 21.11% were conference papers. By and large it is

found that the scholarly communication of Nanotechnology research output is

mostly through journals and conferences.

5.6.1 Bibliograhic Form Vs Year

Distribution of Nanotechnology research output according to

bibliographic forms and year of publication are shown in Table 5.17 and

Table 5.18.

Page 30: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

111

Table 5.17 Bibliographic Form of Literature in Nanotechnology –1981-1995

S.No. Bibliographic Form 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995

1 Article 87 89 110 189 268 190 235 239 253 483 766 975 1524 2111 3356

2 Conference Paper 6 13 31 52 40 39 34 14 28 120 91 125 381 343 430

3 Review 3 1 1 3 3 4 7 6 9 16 16 21 30 38 42

4 Short Survey 0 0 0 1 0 0 0 0 2 2 6 2 5 8 11

5 Editorial 0 0 0 1 0 0 0 1 1 1 1 1 2 3 2

6 Conference Review 0 0 0 2 2 2 1 3 1 2 5 11 22 19 25

7 Note 0 0 0 0 0 0 0 0 2 3 2 0 5 3 5

8 Letter 0 0 0 0 1 1 2 1 0 3 3 13 14 11 21

9 Erratum 0 0 0 0 0 1 1 0 0 2 0 1 4 6 9

10 Article in Press 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 Book 0 0 0 0 0 3 0 0 0 0 2 0 6 1 2

12 Business Article 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 Abstract Report 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 Patent 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 Report 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1

16 Others 27 66 71 136 51 2 106 43 10 13 31 24 33 28 36

Total 123 169 213 385 365 242 386 308 306 645 923 1173 2026 2572 3940

Page 31: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

112

Table 5.18 Bibliographic Form of Literature in Nanotechnology –1996-2010

S.No. Bibliographic Form1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Total

1 Article 841210419125961545618785230192335625530354534365760853 70542 84222 90622 102076635873

2 Conference Paper 738 934 1093 890 913 1267 6793 12462148682446018279 24409 23055 27229 34282 193419

3 Review 248 326 375 293 452 546 941 2955 2593 3628 4158 4420 4873 5133 5431 36572

4 Short Survey 29 27 31 48 50 31 148 170 306 390 332 381 520 532 533 3565

5 Editorial 1 2 5 8 6 5 124 154 140 248 364 419 507 651 598 3245

6 Conference Review 76 81 65 5 5 65 134 147 190 249 320 312 430 472 449 3095

7 Note 12 5 8 11 13 8 179 187 320 518 261 260 375 423 426 3026

8 Letter 3 6 19 59 45 19 120 234 108 44 141 179 385 432 275 2139

9 Erratum 4 4 4 7 12 4 50 83 120 136 177 197 369 225 390 1806

10 Article in Press 0 0 0 2 0 4 8 9 10 15 25 95 198 213 309 888

11 Book 0 0 1 4 5 0 0 0 0 0 0 1 1 9 95 130

12 Business Article 0 0 0 0 1 0 5 7 11 10 6 2 6 3 7 58

13 Abstract Report 0 0 0 1 1 0 4 3 21 1 1 1 0 1 1 35

14 Patent 0 0 0 0 0 0 0 5 0 0 6 0 0 0 0 11

15 Report 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0 10

16 Others 63 59 115 1069 1017 2007 1103 139 4495 2175 3988 405 2780 5895 6555 32542

Total 958711864143131785321305269763296542085586367553188912101623117721131840151427916414

Page 32: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

113

It is observed that the scientific research output largely published in

the form of articles and sometimes as conference proceedings over the years.

Of course, some of those papers presented in conferences are further updated

and published in journals of the respective branch of knowledge. In this study

it is observed from Table 5.17 and able 5.18 that more than half of the

contributions (69.39%) are journal articles, and 21.11% were conference

papers. By and large it is found that the scholarly communication of

Nanotechnology research output is mostly through journals and conferences

throughout the study period.

5.6.2 Bibliographic Form Vs Five Years Block

Further, the distribution of Nanotechnology research output

according to bibliographic forms over five years block period is shown in

Table 5.19.

Table 5.19 Bibliographic Form Vs Five Years Block

S.No.

Bibliographic

Form

1981-

1985 1986-19901991-19951996-20002001-20052006-2010 Total

1 Article 743 1400 8732 65668 151015 408315 635873

2 Conference Paper 142 235 1370 4568 59850 127254 193419

3 Review 11 42 147 1694 10663 24015 36572

4 Short Survey 1 4 32 185 1045 2298 3565

5 Editorial 1 3 9 22 671 2539 3245

6 Conference Review 4 9 82 232 785 1983 3095

7 Note 0 5 15 49 1212 1745 3026

8 Letter 1 7 62 132 525 1412 2139

9 Erratum 0 4 20 31 393 1358 1806

10 Article in Press 0 0 0 2 46 840 888

11 Book 0 3 11 10 0 106 130

12 Business Article 0 0 0 1 33 24 58

13 Abstract Report 0 0 0 2 29 4 35

14 Patent 0 0 0 0 5 6 11

15 Report 1 1 2 3 2 1 10

16 Others 351 174 152 2323 9919 19623 32542

Total 1255 1887 10634 74922 236193 591523 916414

Page 33: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

114

It can be observed from Table 5.19 that more than half of the

contributions (69.39%) are journal articles, and 21.11% were conference

papers. By and large it is found that the scholarly communication of

Nanotechnology research output is mostly through journals and conferences

as reflected in the Table 5.19.

5.6.3 Bibliographic forms preferred by G20 Countries

Bibliographic form of Nanotechnology publications further analysed

with G20 countries. The country wise distribution of the bibliographic form is

shown in Table 5.20.

Page 34: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

115

Table 5.20 Bibliographic forms preferred by G20 countries

S.No. G20 Countries Article CP Review SS Editorial CR Note Letter Erratum AP Book BA AR Patent Report Others Total

1 United States 127372 47159 11188 956 845 14 522 555 234 99 60 0 22 4 4 2056 1910902 China 128609 15711 2196 55 55 1 62 376 129 161 1 0 3 0 0 5741 1531003 Japan 62189 23414 1898 118 144 8 50 273 109 39 7 0 1 0 2 4111 923634 Germany 53492 14199 3099 320 191 4 123 124 73 47 12 0 0 2 0 1139 728255 France 38490 10606 1888 280 116 0 57 83 47 34 5 0 1 0 0 1345 529526 Korea 33494 11119 498 28 52 0 51 102 81 38 0 0 0 0 0 1177 466407 United Kingdom 32502 8550 3245 279 258 4 139 123 42 20 7 0 1 1 0 1426 465978 Italy 21651 6433 1448 79 94 1 32 74 31 28 3 0 0 3 0 1771 316489 India 24045 3664 1175 39 39 0 52 63 30 69 2 0 0 0 0 1599 3077710 Russia 22655 6096 698 19 16 1 17 25 17 10 0 0 0 0 0 1179 3073311 Canada 15510 4964 1304 69 72 0 34 54 21 11 4 0 0 0 0 1790 2383312 Australia 11326 3234 934 46 81 1 33 37 17 14 6 0 0 0 0 1247 1697613 Brazil 8351 2173 385 14 16 0 8 9 6 12 0 0 0 0 0 1235 1220914 European Union 6530 2133 392 19 19 0 10 16 11 4 1 0 0 0 0 1028 1016315 Turkey 4324 797 150 7 13 0 3 24 3 6 0 0 0 0 0 899 622616 Mexico 4272 1445 149 9 13 0 3 11 1 8 1 0 0 0 0 201 611317 Argentina 2606 405 89 1 5 0 4 6 2 1 0 0 0 0 0 183 330218 South Africa 1234 257 119 6 3 0 4 4 1 0 0 0 0 0 0 188 181619 Saudi Arabia 868 168 38 0 1 0 1 1 0 1 0 0 0 0 0 105 118320 Indonesia 251 153 7 0 0 0 1 0 0 0 0 0 0 0 0 12 42421 Others 38091 28750 5672 1221 1212 3061 1820 179 951 286 21 58 7 1 4 4115 85449

Total 635873 193419 36572 3565 3245 3095 3026 2139 1806 888 130 58 35 11 10 32542 916414

CP-Conference Paper SS – Short Survey CR – Conference Review AP-Article in PressBA-Business ArticleAR-Abstract Report

Page 35: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

116

Figure 5.9 Bibliographic forms preferred by G20 countries

As like that of other discipline, the journal articles are predominant

in Nanotechnology irrespective of countries (Figure 5.9). It is followed by

Conference proceedings, Review, Short Survey, Editorial, Conference

Review, Note, Letter, etc. Contribution on Business Article, Abstract Report,

Patent and Report are less contribution on Nanoscience and Nanotechnology

irrespective of the country.

Page 36: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

117

5.7 AUTHORSHIP PATTERN

Authorship pattern for the literature in nanotechnology has also been

administered. The study of authorship pattern or productivity is one of the

important aspects in the scientometricss analysis. It is necessary to

concentrate on authorship pattern to assess the research contributions in any

field and Nanotechnology is not an exception.

In order to identify author productivity and authorship pattern, the

researcher has attempted to analyse the following aspects of authorship

pattern and the explanation of these parameters were given in Chapter 4.

Extent of authorship pattern. i.e. Single Vs. Multiple authors

Collaboration Index (CI)

Degree of collaboration (DC)

Collaborative Coefficient (CC)

Pattern of Co-authorship Index (CAI)

5.7.1 Authorship Pattern Vs Year

The year wise distribution of Nanotechnology contributions

according to number of authors is shown in Table 5.21. It is evident from the

Table 5.21, that nearly 94% were collaborative research either by two authors

or more than two authors. Only 6% of contributions were by single authors.

(Figure 5.10).

Page 37: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

118

Table 5.21 Authorship Pattern Vs Year

YearSingle

Author

Two

Authors

Three

Authors

> 3

AuthorsDC CI CC

1981 26 42 55 0 0.79 2.24 0.47

1982 49 59 53 8 0.71 2.12 0.42

1983 59 89 65 0 0.72 2.03 0.41

1984 85 92 97 111 0.78 2.61 0.50

1985 42 54 76 193 0.88 3.15 0.61

1986 57 87 98 0 0.76 2.17 0.45

1987 44 59 83 200 0.89 3.14 0.61

1988 46 84 63 115 0.85 2.80 0.55

1989 60 67 80 99 0.80 2.71 0.53

1990 102 168 138 237 0.84 2.79 0.55

1991 146 201 208 368 0.84 2.86 0.56

1992 144 235 258 536 0.88 3.01 0.59

1993 272 392 448 914 0.87 2.99 0.58

1994 280 485 572 1235 0.89 3.07 0.60

1995 320 685 749 2186 0.92 3.22 0.63

1996 454 978 1256 6899 0.95 3.52 0.68

1997 653 2285 2584 6342 0.94 3.23 0.64

1998 998 2705 3076 7534 0.93 3.20 0.63

1999 1142 3361 3912 9438 0.94 3.21 0.64

2000 1545 4329 4854 10577 0.93 3.15 0.63

2001 1621 4901 7310 13144 0.94 3.19 0.64

2002 2385 5364 6231 18985 0.93 3.27 0.64

2003 2206 6952 8410 24517 0.95 3.31 0.65

2004 3941 9511 9856 35328 0.93 3.31 0.65

2005 5060 8769 9503 52199 0.93 3.44 0.66

2006 5308 8975 11710 62919 0.94 3.49 0.67

2007 5013 9008 14390 73212 0.95 3.53 0.68

2008 5744 11204 22552 78221 0.95 3.47 0.67

2009 6126 19895 24687 81132 0.95 3.37 0.66

2010 7661 21432 28527 93807 0.95 3.38 0.66

Total 51589 122468 161901 580456 0.94 3.39 0.66

Page 38: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

119

Figure 5.10 Authorship Pattern Vs Year

The degree of collaboration (Formula 4.4) ranges between 0.71 and

0.95. This indicates there exist collaborative research in Nanotechnology.

This collaborative index ranges between 2.03 to 3.53. The Collaborative

Coefficient for 1981 is 0.54. It is observed that the collaborative coefficient

all the years were more than 0.5 except, in the year 1982, 1983 and 1986. The

collaborative coefficient for the year 1987 is 0.42, for 1983 is 0.41 and for the

year 1986 is 0.45, which is below 0.50. This reveals that the research persist

in these years.

5.7.2 Authorship Pattern of G20 Countries

Countrywise authorship pattern has also been analysed and the same

is shown in Table 5.22

Page 39: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

120

Table 5.22 Authorship Pattern of G20 countries

S.No. G20 Countries

Single

Author

Two

Authors

Three

Authors > 3 Authors DC CI CC

1 United States 13669 36110 37646 103665 0.93 5.09 0.63

2 China 1665 7675 16676 127084 0.99 1.09 0.71

3 Japan 3950 9578 15839 62996 0.96 1.83 0.68

4 Germany 4044 9182 12382 47217 0.94 1.76 0.66

5 France 2117 4531 8178 38126 0.96 2.17 0.69

6 Korea 1017 5303 8453 31867 0.98 2.34 0.69

7 United Kingdom 3332 6420 7536 29309 0.93 1.64 0.65

8 Italy 1003 2063 3577 25005 0.97 3.17 0.70

9 India 1182 7028 7812 14755 0.96 1.97 0.64

10 Russia 2687 4501 5329 18216 0.91 1.51 0.63

11 Canada 1246 4827 5465 12295 0.95 2.22 0.64

12 Australia 975 2343 3403 10255 0.94 2.00 0.66

13 Brazil 288 1350 2207 8364 0.98 1.97 0.69

14 European Union 333 935 1551 7344 0.97 2.09 0.69

15 Turkey 540 1342 1481 2863 0.91 2.69 0.61

16 Mexico 202 611 968 4332 0.97 2.40 0.69

17 Argentina 95 429 800 1978 0.97 3.68 0.68

18 South Africa 133 342 415 926 0.93 5.36 0.63

19 Saudi Arabia 215 213 226 529 0.82 3.44 0.55

20 Indonesia 18 29 86 291 0.96 3.62 0.68

21 Others 12878 15656 19871 31544 0.85 0.22 0.59

Total 51589 122468 161901 580972 0.94 1.50 0.66

Page 40: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

121

Figure 5.11 Authorship Pattern of G20 countries

The degree of collaboration between G20 countries ranges between

0.82 and 0.99. The collaborative research is more in chance. It is followed by

Korea and Brazil. The collaborative index (Formula 4.3) among G20

countries lies between 1.09 and 5.09. Similarly the collaborative coefficient

(Formula 4.5) ranges between 0.55 and 0.75. It is less in Saudi Arabia and

maximum in China. (Figure 5.11)

5.7.3 Co-authorship Index Vs Year

The pattern of co-authorship Index also calculated yearwise and the

same is shown in Table 5.23

It is found from the Table 5.23 that the Co-authorship Index

(Formula 4.6) for single author papers was 375.494 in the 1981 which

enhanced to 515.044 in the 1982. Subsequently it shows the declining trend

wherein it was 89.870 in 2010.

Page 41: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

122

Table 5.23 Co-authorship Index Vs Year

S.No. YearsSingle

AuthorCAI

Two

AuthorsCAI

Three

AuthorsCAI

> 3

AuthorsCAI

No. of

Records

1 1981 26 375.494 42 255.513 55 253.104 0 0 123

2 1982 49 515.044 59 261.237 53 177.513 8 7.4735 169

3 1983 59 492.047 89 312.665 65 172.733 0 0 213

4 1984 85 392.187 92 178.812 97 142.611 111 45.518 385

5 1985 42 204.405 54 110.706 76 117.859 193 83.481 365

6 1986 57 418.402 87 269.013 98 229.220 0 0 242

7 1987 44 202.488 59 114.376 83 121.712 200 81.802 386

8 1988 46 265.303 84 204.079 63 115.780 115 58.948 308

9 1989 60 348.309 67 163.841 80 147.983 99 51.078 306

10 1990 102 280.915 168 194.903 138 121.105 237 58.011 645

11 1991 146 280.987 201 162.953 208 127.557 368 62.946 923

12 1992 144 218.072 235 149.913 258 124.498 536 72.142 1173

13 1993 272 238.487 392 144.782 448 125.164 914 71.224 2026

14 1994 280 193.385 485 141.104 572 125.883 1235 75.809 2572

15 1995 320 144.274 685 130.096 749 107.604 2186 87.594 3940

16 1996 454 84.122 978 76.335 1256 74.156 6899 113.61 9587

17 1997 653 97.772 2285 144.120 2584 123.283 6342 84.395 11864

18 1998 998 123.861 2705 141.418 3076 121.646 7534 83.103 14313

19 1999 1142 113.629 3361 140.873 3912 124.031 9438 83.462 17853

20 2000 1545 128.819 4329 152.046 4854 128.962 10577 78.38 21305

21 2001 1621 106.743 4901 135.949 7310 153.385 13144 76.926 26976

22 2002 2385 128.520 5364 121.760 6231 106.991 18985 90.924 32965

23 2003 2206 93.114 6952 123.609 8410 113.113 24517 91.973 42085

24 2004 3941 119.392 9511 121.375 9856 95.143 35328 95.121 58636

25 2005 5060 119.004 8769 86.875 9503 71.216 52199 109.11 75531

26 2006 5308 106.049 8975 75.534 11710 74.548 62919 111.72 88912

27 2007 5013 87.627 9008 66.329 14390 80.151 73212 113.74 101623

28 2008 5744 86.675 11204 71.218 22552 108.436 78221 104.9 117721

29 2009 6126 82.540 19895 112.919 24687 105.990 81132 97.156 131840

30 2010 7661 89.870 21432 105.908 28527 106.634 93807 97.803 151427

TOTAL 51589 100 122468 100 161901 100 580456 100 916414

Page 42: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

123

On the other hand the Co-Authorship Index for two authors has

shown declining trend. In other words, the Co-authorship Index in 1981was

255.513, which started declining to 105.908 in 2010. With regard to the

multiple authored publications with more than two authors, the co-authorship

has shown an increasing trend. (Table 5.24)

5.7.4 Co-authorship Index of G20 countries

The co-authorship index has also been calculated to G20 countries.

Table 5.24 Co-authorship of G20 countries

S.No.

G20

Countries

Single

Author CAI

Two

Authors CAI

Three

Authros CAI

> 3

Authors CAI Total

1 United States 13669 127.07 36110 141.4 37646 111.51 103665 85.572191090

2 China 1665 19.319 7675 37.512 16676 61.654 127084 130.93153100

3 Japan 3950 75.969 9578 77.597 15839 97.067 62996 107.58 92363

4 Germany 4044 98.643 9182 94.347 12382 96.239 47217 102.27 72825

5 France 2117 71.025 4531 64.036 8178 87.427 38126 113.58 52947

6 Korea 1017 38.734 5303 85.081 8453 102.59 31867 107.78 46640

7 United Kingdom 3332 127.02 6420 103.1 7536 91.543 29309 99.216 46597

8 Italy 1003 56.298 2063 48.778 3577 63.976 25005 124.63 31648

9 India 1182 68.222 7028 170.87 7812 143.67 14755 75.622 30777

10 Russia 2687 155.31 4501 109.59 5329 98.148 18216 93.494 30733

11 Canada 1246 92.87 4827 151.55 5465 129.79 12295 81.374 23833

12 Australia 975 102.02 2343 103.28 3403 113.47 10255 95.288 16976

13 Brazil 288 41.903 1350 82.741 2207 102.32 8364 108.06 12209

14 European Union 333 58.205 935 68.843 1551 86.384 7344 113.98 10163

15 Turkey 540 154.07 1342 161.29 1481 134.64 2863 72.535 6226

16 Mexico 202 58.699 611 74.792 968 89.632 4332 111.78 6113

17 Argentina 95 51.107 429 97.219 800 137.14 1978 94.49 3302

18 South Africa 133 130.1 342 140.92 415 129.35 926 80.433 1816

19 Saudi Arabia 215 322.84 213 134.73 226 108.13 529 70.535 1183

20 Indonesia 18 75.412 29 51.18 86 114.81 291 108.26 424

21 Others 12878 267.72 15656 137.1 19871 131.63 31544 58.23 85449

Total 51589 122468 161901 580972 916414

Page 43: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

124

It is found that the Co-authorship Index for single author papers was

high then two authored papers in United States. Likewise India, Australia,

South Africa and Turkey are in a same group. The CAI of two authors paper

were mean while increased the CAI of three authored papers were decreased.

5.7.5 Ranking of Authors in Nanotechnology Literature

The analysis of research output has also been made by ranking of

the highly productive authors. For this purpose authors productivity with

more than 300 publications were analyzed and the same is shown in

Table 5.25.

Table 5.25 Ranking of authors in Nanotechnology Literature

S.No. Authors Affiliation Country TP

1 Inoue, A. Institute for Materials Research, TohokuUniversity, Sendai 980

Japan 1028

2 Qian, Y. University of Science and Technology ofChina, Hefei, 230026

China 615

3 Zhang, L. Institute of Solid State Physics,Academic Sinica, Hefei, 230031

China 549

4 Schubert, U.S. Lehrst. fur Makromolekulare Stoffe, TUMünchen, Lichtenbergstr. 4, 85747Garching

Germany 450

5 Gao, L. State Key Lab. of High PerformanceCeramics and Superfine Microstructure,Shanghai Institute of Ceramics, ChineseAcademy of Sciences, Shanghai 200050

China 427

6 Valiev, R.Z. Univ, Ufa, Russian Federation Russia 417

7 Nanopoulos,D.V.

Lyman Laboratory of Physics, HarvardUniversity, Cambridge, 02138, Mass,United States

United States 407

8 Schultz, L. Siemens AG, Research Laboratories,Erlangen.

Germany 401

9 Gratzel, M. Institut de chimie physique, Ecolepolytechnique federale de Lausanne.

Germany 390

10 Eckert, J. California Institute of Technology, W.M.Keck Laboratory of EngineeringMaterials 138-78, Pasadena, CA 91125.

United States 389

11 Chu, P.K. Dept. of Phys. and Materials Science,City University of Hong Kong, 83 TatChee Avenue, Kowloon.

Hong Kong 383

Page 44: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

125

Table 5.25 (Continued)

12 Liu, W. Academia Sinica, Institute of MetalResearch, Shenyang, 110015

China 372

13 Gedanken, A. Department of Chemistry, Bar-IlanUniversity, Ramat-Gan, 52900.

Israel 359

14 Bando, Y. Natl. Inst. for Res. in Inorg. Mat., Tsukuba,Ibaraki 305.

Japan 352

15 Zhang, W. Key Laboratory of Instrumentation Scienceand Dynamic Measurement (NorthUniversity of China), Ministry of Education,National Key Laboratory of Science andTechnology on Electronic Test andMeasurement, Xueyuan Road 3, Taiyuan,Shanxi Province 030051

China 332

16 Ellis, J. TH Division, CERN, Geneva, Switzerland;Falk, T., School of Physics and Astronomy,University of Minnesota, Minneapolis, MN55455

UnitedStates

331

17 Iijima, S. Fundamental Research Laboratories, NECCorporation, 34 Miyukigaoka, Tsukuba,Ibaraki 305.

Japan 327

18 Cingolani, R. Dipartimento Scienza dei Materiali, UnitÃINFM, Università di Lecce, 73100 Lecce

Italy 321

19 Liu, P. Department of Chemical Engineering,CERPIC, Université Laval, Sainte-Foy,Que. G1K 7P4

Canada 320

20 Niihara, K. Inst. of Sci. and Ind. Res., Osaka University,8-1 Mihogaoka, Ibaraki 567

Japan 312

21 Li, W. Dept. of Mat. Sci. and Engineering, ZhejiangUniversity, Hangzhou 310027

China 311

22 Li, Y. Department of Chemistry, StructureResearch Laboratory, Univ. ofSci./Technology of, Hefei 230026

China 310

23 Wang, X. Department of Physics, Henan NormalUniversity, Xinxiang 453002

China 308

24 Langdon, T.G. Depts. Mat. Sci. Mech. Eng. Univ. S., LosAngeles, CA 90089-1453

UnitedStates

306

25 Kawazoe, Y. Institute for Materials Research, TohokuUniversity, Sendai 980-77

Japan 303

26 Zhu, D. Dept. Biol. Chem. Molec. Pharmacol.,Harvard Medical School, Brigham andWomen's Hospital, Boston, MA 02115

UnitedStates

302

27 Wang, Z.L. Sch. of Mat. Science and Engineering,Georgia Institute of Technology, Atlanta,GA 30332-0245

UnitedStates

301

28 Kwong, D.L. Institute of Microelectronics, SingaporeScience Park II, 11 Science Park Road,Singapore 117685

Singapore 300

Page 45: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

126

It is observed that although United States top in the production of

Nanotechnology research and China follows, but in ranking the authors from

China tops with highest number of contributors followed by United States as

shown in Table 5.26. The highest number of contributors 1028 were Inoue,A.,

from Japan, followed by Qian.Y., from China with 615, Zhang.L. from China

with 549 contributions.

The grouping of the highly productive authors according to

countries is also depicted in Table 5.26.

Table 5.26 Ranking by Country of Authors in Nanotechnology

S.No.

Name of the

Country

Number of

Contributors %

Cumulative

%

1 China 9 32.14 32.14

2 United states 5 17.86 50.00

3 Japan 5 17.86 67.86

4 Germany 3 10.71 78.57

5 Singapore 1 3.57 82.14

6 Russia 1 3.57 85.71

7 Italy 1 3.57 89.29

8 Israel 1 3.57 92.86

9 Hong Kong 1 3.57 96.43

10 Canada 1 3.57 100.00

28

This is followed by United States, Japan and Germany. Other than

G20 countries like Israel, Hong Kong and Singapore has each one

contribution with more than 300 records.

5.7.6 Author Productivity

The analysis of author productivity is one of the prevailing trends of

measures in the scientometrics studies. The analysis of number of

Page 46: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

127

contributions based on the author’s productivity has been presented in Table

5.27. From the table it is observed that 5.63% are single author publications.

It is followed by 13.36% have contributed two papers and 17.67% contributed

three papers. By and large authors who have contributed between 1 to 10

contributions forms 98.24% of the total contributions.

Table 5.27 Author Productivity in Nanotechnology Literature

S.No. No. of Authors No. of Records % Cum. %

1 1 51589 5.63 5.63

2 2 122468 13.36 18.99

3 3 161901 17.67 36.66

4 4 214040 23.36 60.02

5 5 147860 16.13 76.15

6 6 94732 10.34 86.49

7 7 50992 5.56 92.05

8 8 29763 3.25 95.30

9 9 17055 1.86 97.16

10 10 9873 1.08 98.24

11 11 5681 0.62 98.86

12 12 3314 0.36 99.22

13 13 2158 0.24 99.46

14 14 1379 0.15 99.61

15 15 915 0.10 99.71

16 16 632 0.07 99.77

17 17 402 0.04 99.82

18 18 299 0.03 99.85

19 19 204 0.02 99.87

20 20 148 0.02 99.89

21 21 114 0.01 99.90

22 22 103 0.01 99.91

23 23 62 0.01 99.92

24 24 51 0.01 99.93

25 25 50 0.01 99.93

26 26 31 0.00 99.93

27 27 21 0.00 99.94

28 28 28 0.00 99.94

Page 47: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

128

Table 5.27 (Continued)

29 29 33 0.00 99.94

30 30 24 0.00 99.95

31 31 16 0.00 99.95

32 32 17 0.00 99.95

33 33 16 0.00 99.95

34 34 17 0.00 99.95

35 35 12 0.00 99.95

36 36 15 0.00 99.96

37 37 6 0.00 99.96

38 38 21 0.00 99.96

39 39 13 0.00 99.96

40 40 10 0.00 99.96

41 41 9 0.00 99.96

42 42 6 0.00 99.96

43 43 9 0.00 99.96

44 44 16 0.00 99.97

45 45 7 0.00 99.97

46 46 10 0.00 99.97

47 47 14 0.00 99.97

48 48 8 0.00 99.97

49 49 11 0.00 99.97

50 50 6 0.00 99.97

51 51 8 0.00 99.97

52 52 10 0.00 99.97

53 53 5 0.00 99.97

54 54 4 0.00 99.98

55 55 3 0.00 99.98

56 56 3 0.00 99.98

57 57 4 0.00 99.98

58 58 2 0.00 99.98

59 59 2 0.00 99.98

60 60 3 0.00 99.98

61 61 1 0.00 99.98

62 63 2 0.00 99.98

63 64 2 0.00 99.98

64 65 2 0.00 99.98

65 66 1 0.00 99.98

66 67 5 0.00 99.98

Page 48: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

129

Table 5.27 (Continued)

67 68 4 0.00 99.98

68 69 9 0.00 99.98

69 70 2 0.00 99.98

70 71 3 0.00 99.98

71 72 2 0.00 99.98

72 73 4 0.00 99.98

73 74 1 0.00 99.98

74 75 1 0.00 99.98

75 77 2 0.00 99.98

76 79 1 0.00 99.98

77 81 1 0.00 99.98

78 83 2 0.00 99.98

79 84 1 0.00 99.98

80 85 1 0.00 99.98

81 86 2 0.00 99.98

82 87 1 0.00 99.98

83 88 2 0.00 99.98

84 89 1 0.00 99.98

85 91 1 0.00 99.98

86 94 2 0.00 99.98

87 95 2 0.00 99.98

88 98 2 0.00 99.98

89 99 71 0.01 99.99

90 100 3 0.00 99.99

91 101 1 0.00 99.99

92 110 2 0.00 99.99

93 112 1 0.00 99.99

94 115 1 0.00 99.99

95 117 1 0.00 99.99

96 122 1 0.00 99.99

97 127 1 0.00 99.99

98 130 1 0.00 99.99

99 135 1 0.00 99.99

100 137 1 0.00 99.99

101 140 1 0.00 99.99

102 142 1 0.00 99.99

103 143 1 0.00 99.99

104 150 1 0.00 99.99

Page 49: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

130

Table 5.27 (Continued)105 151 2 0.00 99.99

106 154 1 0.00 99.99

107 155 1 0.00 99.99

108 156 1 0.00 99.99

109 162 2 0.00 99.99

110 190 1 0.00 99.99

111 196 1 0.00 99.99

112 206 1 0.00 99.99

113 208 2 0.00 99.99

114 222 1 0.00 99.99

115 229 1 0.00 99.99

116 240 1 0.00 100.00

117 247 1 0.00 100.00

118 252 1 0.00 100.00

119 334 1 0.00 100.00

120 336 1 0.00 100.00

121 353 1 0.00 100.00

122 364 1 0.00 100.00

123 367 1 0.00 100.00

124 444 1 0.00 100.00

125 452 1 0.00 100.00

126 454 1 0.00 100.00

127 460 1 0.00 100.00

128 465 1 0.00 100.00

129 480 1 0.00 100.00

130 524 1 0.00 100.00

131 525 1 0.00 100.00

132 534 1 0.00 100.00

133 541 1 0.00 100.00

134 548 1 0.00 100.00

135 600 1 0.00 100.00

136 601 1 0.00 100.00

137 602 1 0.00 100.00

138 2069 1 0.00 100.00

139 2071 1 0.00 100.00

140 2078 1 0.00 100.00

141 2089 1 0.00 100.00

142 2166 1 0.00 100.00

143 2423 19 0.00 100.00

TOTAL 916414

Page 50: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

131

5.9 PUBLICATIONS BASED ON SUB-FIELDS RESEARCH

PRIORITY INDEX (RPI) FOR G20 COUNTRIES

The top 20 sub-fields in which Nanotechnology literature were

published has been identified and the same is shown in the Table 5.28.

Table 5.28 Sub-Fields Code and Subjects

S.No.Sub-Field

CodeSubject

No. of

Records%

1 NSM Nanostructured Materials 87274 9.52

2 SEM Scanning Electron Microscope 32526 3.55

3 TFILM Thin Films 26863 2.93

4 SYN Synthesis 24342 2.66

5 XRAY X-Ray Diffraction 23578 2.57

6 CSN Computer Simulation 21689 2.37

7 NP Nanoparticles 18211 1.99

8 NTECH Nanotechnology 16298 1.78

9 PLR Polymer 14498 1.58

10 CNT Carbon Nanotubes 13697 1.49

11 MSTR Mass Spectroscopy 12752 1.39

12 ADPN Adoption 10800 1.18

13 MM Mathematical Models 10422 1.14

14 SILI Silicon 9977 1.09

15 TEMTransmission Electron

Microscope 9369 1.02

16 CSTR Crystal Structure 7548 0.82

17 OXN Oxidation 7181 0.78

18 MP Mechanical Properties 7000 0.76

19 SS Surface Structure 5549 0.61

20 CRN Carbon 5092 0.56

OTH Others 551748 60.21

Page 51: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

132

It reveals that 9.52% of publications on ‘Nanostructured Materials’

(NSM) has resulted in highest number (87,274) of publications. It is followed

by ‘Scanning Electron Microscope’ (3.55%), ‘Thin Films’ (2.93%) and

‘Synthesis’ (2.66%). The output in other sub-fields were in the range between

0.56% and 2.57% contributions.

5.8.1 Publication output of G20 countries in different sub-fields of

Nanotechnology 1981-2010

The contribution of G20 countries in the various sub-fields of

nanotechnology for the period 1981-2010 is shown in the Table 5.29.

Page 52: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

133

Table 5.29 Publication output of G20 countries in different sub-fields of Nanotechnology Research during 1981 – 2010

S.No. G20 Countries NSM SEM TFILM SYN XRAY CSN NP NTECH PLR CNT MSTR ADPN MM SILI TEM CSTR OXN MP SS CRN

1 United States 16467 4076 5195 3292 2421 5832 3500 4118 2733 2894 1789 1667 2791 19861635 1060 10921103 1235 639

2 China 1640211081 3474 6651 7670 2422 3756 1402 2604 2896 3920 2198 1019 12292104 2306 13261806 607 1107

3 Japan 9624 2775 3517 2708 1805 1965 1474 1235 1487 1597 1547 1169 795 17151395 952 785 591 662 748

4 Germany 6510 1643 2196 1378 1247 1796 1323 896 1189 680 1004 883 898 828 802 615 550 462 671 448

5 France 4773 1156 1678 1209 1380 1330 934 621 784 618 583 720 781 759 665 456 467 330 354 304

6 Korea 4546 2015 2149 1642 1384 755 1151 778 912 1110 842 469 298 624 499 334 372 470 265 272

7 United Kingdom 3089 1020 1062 783 650 1325 725 748 664 678 500 490 614 446 488 310 320 252 380 185

8 Italy 2644 776 866 577 644 854 470 359 470 384 272 362 403 369 221 216 298 165 176 160

9 India 3278 1950 1162 1451 2190 361 1037 378 485 322 374 353 230 202 344 264 282 266 129 163

10 Russia 3642 377 489 517 450 646 677 240 331 331 328 345 443 298 219 376 175 186 330 215

11 Canada 1929 606 592 531 432 631 422 335 449 282 260 261 349 215 198 126 205 145 252 85

12 Australia 1417 567 375 409 361 409 295 298 312 238 276 264 194 189 222 143 103 132 103 75

13 Brazil 1130 651 307 377 584 157 301 80 192 185 125 191 97 91 135 70 148 138 102 79

14 European Union 178 498 542 342 101 128 141 83 152 95 92 165 105 88 54 25 116 157 53 63

15 Turkey 317 349 179 227 235 78 94 49 158 54 65 147 53 57 28 41 61 77 47 24

16 Mexico 687 289 198 238 341 116 227 127 91 98 57 116 76 41 74 53 51 37 41 48

17 Argentina 296 112 60 93 133 110 81 25 53 31 30 88 43 8 25 30 56 34 10 25

18 South Africa 107 82 40 55 70 18 49 27 41 32 13 23 16 26 28 17 25 24 3 11

19 Saudi Arabia 58 60 42 30 83 13 53 19 22 26 8 21 14 8 7 8 12 16 3 5

20 Indonesia 26 15 8 9 11 4 15 6 2 2 9 9 1 1 3 1 4 3 1 2

21 Others 10154 2428 2732 1823 1386 2739 1486 4474 1367 1144 658 859 1202 797 223 145 733 606 125 434Total 8727432526 26863 24342 23578 21689 18211 16298 1449813697 127521080010422 99779369 7548 71817000 55495092

Page 53: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

134

5.8.2 Research Priority Index (RPI) of G20 countries

More counting of publication may not be effective in judging the

quantity of output and in order to measure the output by different countries in

these sub-fields, the technique known as Research Priority Index (RPI)

(Formula 4.11) for cross national comparison.

The Research Priority Index thus calculated between countries and

sub-field are shown in Table 5.30

Page 54: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

135

Table 5.30 Research Priority Index of G20 countries on different sub-fields of Nanotechnology Research during 1981-2010

S.No. G20 Countries NSM SEM TFILM SYN XRAY CSN NP NTECH PLR CNT MSTRADPN MM SILI TEM CSTR OXN MP SS CRN

1 United States 90.49 60.10 92.74 64.86 35.69 128.95 92.17 121.17 90.40 101.33 36.12 74.02 128.43 95.46 83.69 67.35 72.93 75.57 106.73 60.18

2 China 112.49203.92 77.41 163.55 141.14 66.84 123.45 51.49 107.51126.56 98.78 121.82 58.52 73.73 134.42 182.87110.53 154.43 65.48 130.13

3 Japan 109.41 84.65 129.90 110.38 55.06 89.89 80.31 75.18 101.76115.68 64.62 107.40 75.68 170.55147.73 125.14108.46 83.77 118.37 145.75

4 Germany 93.87 63.57 102.87 71.24 48.24 104.20 91.42 69.18 103.20 62.47 53.19 102.88 108.43104.43107.72 102.53 96.38 83.05 152.17 110.71

5 France 94.66 61.51 108.12 85.96 73.43 106.14 88.77 65.95 93.60 78.09 42.48 115.39 129.70131.67122.85 104.56112.56 81.60 110.42 103.33

6 Korea 102.35121.72 157.19 132.54 83.60 68.40 124.19 93.79 123.60159.23 69.65 85.33 56.18 122.89104.65 86.95 101.79 131.93 93.83 104.96

7 United Kingdom 69.61 61.67 77.75 63.26 39.30 120.15 78.30 90.26 90.07 97.35 41.40 89.23 115.86 87.92 102.44 80.77 87.64 70.80 134.68 71.45

8 Italy 87.72 69.08 93.35 68.64 57.33 114.02 74.73 63.78 93.87 81.18 33.16 97.06 111.97107.10 68.30 82.86 120.16 68.25 91.84 90.99

9 India 111.84178.51 128.80 177.49 200.47 49.56 169.55 69.06 99.61 70.00 46.88 97.32 65.71 60.29 109.33 104.14116.93 113.15 69.22 95.32

10 Russia 124.43 34.56 54.28 63.33 41.25 88.81 110.85 43.91 68.08 72.06 41.18 95.25 126.75 89.06 69.70 148.54 72.67 79.23 177.33 125.90

11 Canada 84.99 71.64 84.74 83.88 51.07 111.87 89.10 79.04 119.08 79.17 42.09 92.92 128.76 82.86 81.26 64.19 109.77 79.65 174.62 64.19

12 Australia 87.65 94.10 75.36 90.70 59.91 101.80 87.45 98.70 116.17 93.80 62.73 131.96 100.49102.26127.91 102.27 77.43 101.80100.20 79.51

13 Brazil 97.19 150.23 85.78 116.25 134.76 54.33 124.06 36.84 99.40 101.38 39.50 132.75 69.86 68.46 108.16 69.61 154.70 147.98137.97 116.45

14 European Union 18.39 138.06 181.93 126.69 38.62 53.22 69.82 45.92 94.54 62.54 34.93 137.76 90.85 79.53 51.97 29.87 145.66 202.24 86.13 111.56

15 Turkey 53.46 157.93 98.08 137.26 106.34 52.93 75.98 44.25 160.41 58.03 40.28 200.34 74.85 84.09 43.99 79.95 125.03 161.91124.67 69.38

16 Mexico 118.01133.20 110.50 146.57 157.16 80.18 186.87 116.82 94.10 107.26 35.97 161.02 109.32 61.61 118.41 105.26106.47 79.24 110.77 141.32

17 Argentina 94.13 95.57 61.99 106.03 113.48 140.76123.44 42.57 101.46 62.81 35.05 226.14 114.51 22.25 74.06 110.31216.43 134.80 50.01 136.26

18 South Africa 61.87 127.22 75.14 114.02 108.60 41.88 135.78 83.60 142.71117.90 27.62 107.47 77.47 131.51150.81 113.66175.68 173.02 27.28 109.01

19 Saudi Arabia 51.48 142.90 121.12 95.47 197.66 46.43 225.45 90.31 117.55147.05 26.09 150.63 104.06 62.12 57.88 82.10 129.45 177.06 41.88 76.07

20 Indonesia 64.39 99.68 64.37 79.91 73.09 39.86 178.03 79.57 29.82 31.56 81.89 180.11 20.74 21.66 69.21 28.63 120.39 92.63 38.95 84.89

21 Others 124.7880.06 109.07 80.32 49.03 135.4487.51 294.41 101.1289.57 29.71 85.30 123.6985.67 25.53 20.60 109.4792.85 24.16 91.41

Page 55: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

136

By comparing the output of research between G20 countries, it was

noticed that the major contributions of research has been on the following

sub-fields namely ‘Nanostructured Materials’ (NSM), ‘Scanning Electron

Microscope’ (SEM), ‘Thin Films’ (TFILM), ‘Syntheis’ (SYN) and ‘X-ray

Diffraction’ (XRAY).. Further it is also noticed that the quantum of research

output in these major five areas have shown significant production between

one country to another country.

5.8.3 Research Priority Index Scaling of Sub-field of Literature in

Nanotechnology

The Research Priority Index matrix for various countries in different

sub-fields is shown in Table 5.31. The investigator has adopted the procedure

laid down by Barre (1987) for fixing the benchmarks for quantitative

description of the relative status of sub-fields within a country as shown in

Table 5.31

Table 5.31 Benchmarks for Quantitative Description

Scale Priority Status Symbolic representation

PI 70 Low - -70 < PI 90 Below average -

90 < PI 110 Average 0

110 < PI 130 Above average +PI > 130 High + +

In order to identify the priority status of research productivity index,

the values are replaced with symbol as suggested by Barre (1987). The

symbols are shown in Table 5.32.

In Tables 5.32, a ‘row’ represents the priority status of different sub-

fields in a given country, where as a ‘column’ indicates the priority status of

the given sub-field in different countries.

Page 56: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

137

Table 5.32 Research Priority Profile of G20Countries in Different Sub-Fields on Nanotechnology

S.

No.G20 Countries NSMSEMTFILM SYN XRAY CSN NP NTECH PLR CNT MSTR ADPN MM SILI TEMCSTROXN MP SS CRN

1 United States 0 -- 0 -- -- + 0 + 0 0 -- - + 0 - -- - - 0 --

2 China + ++ - ++ ++ -- + -- 0 + 0 + -- - ++ ++ + ++ -- ++

3 Japan + - ++ + -- - - - 0 + -- 0 - ++ ++ + 0 - 0 ++

4 Germany 0 -- 0 - -- 0 0 -- 0 -- -- 0 0 0 0 0 0 - ++ +

5 France 0 -- 0 - - 0 - -- 0 - -- + + ++ + 0 + - + 0

6 Korea 0 + ++ ++ - -- + 0 + ++ -- - -- + 0 - 0 ++ 0 0

7 United Kingdom - -- - -- -- + - - 0 0 -- - + - 0 - - - ++ -

8 Italy - -- 0 -- -- + - -- 0 - -- 0 + 0 -- - + -- 0 0

9 India + ++ ++ ++ ++ -- ++ -- 0 - -- 0 -- -- 0 0 + + -- 0

10 Russia + -- -- -- -- - + -- -- - -- 0 + - -- ++ - - ++ +

11 Canada - - - - -- + - - + - -- 0 + - - -- 0 - ++ --

12 Australia - 0 - 0 -- 0 - 0 + 0 -- ++ 0 0 + 0 - 0 0 -

13 Brazil 0 ++ - + ++ -- + -- 0 0 -- ++ -- -- 0 -- ++ ++ ++ +

14 European Union -- ++ ++ + -- -- -- -- 0 -- -- ++ 0 - -- -- ++ ++ - +

15 Turkey -- ++ 0 ++ + -- - -- ++ -- -- ++ - - -- - + ++ + --

16 Mexico + ++ + ++ ++ - ++ + 0 0 -- ++ 0 -- + 0 0 - + ++

17 Argentina 0 0 -- 0 + ++ + -- 0 -- -- ++ + -- - + ++ ++ -- ++

18 South Africa -- + - + + -- ++ - ++ + -- 0 - ++ ++ + ++ ++ -- 0

19 Saudi Arabia -- ++ + 0 ++ -- ++ - + ++ -- ++ 0 -- -- - + ++ -- -

20 Indonesia -- 0 -- - - -- ++ - -- -- - ++ -- -- -- -- + 0 -- -21 Others + - + - -- ++ - ++ 0 - -- - + - -- -- 0 0 -- 0

Page 57: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

138

Table 5.33 Ranking of G20 countries based on Research Priority

Profile of G20 countries

Sl.

NoCountry

High

( + + )

Above

Average

( + )

Average

0

Below

Average

( - )

Low

( - - )

Mean

ValueRank

1 United States 0 3 7 4 6 2.35 15

2 China 7 5 2 2 4 3.45 2

3 Japan 4 4 4 6 2 3.1 5

4 Germany 1 1 11 2 5 2.55 14

5 France 1 5 6 5 3 2.8 10

6 Korea 4 4 6 3 3 3.15 4

7 United Kingdom 1 2 3 10 4 2.3 18

8 Italy 0 3 6 4 7 2.25 19

9 India 5 3 5 1 6 3 8

10 Russia 2 4 1 5 8 2.35 15

11 Canada 1 3 2 10 4 2.35 15

12 Australia 1 2 10 5 2 2.75 11

13 Brazil 6 3 4 1 6 3.1 5

14 European Union 5 2 2 2 9 2.6 13

15 Turkey 5 3 1 4 7 2.75 11

16 Mexico 6 5 5 2 2 3.55 1

17 Argentina 5 4 4 1 6 3.05 7

18 South Africa 6 5 2 3 4 3.3 3

19 Saudi Arabia 6 3 2 3 6 3 8

20 Indonesia 2 1 2 5 10 2 20

Page 58: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

139

Figure 5.12 Ranking of G20 countries based on Research Priority

Profile of G20 countries

It is observed from the Table 5.32 and Table 5.33 of the research

priority among the countries during the period of study ‘China’ has high and

above average. It is followed by 11 in Mexico and South Africa. Accordingly

to the ranking Mexico is in top order. It is followed by China, South Africa,

Korea. India holds the eight position. Even though United States has

maximum publication it has 15th position. The summarized output is shown in

Table 5.33. The mean nd the rank were calculated the same is shown in

Table 5.33.

5.8.4 Ranking of subjects based on Research Priority Index Vs

Countries High and Above Average

The ranking of subjects based on research priority index on sub-

fields of Nanotechnology has been analysed and show in Table 5.34

Page 59: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

140

Table 5.34 Ranking of subjects based on Research Priority Index Vs

Countries High and Above Average

S.No.Sub-Field

CodeCountries High and Above average

No. of

CountriesRank

1 NSM China, Japan, India, Russia, Mexico 5 14

2 SEMChina, Korea, India, Brazil, EuropeanUnion, Turkey, Mexico, Saudi Arabia

8 5

3 TFILMJapan, Korea, India, European Union,Mexico, Saudi Arabia

6 11

4 SYNChina, Japan, Korea, India, Brazil, Euopeanunion, Turkey, Mexico, South Africa

9 3

5 XRAYChina, India, Brazil, Turkey, Mexico,Argentina, South Africa, Saudi Arabia

8 5

6 CSNUnited States, United Kingdom, Italy,Canada, Argentina

5 14

7 NPChina, India, Brazil, Mexico, Argentina,South Africa, Saudi Arabia

8 5

8 NTECH United States, Mexico 2 19

9 PLRKorea, Canada, Australia, Turkey, SouthAfrica, Saudi Arabia

6 11

10 CNTChina, Japan, Korea, South Africa, SaudiArabia

5 14

11 MSTR -- 0 20

12 ADPN

China, France, Australia, Brazil, EuropeanUnion, Turkey, Mexico, Argentina, SaudiArabia, Indonesia

10 2

13 MMUnited States, France, United Kingdom,Italy, Russia, Canada, Argentina

7 10

14 SILI Japan, France, Korea, South Africa 4 17

15 TEMChina, Japan, France, Australia, Mexico,South Africa

6 11

16 CSTR China, Japan, Russia, South Africa 4 17

17 OXN

China, France, Italy, India, Brazil, EuropeanUnion, Turkey, Argentina, South Africa,Saudi Arabia, Indonesia

11 1

18 MP

China, Korea, India, Brazil, EuropeanUnion, Turkey, Argentina, South Africa,Saudi Arabia

9 3

19 SSGermany, France, Korea, Russia, Canada,Brazil, Turkey, Mexico

8 5

20 CRNChina, Japan, Germany, Russia, Brazil,European Union, Mexico, Argentina

8 5

Page 60: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

141

Eleven countries are concentrated these study on the sub-field

oxidation (OXN) and 10 countries are concentrated on Adaptation (ADPN),

Nine countries concentrated on Synthesis (SYN) and 9 countries on XRAY,

SEM, NP, SS, CRN.

5.8.5 Ranking of countries based on Research Priority Index Vs sub-

fields of High and Above Average

The ranking of countries based on research priority index on sub-

fields of Nanotechnology has been analysed and show in table 5.35

Table 5.35 Ranking of countries based on Research Priority Index Vs

Sub-fields with High and Above Average

S.No.G20

Countries

Sub-Fields with High and

Above High

No. of

SubjectsRank

1 United States CSN. NTECH, MM 3 15

2 China

NSN, SEM, SYN, XRAY,NP, CNT, ADPN, TEM,CSTR, OXY, MP, CRN

12 1

3 JapanTFILM, SYN, CNT, SILI,TEM, CSTR, CRN

7 9

4 Germany SS, CRN 2 20

5 FranceADPN, MM, SILI, TEM,OXN, SS

6 12

6 KoreaTFILM, SYN, NP, PLR,CNT, SILI, MP

7 9

7UnitedKingdom CSN, MM, SS

3 15

8 Italy CSN, MM, OXN 3 15

9 IndiaNSM, SEM, TFILM, SYN,XRAY, NP, OXN, MP

8 5

10 RussiaNSM, NP, MM, CSTR, SS,CRN

6 12

11 Canada CSN, PLR, MM, SS 4 14

12 Australia PLR, ADPN, TEM 3 15

Page 61: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

142

Table 5.35 (Continued)

13 BrazilSEM, SYN, XRAY, NP,ADPN, OXN, MP, SS

8 5

14EuropeanUnion

SEM, TFILM, SYN, ADPN,OXN, MP, CRN

7 9

15 TurkeySEM, SYN, XRAY, PLR,ADPN, OXN, MP, SS

8 5

16 Mexico

NSM, SEM, TFILM, SYN,XRAY, NP, NTECH, ADPN,TEM, SS, CRN

11 2

17 Argentina

XRAY, CSN, NP, ADPN,MM, CSTR, OXN, MP,CRN

8 5

18 South Africa

SEM, SYN, XRAY, NP,PLR, CNT, SILI, TEM,CSTR, OXN, MP

10 3

19 Saudi Arabia

SEM, TFILM, XRAY, NP,PLR, CNT, ADPN, OXN,MP

9 4

20 Indonesia NP, ADPN, OXN 3 15

It can be seen from Table 5.35 that China top the table with in sub-

fields. Not only maximum number o sub-field, The Research Priority Index

also indicates above average and high. It is followed by Mexico and South

Africa.

5.9 INDIAN CONTRIBUTIONS ON NANOTECHNOLOGY

LITERATURE

India has a substantial contribution i.e. 3.36% on Nanotechnology

publications. It has ninth position on the world literature output on

nanotechnology. The Indian output of literature published on nanotechnology

and covered by Scopus databases alone has been taken up for the study.

Page 62: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

143

5.9.1 Indian contributions on Nanotechnology Vs Year

The yearwise distribution of Indian contribution of Literature on

Nanotechnology has been shown in Table 5.36

Table 5.36 Indian contributions on Nanotechnology Vs Year

S.No. Year No. of Records % Cumulative Cum. %

1 1981 2 0.01 2 0.012 1982 3 0.01 5 0.023 1983 4 0.01 9 0.034 1984 8 0.03 17 0.065 1985 3 0.01 20 0.066 1986 7 0.02 27 0.097 1987 6 0.02 33 0.118 1988 4 0.01 37 0.129 1989 10 0.03 47 0.15

10 1990 10 0.03 57 0.1911 1991 8 0.03 65 0.2112 1992 19 0.06 84 0.2713 1993 20 0.06 104 0.3414 1994 40 0.13 144 0.4715 1995 58 0.19 202 0.6616 1996 170 0.55 372 1.2117 1997 210 0.68 582 1.8918 1998 281 0.91 863 2.8019 1999 333 1.08 1196 3.8920 2000 408 1.33 1604 5.2121 2001 623 2.02 2227 7.2422 2002 730 2.37 2957 9.6123 2003 1065 3.46 4022 13.07

24 2004 1382 4.49 5404 17.56

25 2005 1947 6.33 7351 23.8826 2006 2639 8.57 9990 32.4627 2007 3511 11.41 13501 43.8728 2008 4545 14.77 18046 58.6329 2009 5522 17.94 23568 76.5830 2010 7209 23.42 30777 100

TOTAL 30777 100

Page 63: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

144

Figure 5.13 Indian contributions on Nanotechnology Vs Year

There exist 30777 publications in Nanotechnology literature during

the period 1981-2010, with an average publication of 1026 per year. The

cumulative output of Nanotechnology in this field increased from 2 papers

(0.01%) in the year 1981 to 7209 papers (23.42%) in the year 2010. The

growth of Indian contributions also seems to parabolic in nature and the same

can be seen in Figure 5.13.

5.9.2 Growth Ratio of Indian contributions Vs Year

The distribution of articles and ratio of progress over the previous

period has been calculated and the same is shown in Table 5.37

Page 64: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

145

Table 5.37 Growth Ratio of Indian contributions in Nanotechnology

S.No YearNo. of

RecordsGrowth Ratio

1. 1981 2 -

2. 1982 3 1 : 1.50

3. 1983 4 1 : 1.33

4. 1984 8 1 : 2.00

5. 1985 3 1 : 0.37

6. 1986 7 1 : 2.33

7. 1987 6 1 : 0.84

8. 1988 4 1 : 0.67

9. 1989 10 1 : 2.50

10. 1990 10 1 : 1.00

11. 1991 8 1 : 0.80

12. 1992 19 1 : 2.37

13. 1993 20 1 : 0.95

14. 1994 40 1 : 2.00

15. 1995 58 1 : 1.45

16. 1996 170 1 : 2.93

17. 1997 210 1 : 1.23

18. 1998 281 1 : 1.33

19. 1999 333 1 : 1.19

20. 2000 408 1 : 1.23

21. 2001 623 1 : 1.53

22. 2002 730 1 : 1.17

23. 2003 1065 1 : 1.46

24. 2004 1382 1 : 1.30

25. 2005 1947 1 : 1.41

26. 2006 2639 1 : 1.36

27. 2007 3511 1 : 1.33

28. 2008 4545 1 : 1.29

29. 2009 5522 1 : 1.21

30. 2010 7209 1 : 1.31

Page 65: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

146

Figure 5.14 Growth Ratio of Indian contributions on Nanotechnology

The growth ratio varies from 0.67 to 2.37. The overall growth can

been seen during the period 2003 to 2010. The ratio indicates a study growth

over the previous year. This ranges from 0.37 to 2.93. However in certain

years there a fall in the ratio of growth in four years i.e. 1985, 1988, 1991,

1993 and the fall range also 0.37 to 0.8

5.9.3 Indian contributions Vs Five Years Block

The distribution of Indian output literature in Nanotechnology

during the Five Years Block Period is shown in Table 5.38.

Page 66: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

147

Table 5.38 Indian contributions Vs Five Years Block

S.No.5 Years

Block

No. of

Records% Cumulative

Cum.

%

1 1981-1985 20 0.06 20 0.06

2 1986-1990 37 0.12 57 0.19

3 1991-1995 145 0.47 202 0.66

4 1996-2000 1402 4.56 1604 5.21

5 2001-2005 5747 18.67 7351 23.88

6 2006-2010 23426 76.12 30777 100

30777 100

Figure 5.15 Indian contributions Vs 5 Yrs Block Period

It can be seen that the publication trend started gaining momentum

during the fourth block year i.e. 1996-2000 and finds an exponential growth

in the other block year viz. 2001-2005 and 2006-2010. More than 90% of

Nanotechnology publications can be seen during the period 2001-2010.

Page 67: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

148

5.9.4 Growth ratio of Indian contributions Vs Five Years Block

The ratio of progress over the previous Five Years Block has been

calculated and the same is shown in Table 5.39

Table 5.39 Growth Ratio of Indian contributions Vs Five Years Block

S.No.5 Years

Block

No. of

Records

Growth

Ratio

1 1981-1985 20 --

2 1986-1990 37 1 : 1.85

3 1991-1995 145 1 : 3.92

4 1996-2000 1402 1 : 9.67

5 2001-2005 5747 1 : 4.10

6 2006-2010 23426 1 : 4.08

30777

Figure 5.16 Growth Ratio of Indian contributions Vs Five Years Block

The growth ratio varies from 1.85 to 9.67. It is observed the peak

growth ratio can be seen and the ratio is 9.67. Study increase in publication

Page 68: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

149

can be seen during the block period 2001-2010. This indicates that the

awareness on nanotechnology research commences from the year 1996

onwards.

5.9.5 Annual Average Growth Rate of Indian contributions Vs Five

Years Block

The annual average growth rate of literature in Nanotechnology is

shown in Table 5.40.

Table 5.40 Annual Average Growth Rate of Indian contributions Vs

Five Years Block

S.No. 5 Years Block No. of Records AAGR

1 1981-1985 20 1.062 1986-1990 37 1.033 1991-1995 145 2.224 1996-2000 1402 4.955 2001-2005 5747 7.126 2006-2010 23426 10.53

TOTAL 30777

Figure 5.17 Annual Average Growth Rate (AAGR) of Indian

Contributions

Page 69: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

150

The average annual publication growth rate of Indian contribution is

10.53% during the last five year period 2006-2010. It shows the growth in

linear trend (Figure 5.17).

5.9.6 Relative Growth Rate (RGR) and Doubling Time (Dt) of Indian

Contributions

The analysis of the data on the Indian output of Nanotechnology has

also been done with parameters such as Relative Growth Rate (RGR) and

Doubling Time (Dt). The explanation of these parameters were given in

Chapter 4.

Table 5.41 represents the chronological distribution, RGR, and Dt,

during the period 1981–2010. Dt is the period of time required for a quantity

to double in size or value. Hence it can be seen that the Dt is doubled during

the second decade. When the RGR is constant, the quantity undergoes

exponential growth and has a constant Dt or period which can be calculated

directly from the growth rate. (Figure 5.18)

Page 70: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

151

Table 5.41 Relative Growth Rate and Doubling time of Indian

Contributions

S.No. Year No. of Records Cumulative W1 W2

-1 -1(aa year )

R1- 2

RGRDt

1 1981 2 2 0.00 0.69

2 1982 3 5 0.69 1.61 0.92 0.76

3 1983 4 9 1.61 2.20 0.59 1.18

4 1984 8 17 2.20 2.83 0.64 1.09

5 1985 3 20 2.83 3.00 0.16 4.26

6 1986 7 27 3.00 3.30 0.30 2.31

7 1987 6 33 3.30 3.50 0.20 3.45

8 1988 4 37 3.50 3.61 0.11 6.06

9 1989 10 47 3.61 3.85 0.24 2.90

10 1990 10 57 3.85 4.04 0.19 3.59

11 1991 8 65 4.04 4.17 0.13 5.28

12 1992 19 84 4.17 4.43 0.26 2.70

13 1993 20 104 4.43 4.64 0.21 3.24

14 1994 40 144 4.64 4.97 0.33 2.13

15 1995 58 202 4.97 5.31 0.34 2.05

16 1996 170 372 5.31 5.92 0.61 1.13

17 1997 210 582 5.92 6.37 0.45 1.55

18 1998 281 863 6.37 6.76 0.39 1.76

19 1999 333 1196 6.76 7.09 0.33 2.12

20 2000 408 1604 7.09 7.38 0.29 2.36

21 2001 623 2227 7.38 7.71 0.33 2.11

22 2002 730 2957 7.71 7.99 0.28 2.44

23 2003 1065 4022 7.99 8.30 0.31 2.25

24 2004 1382 5404 8.30 8.59 0.30 2.35

25 2005 1947 7351 8.59 8.90 0.31 2.25

26 2006 2639 9990 8.90 9.21 0.31 2.26

27 2007 3511 13501 9.21 9.51 0.30 2.30

28 2008 4545 18046 9.51 9.80 0.29 2.39

29 2009 5522 23568 9.80 10.07 0.27 2.60

30 2010 7209 30777 10.07 10.33 0.27 2.60

Page 71: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

152

Figure 5.18 Relative Growth Rate and Doubling Time of Indian

Contributions

It is seen from the Table 5.41 that there is a fluctuation in RGR by

year wise. The year 1982 has noticed RGR as 0.92. Since then it has

decreased drastically and shows a fluctuation trend. The year 2010 has seen

RGR as 0.27. It is interesting to note that the RGR in 1982 was 0.92 where as

2010 it has come down to 0.27 (Figure 5.18). The corresponding by Dt for

different years gradually increased from 0.76 in 1982 to 2.60 in 2010. Thus as

the rate of growth of publication was decreased, the corresponding Dt was

increased.

5.9.7 Languagewise Distribution of Indian Contributions

The languagewise distribution of Nanotechnology literature by

language is shown in Table 5.42.

Page 72: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

153

Table 5.42 Languagewise Distribution of Indian Contributions

S.No. Language No. of Records % Cumulative Cum. %

1 English 30551 99.27 30551 99.27

2 Chinese 1 0.00 30552 99.273 Japanese 1 0.00 30553 99.28

4 German 5 0.02 30558 99.29

5 Russian 1 0.00 30559 99.306 Spanish 1 0.00 30560 99.30

7 Portuguese 1 0.00 30561 99.30

8 Italian 1 0.00 30562 99.319 Turkish 1 0.00 30563 99.31

10 Serbian 1 0.00 30564 99.31

11 Others 213 0.69 30777 100.00

Total 30777 100

The Indian scholarly communication is effective through English

language. This phenomenon is not an exception to the subject of

Nanotechnology which published a maximum of 99.27% of the total research

output in English only. Overall 13 publications were published by Indians

other than English Language.

5.9.8 Bibliographic Forms of Indian Contributions

Table 5.43 reveals the distribution of Nanotechnology research

output of India according to bibliographic forms of publication. It is observed

that the scientific research output largely published in subject periodicals and

sometimes as conference proceedings. Some of those papers presented in

conferences are further updated and published in journals of the respective

branch of knowledge.

Page 73: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

154

Table 5.43 Bibliographic Form of Indian Contributions

S.No. Bibliographic

Form

No. of

Records

% Cumulative Cum.

%

1 Article 25548 83.01 25548 83.01

2 Conference Paper 3671 11.93 29219 94.94

3 Review 1086 3.53 30305 98.47

4 Short Survey 39 0.13 30344 98.59

5 Editorial 39 0.13 30383 98.72

7 Note 52 0.17 30435 98.89

8 Letter 63 0.20 30498 99.09

9 Erratum 30 0.10 30528 99.19

10 Article in Press 35 0.11 30563 99.30

11 Book 2 0.01 30565 99.31

Others 212 0.69 30777 100

Total 30777 100

Figure 5.19 Bibliographic Forms of Indian Contributions

Page 74: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

155

It can be seen from Table 5.43 that more than half of the Indian

contributions (69.39%) are journal articles, and 21.11% were conference

papers. By and large (94.94%) it is found that the scholarly communication

of Nanotechnology research output is mostly through journals and

conferences as reflected in the Table 5.43 and Figure 5.19.

5.9.9 Activity Index of Indian Contributions

In order to compare India’s research performance with world’s

research performance, Activity Index (AI) suggested by Price and elaborated

by Karki and Garg (1997) has been used. Activity Index, calculated the

relative research effort of a country to a given field.

Table 5.44 Activity Index of Indian contributions

S.No. Year No. of Records World Activity Index

1 1981 2 123 48.42

2 1982 3 169 52.86

3 1983 4 213 55.924 1984 8 385 61.87

5 1985 3 365 24.47

6 1986 7 242 86.137 1987 6 386 46.28

8 1988 4 308 38.67

9 1989 10 306 97.3110 1990 10 645 46.16

11 1991 8 923 25.81

12 1992 19 1173 48.23

13 1993 20 2026 29.3914 1994 40 2572 46.31

15 1995 58 3940 43.83

16 1996 170 9587 52.8017 1997 210 11864 52.71

18 1998 281 14313 58.46

19 1999 333 17853 55.54

Page 75: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

156

Table 5.44 (Continued)

20 2000 408 21305 57.02

21 2001 623 26976 68.77

22 2002 730 32965 65.9423 2003 1065 42085 75.35

24 2004 1382 58636 70.18

25 2005 1947 75531 76.7526 2006 2639 88912 88.38

27 2007 3511 101623 102.87

28 2008 4545 117721 114.96

29 2009 5522 131840 124.7130 2010 7209 151427 141.75

TOTAL 30777 916414 100

Figure 5.20 Activity Index of Indian contribution vs Year

Page 76: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

157

Activity Index (AI) for India has been calculated to analyse how

India’s research performance changes over different years. The data reveals

that the India’s efforts in Nanotechnology research an average productivity

than world’s average. Activity Index ranges between 24.47 to 191.75. The

Activity Index (AI) was peek in 2010 (141.75) and the lowest in the year

1985 (24.47). Further it was observed that the Activity Index (AI) has

reflected fluctuation trend during the study period (Figures 5.20). The

Activity Index is less than 100 in 26 years out of 30 years, which reflect lower

activity of Nanotechnology research of world’s average. Only last four years

i.e. 2007, 2008, 2009 and 2010 it is greater than 100. It indicates that the

activity of Nanotechnology research gaining momentum since 2007.

5.9.10 Authorship Pattern of Indian author’s contribution

Authorship pattern for the Indian authors contributions of literature

in Nanotechnology has attempted with the objective to: The study of

authorship pattern or productivity, one of the important aspects in the

scientometric analysis.

The year wise distribution of Indian author’s contribution in

Nanotechnology Literature is shown in Table 5.45.

Page 77: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

158

Table 5.45 Authorship Pattern of Indian author’s contribution

S.No. Year Single

Author

Two

Authors

Three

Authors

> 3 Authors No. of Records DC CI CC

1 1981 0 1 1 0 2 1.00 2.50 -0.25

2 1982 1 2 0 0 3 0.67 1.67 -0.11

3 1983 2 1 1 0 4 0.50 1.75 -0.31

4 1984 2 1 1 4 8 0.75 3.00 0.17

5 1985 0 0 3 0 3 1.00 3.00 0.00

6 1986 2 2 3 0 7 0.71 2.14 0.16

7 1987 1 2 0 3 6 0.83 3.50 0.22

8 1988 1 1 2 0 4 0.75 2.25 0.00

9 1989 3 4 1 2 10 0.70 2.50 0.21

10 1990 1 4 2 3 10 0.90 3.00 0.54

11 1991 0 4 2 2 8 1.00 2.75 0.66

12 1992 4 4 4 7 19 0.79 2.95 0.45

13 1993 1 9 4 6 20 0.95 5.90 0.77

14 1994 2 9 14 15 40 0.95 3.40 0.83

15 1995 5 18 10 25 58 0.91 3.43 0.78

16 1996 16 55 40 59 170 0.91 5.51 0.80

17 1997 19 49 57 85 210 0.91 6.13 0.81

18 1998 19 69 94 99 281 0.93 6.42 0.85

19 1999 27 97 98 111 333 0.92 5.59 0.83

20 2000 27 119 114 148 408 0.93 6.56 0.86

21 2001 30 170 167 256 623 0.95 3.52 0.90

22 2002 33 177 191 329 730 0.95 3.84 0.91

23 2003 49 217 248 551 1065 0.95 3.92 0.90

24 2004 48 329 339 666 1382 0.97 3.95 0.93

25 2005 83 461 506 897 1947 0.96 5.02 0.91

26 2006 100 607 666 1266 2639 0.96 4.59 0.92

27 2007 127 793 898 1693 3511 0.96 5.18 0.93

28 2008 151 1055 1155 2184 4545 0.97 4.79 0.93

29 2009 204 1198 1368 2752 5522 0.96 4.34 0.93

30 2010 224 1514 1826 3645 7209 0.97 5.24 0.94

TOTAL 1182 6972 7815 14808 30777 0.96 4.79 0.92

Page 78: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

159

Figure 5.21 Authorship Pattern of Indian author’s contribution

It is evident from Table 5.49, that nearly 96% were collaborative

research either by two authors or more than two authors. Only 4% of

contributions were by single authors. (Figure 5.21).

The Collaborative Coefficient for 1981, 1982 and 1982 are in

negative value. (Table 5.45) It is observed that although the overall

productivity on Nanotechnology by yearwise. The collaborative coefficient is

below 0.50 during the period 1981 to 1989 and 1992. This reveals that the

sharing among the authors is not in grater probability. (Figure 5.21)

5.10 RELATIVE QUALITY INDEX (RQI)

This indicator is a ratio of the proportion of high-quality papers

(NHQ%) to the proportion of the publications (TNP%) suggested by Nagpaul

(1985) and used by Garg and Padhi (1999) for intercomparison of quality and

it is explained in Chapter 4.

Page 79: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

160

The study has been extended to find the quality of index based on

the indicators Citations Per Paper (CPP), Number of High Quality Papers

(NHQ), and Relative Quality Index (RQI) to measure relates to incidences of

high quality of papers for a country to compare the countries and study period

has also been analysed.

5.10.1 Relative Quality Index (RQI) Vs Year

The Relative Quality Index has been analysed to measure the quality

of papers for the study period and the same is shown in Table 5.46.

Table 5.46 Relative Quality Index Vs Year

S.No. Year TNP TNC CPP NHQ TNP% NHQ% RQI

1 1981 123 982 7.984 73 0.0134 0.0134 1.15

2 1982 169 3998 23.657 81 0.0184 0.0148 0.67

3 1983 213 3856 18.103 198 0.0232 0.0362 0.987

4 1984 385 4202 10.914 146 0.042 0.0267 0.639

5 1985 365 2478 6.789 102 0.0398 0.0187 1.221

6 1986 242 2867 11.847 187 0.0264 0.0342 1.009

7 1987 386 3814 9.881 172 0.0421 0.0315 1.052

8 1988 308 5616 18.234 194 0.0336 0.0355 0.763

9 1989 306 11236 36.719 262 0.0334 0.048 0.755

10 1990 645 14682 22.763 410 0.0704 0.075 0.802

11 1991 923 42458 46 652 0.1007 0.1193 1.184

12 1992 1173 32953 28.093 895 0.128 0.1638 1.171

13 1993 2026 66437 32.792 1465 0.2211 0.2682 1.09

14 1994 2572 75607 29.396 1909 0.2807 0.3494 1.139

15 1995 3940 107665 27.326 3028 0.4299 0.5543 1.077

16 1996 9587 258054 26.917 7450 1.0461 1.3637 0.862

17 1997 11864 329196 27.747 9378 1.2946 1.7166 1.165

18 1998 14313 403918 28.22 11350 1.5618 2.0776 1.092

19 1999 17853 484046 27.113 14447 1.9481 2.6445 0.811

Page 80: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

161

Table 5.46 (Continued)

20 2000 21305 544394 25.552 16543 2.3248 3.0282 0.748

21 2001 26976 785032 29.101 19542 2.9436 3.5771 1.531

22 2002 32965 936154 28.398 31131 3.5972 5.6985 1.5842

23 2003 42085 655908 15.585 23446 4.5924 4.2918 0.9345

24 2004 58636 813188 13.868 31828 6.3984 5.8261 0.9105

25 2005 75531 861147 11.401 48693 8.242 8.9132 1.0814

26 2006 88912 790268 8.888 56746 9.7022 10.387 1.0706

27 2007 101623 410971 4.044 30360 11.089 5.5574 0.5012

28 2008 117721 456774 3.88 50504 12.846 9.2447 0.7197

29 2009 131840 656999 4.983 72220 14.387 13.22 0.9189

30 2010 151427 316941 2.093 53379 16.524 9.771 0.5913

Figure 5.22 Relative Quality Index Vs Year

Table 5.46 also indicates yearwise total number of publications,

total citations, citation per paper, number of high quality and relative quality

index. A value of RQI>1 indicates higher than average value, whereas a value

of RQI<1 indicates lower than average quality. The value of RQI is high in

the year 2002. RQI is lower than average during the year 1982, 1984, 1988,

1989, 1990, 1996, 1999, 2007 2008 and 2010. RQI is nearly one in the year

Page 81: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

162

1983, 2003, 2004 and 2009. RQI is very low in the year 2007 and it was 0.50.

(Fig. 5.12).

5.10.2 Relative Quality Index (RQI) Vs Five Years Block

The study of Relative Quality Index has been extended to find the

five years block period and the values are shown in table 5.47.

Table 5.47 Relative Quality Index Vs Five years Block

S.No. Year TNP TNC CPP NHQ TNP% NHQ% RQI

1 1981-1985 1255 15516 12.363 600 0.137 0.123 0.900

2 1986-1990 1887 38215 20.252 1225 0.206 0.252 1.222

3 1991-1995 10634 325120 30.574 7949 1.160 1.633 1.407

4 1996-2000 74922 2019608 26.956 59168 8.176 12.155 1.487

5 2001-2005 236193 4051429 17.153 154640 25.774 31.767 1.233

6 2006-2010 591523 2631953 4.449 263209 64.548 54.070 0.838

Total 916414 9081841 9.910 486791

Figure 5.23 Relative Quality Index Vs Five Years Block

Total publications, total citations, citation per paper, number of high

quality and relative quality index, also shown in Table 5.47. The value of RQI

Page 82: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

163

is high during 1996-2000 i.e. 1.437. RQI is lower than average during the first

block period 1981-1986 and last block period 2006-2010. (Figure 5.23)

5.10.3 Relative Quality Index (RQI) of G20 Countries

This is the measure relates to the incidence of high quality papers

for a country or an institution. Hence the Relative Quality of Index for G20

countries has been evaluated and the values are shown in Table 5.48.

Table 5.48 Relative Quality Index of G20 Countries

S.No. G20 Countries TNP TNC CPP NHQ TNP% NHQ% RQI

1 United States 191090 3790940 19.839 131005 20.852 23.98 1.15

2 China 153100 100307 0.655 61110 16.706 11.186 0.67

3 Japan 92363 1122955 12.158 54344 10.079 9.9476 0.987

4 Germany 72825 1210561 16.623 27726 7.9467 5.0752 0.639

4 France 52947 785262 14.831 38542 5.7776 7.0551 1.221

5 Korea 46640 445945 9.561 28066 5.0894 5.1374 1.009

6 United Kingdom 46597 747502 16.042 29228 5.0847 5.3501 1.052

7 Italy 31648 231083 7.302 14397 3.4535 2.6354 0.763

8 India 30777 305025 9.911 13857 3.3584 2.5365 0.755

9 Russia 30733 216887 7.057 14698 3.3536 2.6904 0.802

10 Canada 23833 390027 16.365 16819 2.6007 3.0787 1.184

11 Australia 16976 237116 13.968 11854 1.8524 2.1699 1.171

12 Brazil 12209 121039 9.914 7932 1.3323 1.4519 1.09

13 European Union 10163 132716 13.059 6903 1.109 1.2636 1.139

14 Turkey 6226 49332 7.924 3999 0.6794 0.732 1.077

15 Mexico 6113 52725 8.625 3141 0.6671 0.575 0.862

16 Argentina 3302 32816 9.938 2294 0.3603 0.4199 1.165

17 South Africa 1816 16914 9.314 1182 0.1982 0.2164 1.092

18 Saudi Arabia 1183 4719 3.989 572 0.1291 0.1047 0.811

19 Indonesia 424 2156 5.085 189 0.0463 0.0346 0.748

20 Others 85449 103956 1.21 78445 9.3243 14.359 1.531

Total 916414 10099983 11.093 546303 100 100 1

TNP – Total Number of Papers TNC – Total Number of CitationsCPP – Citation Per Paper NHQ – Number of High Quality PapersRQI – Relative Quality Index

Page 83: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

164

Figure 5.24 Relative Quality Index of G 20 Countries

Table 5.48 also lists G20 countries with their total number of

publications, total citations, CPP, NHQ and RQI. The average value of CPP is

11.09. The value of CPP is highest for the United States. Other countries that

have a higher than average value for CPP are Japan, Germany, France, United

Kingdom, Canada, Australia and European Union.(Fig. 5.24)

RQI indicates that the United States, the United Kingdom, France,

Korea, Canada, Australia, Brazil, European Union, Turkey, Argentina and

South Africa have more than average incidence of high quality papers, as the

value of the RQI is more than 1 and for the other countries, the incidence of

high quality papers is less than average. For France, the value of the RQI is

significantly higher compared with other countries, which implies that it has

outperformed other countries.

Page 84: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

165

5.10.4 Relative Quality Index (RQI) of Indian contributions

Table 5.49 provide Indian output of total number of publications,

total citations, CPP, NHQ and RQI.

Table 5.49 Relative Quality Index of Indian contributions

S.No. Year TNP TNC CPP NHQ TNP% NHQ% RQI

1 1981 2 1 0.50 1 0.01 0.01 0.78

2 1982 3 1 0.33 1 0.01 0.01 0.52

3 1983 4 6 1.50 2 0.01 0.01 0.78

4 1984 8 10 1.25 2 0.03 0.01 0.39

5 1985 3 52 17.33 3 0.01 0.02 1.56

6 1986 7 8 1.14 2 0.02 0.01 0.45

7 1987 6 25 4.17 3 0.02 0.02 0.78

8 1988 4 14 3.50 3 0.01 0.02 1.17

9 1989 10 109 10.90 8 0.03 0.04 1.25

10 1990 10 223 22.30 8 0.03 0.04 1.25

11 1991 8 57 7.13 5 0.03 0.03 0.98

12 1992 19 172 9.05 15 0.06 0.08 1.23

13 1993 20 351 17.55 16 0.06 0.08 1.25

14 1994 40 591 14.78 35 0.13 0.18 1.37

15 1995 58 1428 24.62 47 0.19 0.24 1.27

16 1996 170 3619 21.29 137 0.55 0.70 1.26

17 1997 210 5045 24.02 170 0.68 0.86 1.26

18 1998 281 8311 29.58 238 0.91 1.21 1.32

19 1999 333 8040 24.14 287 1.08 1.46 1.35

20 2000 408 13381 32.80 339 1.33 1.72 1.30

21 2001 623 15138 24.30 533 2.02 2.71 1.34

22 2002 730 17458 23.92 604 2.37 3.07 1.29

23 2003 1065 27312 25.65 917 3.46 4.66 1.35

24 2004 1382 31739 22.97 1164 4.49 5.91 1.32

25 2005 1947 30195 15.51 1571 6.33 7.98 1.26

26 2006 2639 33375 12.65 2093 8.57 10.62 1.24

27 2007 3511 38561 10.98 2694 11.41 13.68 1.20

28 2008 4545 31144 6.85 3089 14.77 15.68 1.06

29 2009 5522 26030 4.71 3261 17.94 16.55 0.92

30 2010 7209 12629 1.75 2451 23.42 12.44 0.53

TOTAL 30777 305025 9.91 19699 100 100 1

Page 85: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

166

Figure 5.25 Relative Quality Index of Indian contributions

The average value of CPP is 9.91. The value of CPP is highest in the

year 2000 (32.80). During the period 1981-1988 except 1985 and the year

1991 and 1992 the CPP is lower than the average value. (Figure 5.25)

5.11 SCIENTOMETRIC INDICATORS / INDICES

Scientometric indicators / indices such as h-index, g-index, a-index,

r-index, AR-index, h(nom) index, hg index, e index and p index to measure the

quality of the publications by yearwise, comparing G20 countries, top 50

journals, top 50 authors, top 50 institutions and Indian contributions of top 50

journals, authors and institutions are analysed as explain in Chapter 4.

The h-index is an index that attempts to measure both the

productivity and impact of the published work of a scientist or scholar. The

index is based on the set of the scientist's most cited papers and the number of

citations that they have received in other publications. The index can also be

applied to the productivity and impact of a group of scientists, such as a

department or university or country.

Page 86: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

167

5.11.1 Scientometrics Indicators / indices Vs Year

Comparing the quality of literature on Nanotechnology by yearwise

is analyzed based on the citations received by the article and the shown in

Table 5.50.

Table 5.50 Various indices Vs Year

S.No. Year TNP TNC CPP h index g index A index h(nom) R index AR index e-index hg index p index

1 1981 123 982 7.984 11 16 26.82 0.09 17.18 9.83 13.19 13.27 19.93

2 1982 169 3998 23.657 26 42 61.50 0.15 39.99 55.14 30.38 33.05 46.16

3 1983 213 3856 18.103 24 55 106.54 0.11 50.57 91.32 44.51 36.33 64.83

4 1984 385 4202 10.914 32 61 99.22 0.08 56.35 117.59 46.38 44.18 68.04

5 1985 365 2478 6.789 27 47 72.56 0.07 44.26 75.35 35.07 35.62 52.19

6 1986 242 2867 11.847 29 45 60.21 0.12 41.79 69.84 30.08 36.12 47.20

7 1987 386 3814 9.881 30 55 82.60 0.08 49.78 103.25 39.72 40.62 58.93

8 1988 308 5616 18.234 35 68 113.74 0.11 63.10 173.09 52.50 48.79 76.79

9 1989 306 11236 36.719 46 92 157.80 0.15 85.20 329.95 71.71 65.05 104.63

10 1990 645 14682 22.763 63 104 141.95 0.10 94.57 425.86 70.53 80.94 108.28

11 1991 923 42458 46.000 65 195 505.42 0.07 181.25 1642.60 169.20 112.58 255.12

12 1992 1173 32953 28.093 84 146 205.65 0.07 131.43 909.21 101.09 110.74 152.59

13 1993 2026 66437 32.792 106 216 355.64 0.05 194.16 2094.33 162.67 151.31 237.56

14 1994 2572 75607 29.396 118 416 322.80 0.05 195.17 2240.59 155.45 221.56 230.81

15 1995 3940 107665 27.326 134 479 469.06 0.03 250.71 3928.38 211.89 253.35 308.93

16 1996 9587 258054 26.917 187 327 409.10 0.02 276.59 5100.07 203.79 247.28 315.14

17 1997 11864 329196 27.747 211 329 412.94 0.02 295.18 6223.64 206.42 263.47 330.13

18 1998 14313 403918 28.220 223 359 463.81 0.02 321.61 7956.15 231.73 282.94 363.35

19 1999 17853 484046 27.113 229 355 440.53 0.01 317.62 8406.75 220.09 285.12 354.21

20 2000 21305 544394 25.552 256 394 396.86 0.01 318.74 9235.91 189.89 317.59 342.90

21 2001 26976 785032 29.101 276 309 280.81 0.01 278.39 7750.30 36.43 292.03 279.20

22 2002 32965 936154 28.398 282 325 320.32 0.01 300.55 10036.78 103.96 302.74 307.00

23 2003 42085 655908 15.585 221 349 434.90 0.01 310.02 12014.25 217.42 277.72 347.05

24 2004 58636 813188 13.868 232 310 334.61 0.00 278.62 11089.86 154.29 268.18 296.16

25 2005 75531 861147 11.401 187 270 314.98 0.00 242.70 9816.83 154.70 224.70 264.73

26 2006 88912 790268 8.888 165 413 4607.19 0.00 871.89 152037.20 856.13 261.05 1518.63

27 2007 101623 410971 4.044 105 325 1034.43 0.00 329.57 27153.75 312.39 184.73 482.54

28 2008 117721 456774 3.880 93 301 3438.08 0.00 565.46 106580.33 557.76 167.31 1032.06

29 2009 131840 656999 4.983 124 196 4475.65 0.00 744.97 277490.00 734.58 155.90 1354.29

30 2010 151427 316941 2.093 74 110 4007.97 0.00 544.60 296590.00 539.55 90.22 1059.32

TOTAL 916414 9081841 9.910

Page 87: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

168

It can be seen from the Table 5.50 that h index is greater than g

index for throughout the study period. Similarly the hg index must be greater

than h index and less than g index. This property also reflected in Table 5.50,

the respective years as a visibility in producing more interest among the

scientific community.

The uncitedness of a paper will be measured, with the comparison

of h index. If p index much larger than h and g index indicates uncitedness of

the papers In this study the p index and h index were compared over the study

period and it seems that there is no huge difference, except in one or two

years. This indicates that citedness of the paper has a clear visibility. Citation

intensity can be identified by AR index. If the AR index is greater than h

index there exists a consistency. Accordingly AR index compared with h

index as a relatively high. e-index complimentary the h index for excess

citation. This differentiates between similar h indexes. The h index seems to

be similar during the year 2003 and 2004, 2005 and 2006. Based on the e-

index it can infer that publication in the year 2003 and the publication in the

year 2006 is a fine importance comparing to 2004 and 2005. Similarly h index

is identical between 1998, 1999 identifying the relevance between the years

1998 publications as significance over 1999.

The property among R index, A index and AR index has been

analysed. A>AR>R on comparing three indices over the years it seems

significant except AR is high comparing to R index, initial period it has not

adhere property subsequently it adhere the property. There exists a different

citation patterns.

Page 88: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

169

h(nom) is directly proportional to h index and indirectly proportional

to total number of papers. Higher the h(nom) indicates higher the citations.

The value normally lies h(nom)>0.1 or h(nom)<0.1. If greater than 0.1

citation pattern seems to be high and increases. Accordingly from the table

5.50 can be seen that h(nom) ranges between 0 to 0.15. The publications

prior to 1989 have the value more than 0.1 which indicates the relevancy of

the paper till date. However the papers that finds during the year 1984, 1985

and 1987 less than 0.1 indicates declining interest on the publications.

5.11.2 Various indices of G20 countries

Various indices of literature in Nanotechnology of the G20 countries

are compared with CPP and it is shown in Table 5.51

Page 89: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

170

Table 5.51 Various indices of G20 countries

S.No. G20 Countries TP TC CPP h index g index A index h(nom) Index R index AR index e-index hg index p index

1 United States 191090 3790940 19.839 484 728 5655.08 0.00 1654.41 91235.29 1582.02 593.59 2492.152 China 153100 100307 0.655 199 278 363.93 0.00 269.11 2414.06 181.16 235.21 297.603 Japan 92363 1122955 12.158 261 453 3106.41 0.00 900.43 27025.78 861.77 343.85 1360.574 Germany 72825 1210561 16.623 277 408 3155.33 0.00 934.89 29134.17 892.91 336.18 1402.355 France 52947 785262 14.831 224 356 2531.07 0.00 752.97 18898.64 718.88 282.39 1127.946 Korea 46640 445945 9.561 163 251 1975.29 0.00 567.43 10732.41 543.51 202.27 859.977 United Kingdom 46597 747502 16.042 255 426 2116.46 0.01 734.64 17989.88 688.96 329.59 1045.338 Italy 31648 231083 7.302 137 78 1217.82 0.00 408.46 5561.40 384.80 103.37 587.899 India 30777 305025 9.911 143 244 1540.06 0.00 469.28 7340.94 446.97 186.79 697.3810 Russia 30733 216887 7.057 130 234 1204.56 0.00 395.72 5219.75 373.75 174.41 573.5011 Canada 23833 390027 16.365 180 294 1564.44 0.01 530.66 9386.65 499.20 230.04 760.9012 Australia 16976 237116 13.968 140 233 1222.84 0.01 413.76 5706.59 389.36 180.61 593.7813 Brazil 12209 121039 9.914 102 173 856.77 0.01 295.62 2913.01 277.46 132.84 421.4814 European Union 10163 132716 13.059 117 189 818.98 0.01 309.55 3194.03 286.59 148.70 428.1315 Turkey 6226 49332 7.924 70 103 508.82 0.01 188.73 1187.26 175.26 84.91 262.6716 Mexico 6113 52725 8.625 80 133 475.84 0.01 195.11 1268.92 177.95 103.15 262.6317 Argentina 3302 32816 9.938 62 99 382.15 0.02 153.93 789.77 140.89 78.35 208.4318 South Africa 1816 16914 9.314 52 75 234.84 0.03 110.51 407.06 97.51 62.45 142.0819 Saudi Arabia 1183 4719 3.989 25 37 136.28 0.02 58.37 113.57 52.75 30.41 77.4420 Indonesia 424 2156 5.085 24 34 64.86 0.06 39.45 51.89 31.32 28.57 46.56

Total 830965 9996027 12.03

Page 90: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

171

It can be seen from the Table 5.51 that h index is less than g index

for all the G20 countries. Similarly the hg index must be greater than h index.

It is visible that G20 countries producing more interest among the scientific

community.

Highly cited papers are important for the determination of the h

index, but once they are selected to the top h papers, it is unimportant the

number of citations they receive. To overcome this, other index namely g

index has been calculated. To find the lot of uncitedness p index has been

calculated. In this study the p index and h index were compared with G20

countries and it seems that there is no huge difference, except in one or two

countries. This indicates that citedness of the paper has a clear visibility.

It can be seen from the Table 5.51 h(nom) is directly proportional to h

index and indirectly proportional to total number of papers. Higher the h(nom)

indicates higher the citations. The value normally lies h(nom)> 0.1 or h(nom)<

0.1. If greater than 0.1 citation pattern seems to be high and increases.

Accordingly from the table 5.51 can be seen that h(nom) ranges between 0 to

0.06. The publications by the G20 countries the value is less than 0.1 which

indicates the declining interest on the publications.

AR index, A index and R index are compared with h index. e-index

complimentary to the h index for excess citation. A index defined as the

average umber of citations on the h core. Like A index, R index measures the

citation intensity in the h core and the index can be very sensitive to just a

very few papers receiving extremely high citation counts.

5.11.3 Various indices of Top 50 Journals by number of publications

The top 50 journals which has highest number of publications in the

field of Nanotechnology has been analysed based on TNP, TNC, CPP, h

index, g index, A index, h(nom) index, e-index and p-index. The values are

show in Table 5.52.

Page 91: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

172

Table 5.52 Various indices of Top 50 Journals by number of Publications

S.No. Top 50 Journals TNP TNC CPP h index g index A index h (nom) R index AR index e-index hg index p index

1 Applied Physics Letters 19078 290843 15.245 161 251 1318.73 0.01 460.78 7077.18 431.73 201.02 654.20

2Physical Review B CondensedMatter and Materials Physics 18173 230397 12.678 135 224 1245.85 0.01 410.11 5606.33 387.25 173.90 593.96

3 Journal of Applied Physics 12279 140473 11.440 107 173 958.37 0.01 320.23 3418.18 301.82 136.06 461.48

4 Journal of Physical Chemistry B 8404 204580 24.343 146 233 1022.90 0.02 386.45 4978.11 357.81 184.44 534.57

5Journal of the American ChemicalSociety 7455 318026 42.659 192 270 1209.16 0.03 481.83 7738.63 441.92 227.68 654.77

6 Langmuir 7443 142471 19.142 118 183 881.39 0.02 322.50 3466.79 300.13 146.95 450.89

7 Journal of Physical Chemistry C 7205 20827 2.891 31 37 490.44 0.00 123.30 506.79 119.34 33.87 195.36

8 Physical Review Letters 6997 196911 28.142 170 217 845.56 0.02 379.14 4791.50 338.89 192.07 495.35

9 Journal of Alloys and Compounds 5792 48503 8.374 59 87 600.12 0.01 188.17 1180.24 178.68 71.64 276.98

10 Journal of Chemical Physics 5663 66719 11.782 86 104 566.34 0.02 220.69 1623.50 203.25 94.57 302.15

11 Chemistry of Materials 5410 169056 31.249 147 197 839.53 0.03 351.30 4113.70 319.06 170.17 469.67

12 Macromolecules 5352 129794 24.251 116 189 816.81 0.02 307.81 3158.32 285.12 148.07 426.15

13

Journal of Vacuum Science andTechnology B Microelectronicsand Nanometer Structures 5330 59200 11.107 69 99 626.32 0.01 207.88 1440.53 196.10 82.65 300.25

14 Chemical Communications 5324 100856 18.944 102 173 721.81 0.02 271.34 2454.16 251.44 132.84 375.97

15 Thin Solid Films 4919 57221 11.633 71 103 588.33 0.01 204.38 1392.38 191.65 85.52 290.74

16Journal of Applied PolymerScience 4755 34903 7.340 61 104 417.69 0.01 159.62 849.31 147.51 79.65 219.96

17 Nanotechnology 4731 40004 8.456 64 195 456.30 0.01 170.89 973.43 158.45 111.71 237.08

Page 92: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

173

Table 5.52 (Continued)

18 Materials Letters 4693 34668 7.387 45 92 562.39 0.01 159.08 843.59 152.59 64.34 242.34

19Journal of Magnetism andMagnetic Materials 4518 47354 10.481 68 195 508.36 0.02 185.93 1152.28 173.04 115.15 259.99

20 Journal of Materials Chemistry 4413 79125 17.930 91 117 634.74 0.02 240.34 1925.38 222.44 103.18 332.21

21 Applied Surface Science 4290 30191 7.038 45 73 489.77 0.01 148.46 734.65 141.47 57.31 221.00

22Materials Science andEngineering A 4258 53565 12.580 78 98 501.31 0.02 197.74 1303.42 181.71 87.43 269.63

23 Chemical Physics Letters 3908 72740 18.613 95 114 558.95 0.02 230.43 1770.01 209.94 104.07 309.62

24Journal of the ElectrochemicalSociety 3890 52306 13.446 86 103 443.99 0.02 195.41 1272.78 175.46 94.12 256.89

25 Surface and Coatings Technology 3864 40524 10.488 63 95 469.56 0.02 172.00 986.08 160.04 77.36 240.39

26 Optics Express 3748 30974 8.264 57 143 396.68 0.02 150.37 753.70 139.15 90.28 207.77

27Journal of Physics CondensedMatter 3680 36183 9.832 63 103 419.26 0.02 162.52 880.45 149.82 80.55 222.90

28AngewandteChemie InternationalEdition 3637 160000 43.992 158 221 739.24 0.04 341.76 3893.33 303.04 186.86 441.99

29 Advanced Materials 3632 142637 39.272 152 198 685.03 0.04 322.68 3470.83 284.64 173.48 414.72

30 Analytical Chemistry 3333 96045 28.816 120 119 584.27 0.04 264.79 2337.10 236.04 119.50 344.72

31 Polymer 3313 73846 22.290 99 121 544.52 0.03 232.18 1796.92 210.02 109.45 308.48

32Journal of Colloid and InterfaceScience 3226 34968 10.839 65 98 392.72 0.02 159.77 850.89 145.95 79.81 215.62

33 Nano Letters 3222 104626 32.472 139 123 549.47 0.04 276.36 2545.90 238.86 130.76 347.51

34 Journal of Power Sources 3186 49094 15.409 73 117 490.94 0.02 189.31 1194.62 174.67 92.42 260.09

35 Journal of Materials Science 3129 27004 8.630 54 98 365.05 0.02 140.40 657.10 129.60 72.75 193.06

Page 93: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

174

Table 5.52 (Continued)

36 ElectrochimicaActa 3080 39361 12.780 70 101 410.48 0.02 169.51 957.78 154.38 84.08 227.63

37 Inorganic Chemistry 2944 62642 21.278 90 112 508.10 0.03 213.84 1524.29 193.98 100.40 285.35

38

Japanese Journal of AppliedPhysics Part 1 Regular Papers andShort Notes and Review Papers 2844 19155 6.735 40 75 349.58 0.01 118.25 466.11 111.28 54.77 169.71

39Journal of the American CeramicSociety 2788 39452 14.151 71 110 405.63 0.03 169.71 960.00 154.14 88.37 226.90

40Journal of Physics D AppliedPhysics 2769 22945 8.286 57 99 293.86 0.02 129.42 558.33 116.19 75.12 170.10

41 Surface Science 2760 33209 12.032 58 103 417.98 0.02 155.70 808.09 144.49 77.29 216.39

42Physical Review E StatisticalNonlinear and Soft Matter Physics 2716 27452 10.108 47 74 426.38 0.02 141.56 668.00 133.53 58.97 204.44

43 Journal of Materials Research 2714 40900 15.070 78 110 382.78 0.03 172.79 995.23 154.18 92.63 225.25

44 Materials Chemistry and Physics 2623 22219 8.471 46 83 352.61 0.02 127.36 540.66 118.76 61.79 178.83

45Sensors and Actuators BChemical 2538 34833 13.725 61 94 416.85 0.02 159.46 847.60 147.33 75.72 219.67

46 Chemistry A European Journal 2524 51262 20.310 90 110 415.79 0.04 193.45 1247.38 171.23 99.50 249.65

47Physica E Low DimensionalSystems and Nanostructures 2500 8063 3.225 27 32 218.00 0.01 76.72 196.20 71.81 29.39 108.67

48 Journal of Non Crystalline Solids 2500 23947 9.579 48 67 364.19 0.02 132.22 582.71 123.20 56.71 185.34

49 Carbon 2431 49106 20.200 80 109 448.09 0.03 189.33 1194.91 171.60 93.38 252.31

50 ScriptaMaterialia 2420 35315 14.593 64 174 402.81 0.03 160.56 859.33 147.25 105.53 218.17

TOTAL 242401 3926495 16.20

Page 94: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

175

The citation per paper ranges from 2.891 to 43.92. It can be seen

from the Table 5.52, among the top 50 journals the journal titled

“AngewandteChemie International Edition” have the highest citation (43.92)

per paper. It can be followed by ‘Journal of American Chemical Society

(42.659). However based on h index, g index, AR index, R index, hg index, e

index and p index except A index and hnom) index, the Journal of American

Chemical Society has given top priority.

First 50 authors were identified based on highest number of

publications. For these 50 authors, TNP, CPP and various indices are

calculated and the same is shown in Table 5.53

5.11.4 Various indices of Top 50 Authors

Top 50 authors by number of publications has been analysed to

measure the impact of the scientists. The TNP, TNC, CPP and indices h, g, A,

h(nom), R, AR, e, hg and p were analysed and the values are shown in

Table 5.53

Table 5.53 Various indices of Top 50 authors

S.No. Author Name TNP TNC CPPh

index

g

index

A

index

h

(nom)

R

index

AR

index

e-

index

hg

index

p

index

1 Inoue, A. 1028 22969 22.34 68 195 246.58 0.07 129.49 558.91 110.20115.15160.50

2 Qian, Y. 615 14149 23.01 52 75 198.63 0.08 101.63 344.29 87.32 62.45 127.07

3 Zhang, L. 549 12951 23.59 56 82 168.83 0.10 97.23 315.14 79.49 67.76 116.87

4 Schubert, U.S. 450 10664 23.70 51 99 152.64 0.11 88.23 259.49 72.00 71.06 105.92

5 Gao, L. 427 6988 16.37 40 62 127.53 0.09 71.42 170.04 59.17 49.80 86.65

6 Valiev, R.Z. 417 10510 25.20 55 85 139.50 0.13 87.59 255.74 68.17 68.37 102.29

7 Nanopoulos, D.V. 407 12123 29.79 57 101 155.26 0.14 94.07 294.99 74.84 75.87 111.17

8 Schultz, L. 401 6745 16.82 37 72 133.08 0.09 70.17 164.13 59.62 51.61 86.86

9 Gratzel, M. 390 56235 144.19 106 173 387.28 0.27 202.611368.69172.67135.42251.45

10 Eckert, J. 389 7029 18.07 41 92 125.15 0.11 71.63 171.04 58.74 61.42 86.27

Page 95: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

176

Table 5.53 (Continued)

11 Chu, P.K. 383 3247 8.48 24 34 98.76 0.06 48.69 79.01 42.36 28.57 61.63

12 Liu, W. 372 3520 9.46 26 38 98.83 0.07 50.69 85.65 43.52 31.43 63.33

13 Gedanken, A. 359 9813 27.33 52 92 137.76 0.14 84.64 238.78 66.78 69.17 99.56

14 Bando, Y. 352 12113 34.41 61 104 144.96 0.17 94.03 294.75 71.56 79.65 108.63

15 Zhang, W. 332 1610 4.85 21 28 55.97 0.06 34.28 39.18 27.10 24.25 40.37

16 Ellis, J. 331 13747 41.53 65 195 154.39 0.20 100.18 334.51 76.23 112.58115.71

17 Iijima, S. 327 37434 114.48 62 115 440.76 0.19 165.31 910.89 153.24 84.44 229.23

18 Cingolani, R. 321 3582 11.16 30 62 87.16 0.09 51.14 87.16 41.41 43.13 61.08

19 Liu, P. 320 4804 15.01 45 73 77.93 0.14 59.22 116.90 38.50 57.31 64.90

20 Niihara, K. 312 6799 21.79 35 68 141.81 0.11 70.45 165.44 61.14 48.79 88.95

21 Li, W. 311 1877 6.04 21 53 65.25 0.07 37.02 45.67 30.48 33.36 44.71

22 Li, Y. 310 3746 12.08 29 44 94.30 0.09 52.29 91.15 43.52 35.72 63.65

23 Wang, X. 308 2700 8.77 25 38 78.84 0.08 44.40 65.70 36.69 30.82 53.76

24 Langdon, T.G. 306 11602 37.92 56 77 151.24 0.18 92.03 282.32 73.03 65.67 108.60

25 Kawazoe, Y. 303 4796 15.83 34 52 102.97 0.11 59.17 116.70 48.43 42.05 71.17

26 Zhu, D. 302 9306 30.81 46 64 147.68 0.15 82.42 226.45 68.39 54.26 100.11

27 Wang, Z.L. 301 21102 70.11 78 115 197.49 0.26 124.11 513.48 96.54 94.71 144.90

28 Kwong, D.L. 300 3981 13.27 34 60 85.47 0.11 53.91 96.87 41.83 45.17 62.86

29 Pearton, S.J. 298 2741 9.20 25 45 80.04 0.08 44.73 66.70 37.09 33.54 54.31

30 Ajayan, P.M. 297 18915 63.69 66 103 209.21 0.22 117.51 460.27 97.22 82.45 142.42

31 Couvreur, P. 291 9817 33.74 53 99 135.22 0.18 84.65 238.88 66.01 72.44 98.96

32 Gao, F. 289 3959 13.70 31 45 93.23 0.11 53.76 96.34 43.92 37.35 64.59

33 Dresselhaus, M.S. 289 12905 44.65 58 63 162.43 0.20 97.06 314.02 77.82 60.45 115.23

34 Freund, H.J. 289 680 2.35 12 18 41.37 0.04 22.28 16.55 18.77 14.70 27.38

35 Dou, S.X. 288 4482 15.56 36 54 90.89 0.13 57.20 109.06 44.45 44.09 66.75

36 Zhang, Q. 287 2671 9.31 28 44 69.64 0.10 44.16 64.99 34.14 35.10 51.40

37 Hono, K. 279 6666 23.89 46 65 105.79 0.16 69.76 162.21 52.44 54.68 80.14

38 Wang, W. 274 2645 9.65 24 34 80.45 0.09 43.94 64.36 36.81 28.57 53.76

39 Endo, M. 273 5588 20.47 39 46 104.60 0.14 63.87 135.97 50.58 42.36 75.28

40 Vazquez, M. 268 4003 14.94 35 43 83.49 0.13 54.06 97.41 41.20 38.79 62.49

41 Forchel, A. 267 5011 18.77 33 42 110.85 0.12 60.48 121.93 50.69 37.23 74.02

42 Mullen, K. 264 9367 35.48 44 62 155.41 0.17 82.69 227.93 70.01 52.23 102.05

43 Lee, S.T. 264 8942 33.87 49 54 133.22 0.19 80.79 217.59 64.24 51.44 95.45

44 Akashi, M. 263 3836 14.59 31 37 90.33 0.12 52.92 93.34 42.89 33.87 63.24

45 Pratsinis, S.E. 263 6546 24.89 40 49 119.46 0.15 69.13 159.29 56.38 44.27 82.96

46 Golberg, D. 262 7693 29.36 47 61 119.49 0.18 74.94 187.20 58.37 53.54 87.55

Page 96: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

177

Table 5.53 (Continued)

47 Weissleder, R. 261 17598 67.43 70 103 183.52 0.27 113.34 428.22 89.14 84.91 133.09

48 Longo, E. 260 3087 11.87 27 33 83.46 0.10 47.47 75.12 39.04 29.85 57.30

49 Schlogl, R. 259 5226 20.18 37 46 103.11 0.14 61.77 127.17 49.46 41.26 73.27

50 Mohwald, H. 258 14432 55.94 60 92 175.59 0.23 102.64 351.18 83.28 74.30 122.76

TOTAL 16966472952 27.88

It can be seen from the Table 5.53 that h index is less than g index

for all the top 50 authors. Similarly the hg index must be greater than h index.

It is visible that the scientists producing more interest among the scientific

community. The first author ‘Inoue’ has 1038 publications with total number

of citations at 22960. The average citation works out to 22.34. Similarly the

50th author has 258 publication with total number of citations by 14432. h(nom)

is less than 1 and directly proportional to h index and indirectly proportional

to total number of papers. A index is proportional to h index as like that of

h(nom). R index is a square root of citation received in h core. AR index

depends to the age of an article. A index is the average of citations received in

the h core. p index is the proportional of the citations square received in h

core and the number of papers received by the h index.

Gratzel received the highest citation per paper (144.19) as well as

the highest h index (106) with 390 publications and this scientist has

published 23 articles as a solo author.

5.11.5 Various indices of Top 50 Institutions

Based on the highest number of contributions, first 50 institutions

are taken up for analysis. For each institution TNP, TNC, CPP and various

indices are calculated and shown in Table 5.54.

Page 97: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

178

Table 5.54 Various indices of top 50 Institutions

S.No. Institution TNP TNC CPPh-

index

g-

indexA index

h(no

m)R index AR index e-index

hg

indexp index

1 University of Tokyo 8017 120874 15.0772 137 243 613.19 0.02 289.84 2800.25 255.42 182.46 372.082 Tsinghua University 7983 79212 9.92259 105 174 524.31 0.01 234.63 1835.08 209.83 135.17 306.753 National Institute of

Advanced Industrial Scienceand Technology 7707 37057 4.80823 66 99 390.22 0.01 160.48 858.49 146.28 80.83 215.80

4 Russian Academy of Sciences 7592 87931 11.5821 111 187 550.56 0.01 247.21 2037.07 220.89 144.07 322.835 Osaka University 6952 90021 12.9489 111 173 563.65 0.02 250.13 2085.49 224.15 138.57 327.936 National University of

Singapore 6206 73127 11.7833 100 154 508.23 0.02 225.44 1694.11 202.05 124.10 295.607 Japan Science and

Technology Agency 5967 87289 14.6286 112 166 541.66 0.02 246.30 2022.20 219.37 136.35 320.308 CNRS Centre National de la

Recherche Scientifique 5903 183987 31.1684 189 352 676.57 0.03 357.59 4262.37 303.56 257.93 442.289 Chinese Academy of Sciences 5773 96649 16.7416 118 211 569.25 0.02 259.17 2239.04 230.75 157.79 336.8910 Tohoku University 5658 70443 12.4502 106 210 461.87 0.02 221.26 1631.93 194.22 149.20 282.7811 Massachusetts Institute of

Technology 5554 89394 16.0954 114 189 544.99 0.02 249.26 2070.96 221.66 146.79 323.5112 Kyoto University 5527 97585 17.6561 128 205 529.86 0.02 260.43 2260.72 226.80 161.99 330.0013 Seoul National University 5307 54713 10.3096 85 119 447.36 0.02 195.00 1267.52 175.50 100.57 257.1814 Zhejiang University 5252 167951 31.9785 177 256 659.47 0.03 341.65 3890.86 292.23 212.87 425.3915 University of Cambridge 5168 126447 24.4673 138 221 636.82 0.03 296.45 2929.36 262.37 174.64 382.50

Page 98: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

179

Table 5.54 (Continued)

16 National Institute forMaterials Science Tsukuba 5011 41033 8.18859 70 104 407.40 0.01 168.87 950.60 153.68 85.32 226.49

17 UC Berkeley 4758 56243 11.8207 90 116 434.32 0.02 197.71 1302.96 176.04 102.18 257.0118 Nanjing University 4734 56393 11.9123 90 163 435.48 0.02 197.97 1306.44 176.33 121.12 257.4719 Tokyo Institute of Technology 4699 50511 10.7493 81 119 433.40 0.02 187.36 1170.17 168.95 98.18 247.7920 Jilin University 4473 33767 7.54907 65 195 361.05 0.01 153.19 782.27 138.72 112.58 203.8721 University of Science and

Technology of China 4472 54042 12.0845 82 182 458.04 0.02 193.80 1251.97 175.60 122.16 258.1522 Shanghai Jiaotong University 4415 42934 9.72458 79 162 377.71 0.02 172.74 994.64 153.62 113.13 224.2123 Consiglio Nazionale delle

Ricerche 4167 41188 9.88433 76 104 376.65 0.02 169.19 954.19 151.16 88.90 220.9224 Northwestern University 4062 84244 20.7395 125 201 468.40 0.03 241.97 1951.65 207.18 158.51 301.5625 Nanyang Technological

University 3896 40605 10.4222 70 191 403.15 0.02 167.99 940.68 152.71 115.63 224.9126 National Taiwan University 3838 47899 12.4802 76 113 438.02 0.02 182.45 1109.66 165.87 92.67 244.3127 Fudan University 3822 109340 28.6081 135 244 562.90 0.04 275.67 2533.04 240.35 181.49 349.7328 Pennsylvania State University 3675 97142 26.4332 130 198 519.34 0.04 259.83 2250.46 224.97 160.44 327.3029 Moskovskij Gosudarstvennyj

Universitet 3669 31494 8.58381 63 110 347.43 0.02 147.95 729.61 133.86 83.25 196.6530 Harbin Institute of

Technology 3612 19001 5.26052 46 84 287.08 0.01 114.92 440.19 105.31 62.16 155.9331 Universite Pierre et Marie

Curie 3478 53211 15.2993 90 133 410.91 0.03 192.31 1232.72 169.95 109.41 247.69

Page 99: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

180

Table 5.54 (Continued)

32 National Cheng KungUniversity 3454 31387 9.08715 62 124 351.84 0.02 147.70 727.13 134.05 87.68 197.25

33 Peking University 3432 98709 28.7614 38 54 1805.34 0.01 261.92 2286.76 259.15 45.30 498.4634 University Michigan Ann

Arbor 3408 29008 8.51174 61 98 330.50 0.02 141.99 672.02 128.22 77.32 188.1735 University of Oxford 3394 49670 14.6346 84 146 410.96 0.02 185.80 1150.69 165.72 110.74 242.0836 Eidgenossische Technische

Hochschule Zurich 3364 42402 12.6046 86 174 342.67 0.03 171.67 982.31 148.57 122.33 216.1537 Korea Advanced Institute of

Science & Technology 3358 74981 22.3291 106 192 491.62 0.03 228.28 1737.06 202.18 142.66 294.8038 Oak Ridge National

Laboratory 3336 45789 13.7257 78 167 407.99 0.02 178.39 1060.78 160.43 114.13 235.0339 National Chiao Tung

University Taiwan 3318 76140 22.9476 103 199 513.76 0.03 230.04 1763.91 205.69 143.17 300.6940 Hanyang University 3258 64754 19.8754 94 201 478.77 0.03 212.14 1500.13 190.18 137.46 278.2641 Argonne National Laboratory 3235 33436 10.3357 66 101 352.09 0.02 152.44 774.60 137.41 81.65 201.5042 Nagoya University 3210 60502 18.848 98 210 429.07 0.03 205.06 1401.63 180.12 143.46 262.2843 National Tsing Hua

University 3204 74462 23.2403 105 173 492.87 0.03 227.49 1725.04 201.81 134.78 294.3644 Georgia Institute of

Technology 3164 102218 32.3066 136 234 522.36 0.04 266.54 2368.05 229.23 178.39 333.5545 University of Texas at Austin 3160 67294 21.2956 105 154 445.42 0.03 216.26 1558.98 189.06 127.16 275.16

Page 100: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

181

Table 5.54 (Continued)

46 Graduate University ofChinese Academy of Sciences 3158 34537 10.9364 72 103 333.38 0.02 154.93 800.11 137.18 86.12 200.02

47 Institute of Physics ChineseAcademy of Sciences 3145 75566 24.0273 104 214 504.98 0.03 229.17 1750.61 204.21 149.18 298.22

48 Universite Paris-Sud XI 3141 50477 16.0704 88 197 398.65 0.03 187.30 1169.38 165.34 131.67 240.9349 Universidade de Sao Paulo 3129 96215 30.7494 127 231 526.53 0.04 258.59 2228.98 225.26 171.28 327.7650 Kyushu University 3128 52077 16.6487 87 114 416.02 0.03 190.25 1206.45 169.19 99.59 246.93

TOTAL 223343 3481351 15.59

Page 101: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

182

Out of the total 9,16,414 publications the top 50 institutions

published 2,23,343 articles with 34,81,851 citations with an average citation

of 15.58 citations. The average number of publications of these institutions is

7445 articles per year. Out of the top 50 institutions 21 institutions received

citations above average. This clearly indicate that the scientist from these top

50 institutions are showing more interest that the others.

Average number of citations of institutions is ranges from 4.80 to

32.31. Georgia Institute of Technology has highest citation per paper i.e.

32.31 with a total number of publication is only 3164. It is followed by

Zhejiang University has 31.98 citation per paper with the publication of 5252.

5.11.6 Various indices of Indian contributions

To measure the impact of Indian authors contribution in Journals,

the impact of the Indian Institutions as per the authors affiliation and the

authors from India contributed in literature of nanotechnology has been

analysed to quality of the research.

5.11.7 Various indices of Indian contributions of top 50 journals by

authors contribution

First 50 journals in which Indian authors contributed are analysed to

measure the impact of these contributions and the same is shown in

Table 5.55.

Page 102: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

183183

Table 5.55 Various indices of Top 50 Journals of Indian authors contribution

S.No. Indian Journals TP TC CPP h

index

g

index

A

index

h(nom)

Index

R

index

AR

Index

e-

index

hg-

index

p

index

1 Journal of Applied Physics 748 5734 7.67 34 8 168.65 0.05 75.72 191.13 67.66 16.49 35.29

2 Physical Review B CondensedMatter and Materials Physics

572 8387 14.66 40 9 209.68 0.07 91.58 279.57 82.38 18.97 49.73

3 Journal of Nanoscience andNanotechnology

555 416 0.75 9 3 46.22 0.02 20.40 13.87 18.30 5.20 6.78

4 Journal of Alloys and Compounds 550 3449 6.27 21 6 164.24 0.04 58.73 114.97 54.85 11.22 27.86

5 Journal of Physical Chemistry B 512 12493 24.40 57 11 219.18 0.11 111.77 416.43 96.15 25.04 67.30

6 Applied Physics Letters 507 6977 13.76 41 9 170.17 0.08 83.53 232.57 72.77 19.21 45.79

7 Journal of Applied Polymer Science 458 3238 7.07 24 7 134.92 0.05 56.90 107.93 51.59 12.96 28.39

8 Materials Letters 443 4429 10.00 29 7 152.72 0.07 66.55 147.63 59.90 14.25 35.38

9 Materials Chemistry and Physics 402 571 1.42 10 4 57.10 0.02 23.90 19.03 21.70 6.32 9.33

10 Applied Surface Science 400 3237 8.09 24 6 134.88 0.06 56.89 107.90 51.58 12.00 29.70

11 Bulletin of Materials Science 364 2271 6.24 10 6 227.10 0.03 47.66 75.70 46.59 7.75 24.20

12 Langmuir 355 8838 24.90 50 10 176.76 0.14 94.01 294.60 79.61 22.36 60.37

13 Journal of Physics D AppliedPhysics

338 2263 6.70 22 5 102.86 0.07 47.57 75.43 42.18 10.49 24.74

14 Journal of Physical Chemistry C 329 3930 11.95 29 7 135.52 0.09 62.69 131.00 55.58 14.25 36.07

15 Journal of Materials Science 310 2517 8.12 23 6 109.43 0.07 50.17 83.90 44.59 11.75 27.34

16 Journal of Magnetism and MagneticMaterials

303 341 1.13 10 3 34.10 0.03 18.47 11.37 15.52 5.48 7.27

17 Chemical Physics Letters 300 2993 9.98 29 7 103.21 0.10 54.71 99.77 46.39 14.25 31.02

18 Thin Solid Films 291 3203 11.01 28 7 114.39 0.10 56.60 106.77 49.18 14.00 32.79

Page 103: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

184184

Table 5.55 (Continued)

19 Journal of Physics Condensed Matter 271 2338 8.63 25 6 93.52 0.09 48.35 77.93 41.39 12.25 27.22

20 Physica B Condensed Matter 258 1144 4.43 14 5 81.71 0.05 33.82 38.13 30.79 8.37 17.18

21 Nuclear Instruments and Methods inPhysics Research Section B BeamInteractions with Materials and Atoms

247 271 1.10 7 3 38.71 0.03 16.46 9.03 14.90 4.58 6.67

22 Nanotechnology 242 3177 13.13 27 7 117.67 0.11 56.36 105.90 49.48 13.75 34.68

23 Journal of Colloid and InterfaceScience

237 3731 15.74 30 7 124.37 0.13 61.08 124.37 53.21 14.49 38.87

24 Materials Research Bulletin 228 2658 11.66 26 6 102.23 0.11 51.56 88.60 44.52 12.49 31.41

25 Solid State Communications 227 1655 7.29 20 5 82.75 0.09 40.68 55.17 35.43 10.00 22.94

26 Journal of Chemical Physics 226 134 0.59 5 2 26.80 0.02 11.58 4.47 10.44 3.16 4.30

27 Materials Science and Engineering A 220 2204 10.02 23 6 95.83 0.10 46.95 73.47 40.93 11.75 28.05

28 Sensors and Actuators B Chemical 219 3483 15.90 31 7 112.35 0.14 59.02 116.10 50.22 14.73 38.12

29 Tetrahedron Letters 210 3138 14.94 30 7 104.60 0.14 56.02 104.60 47.31 14.49 36.06

30 Current Science 192 1606 8.36 20 6 80.30 0.10 40.07 53.53 34.73 10.95 23.77

31 Materials Science and Engineering BSolid State Materials for AdvancedTechnology

192 1337 6.96 18 5 74.28 0.09 36.57 44.57 31.83 9.49 21.04

32 Synthesis and Reactivity in InorganicMetal Organic and Nano MetalChemistry

190 409 2.15 8 3 51.13 0.04 20.22 13.63 18.57 4.90 9.58

33 Journal of Materials Chemistry179 4222 23.59 35 9 120.63 0.20 64.98 140.73 54.74 17.75 46.35

34 Journal of the American CeramicSociety 178 2134 11.99 21 5 101.62 0.12 46.20 71.13 41.15 10.25 29.47

Page 104: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

185185

Table 5.55 (Continued)

35 SpectrochimicaActa Part AMolecular and BiomolecularSpectroscopy

177 1200 6.78 18 5 66.67 0.10 34.64 40.00 29.60 9.49 20.11

36 Industrial and EngineeringChemistry Research

174 151 0.87 6 3 25.17 0.03 12.29 5.03 10.72 4.24 5.08

37 Journal of Molecular Catalysis AChemical

172 2540 14.77 27 6 94.07 0.16 50.40 84.67 42.56 12.73 33.47

38 Indian Journal of Chemistry SectionA Inorganic Physical Theoreticaland Analytical Chemistry

166 386 2.33 7 3 55.14 0.04 19.65 12.87 18.36 4.58 9.65

39 Pramana Journal of Physics 165 457 2.77 10 4 45.70 0.06 21.38 15.23 18.89 6.32 10.82

40 Physica E Low DimensionalSystems and Nanostructures

164 422 2.57 11 4 38.36 0.07 20.54 14.07 17.35 6.63 10.28

41 Surface and Coatings Technology 159 1452 9.13 20 6 72.60 0.13 38.11 48.40 32.43 10.95 23.67

42 Journal of Hazardous Materials 156 148 0.95 7 3 21.14 0.04 12.17 4.93 9.95 4.58 5.20

43 Journal of Physical Chemistry A 155 2408 15.54 25 8 96.32 0.16 49.07 80.27 42.23 14.14 33.44

44 Chemical Communications 154 3745 24.32 32 8 117.03 0.21 61.20 124.83 52.16 16.00 44.99

45 Inorganic Chemistry 150 3778 25.19 33 8 114.48 0.22 61.47 125.93 51.86 16.25 45.65

46 Chemistry of Materials 143 5855 40.94 39 10 150.13 0.27 76.52 195.17 65.83 19.75 62.12

47 Journal of Materials Research 141 1398 9.91 20 6 69.90 0.14 37.39 46.60 31.59 10.95 24.02

48 Solar Energy Materials and SolarCells

141 2062 14.62 24 7 85.92 0.17 45.41 68.73 38.55 12.96 31.13

49 Journal of Physics and Chemistry ofSolids

138 779 5.64 14 4 55.64 0.10 27.91 25.97 24.15 7.48 16.38

50 International Journal of HydrogenEnergy

138 1743 12.63 23 6 75.78 0.17 41.75 58.10 34.84 11.75 28.03

TOTAL 13746 137452 10.00

Page 105: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

186

Overall the top 50 institutions have contributed 44.66% of Indian

contribution on Nanotechnology literature. The total of 13746 Indian

contributions appeared in 50 journals which is one third of the total

contribution. This 13746 publications yielded 137452 citations with an

average citation per paper works out to 10. The average citation per paper

ranges from 0.59 to 40.94 of which Chemistry of Materials as 40.94 citation

per paper whereas number of contribution is only 143 which received a total

citation 5845. The Journal of Chemistry of Materials further compared with

world contribution of top 50 journals (Table 5.52) which has been identified

as 11 in the list. The global citation per paper works out to 32.249 which

indicates that Indian articles are highly cited. ‘The journal of Physical

Chemistry B’ has received the highest h index (57) and g index (11). The

journal of Chemical Physics has published 226 articles with the citation of

134. Hence it received the low h index(5).

5.11.8 Indian contributions of top 50 Indian authors

Top 50 Indian authors contribution in the field of Nanotechnology

has been measured with various scientometric indicators and shown in

Table 5.56

Page 106: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

187

Table 5.56 Various Indices of Top 50 Indian Authors

S.No. Indian Authors TP TC CPPh

index

g

indexA index

h(nom)

Index

R

index

AR

Index

e-

index

hg-

indexp index

1 C.N.R. Rao 355 8838 24.90 50 92 122.85 0.14 78.37 204.75 60.35 67.82 91.04

2 Gajbhiye.N.S. 287 12065 42.04 57 88 147.11 0.20 91.57 279.51 71.67 70.82 107.25

3 Avasthi.D.k. 207 1198 5.79 17 25 48.98 0.08 28.85 27.75 23.32 20.62 34.42

4 Tyagi.A.K. 161 1107 6.88 16 21 48.09 0.10 27.74 25.65 22.66 18.33 33.32

5 Lokhande.C.D. 147 2590 17.62 26 33 69.23 0.18 42.43 60.00 33.53 29.29 49.95

6 Sastry.M. 144 5225 36.28 39 52 93.11 0.27 60.26 121.05 45.94 45.03 69.67

7 Gupta.A. 136 555 4.08 11 16 35.07 0.08 19.64 12.86 16.27 13.27 23.83

8 Chakravorty.D. 126 1480 11.75 20 29 51.43 0.16 32.07 34.29 25.07 24.08 37.54

9 Kanjilal.D. 120 546 4.55 11 16 34.50 0.09 19.48 12.65 16.08 13.27 23.57

10 Srivastava.A.K. 119 1150 9.66 17 23 47.01 0.14 28.27 26.64 22.59 19.77 33.49

11 Singh.F. 117 795 6.79 14 24 39.47 0.12 23.51 18.42 18.88 18.33 27.94

12 Chaudhuri.S. 116 1783 15.37 22 32 56.33 0.19 35.20 41.31 27.48 26.53 41.17

13 Pramanik.P 116 1236 10.66 21 33 40.91 0.18 29.31 28.63 20.45 26.32 32.75

14 Chattopadyayk.K. 112 1528 13.64 20 35 53.10 0.18 32.59 35.40 25.73 26.46 38.35

15 Govindrajan.A. 107 5736 53.61 43 55 92.71 0.40 63.14 132.88 46.23 48.63 71.76

16 Bhowmick.A.K. 106 1627 15.35 22 36 51.40 0.21 33.63 37.69 25.43 28.14 38.74

17 Kumar.A. 105 1432 13.64 17 27 58.54 0.16 31.55 33.17 26.58 21.42 38.77

18 Murty.B.S. 105 1282 12.21 16 21 55.69 0.15 29.85 29.70 25.20 18.33 36.75

19 Aminabhavi 103 2539 24.65 25 33 70.58 0.24 42.01 58.82 33.76 28.72 49.94

20 Ganesan.V. 102 585 5.74 12 16 33.88 0.12 20.16 13.55 16.20 13.86 23.97

Page 107: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

188

Table 5.56 (Continued)

21 Ram.S. 102 638 6.25 15 22 29.56 0.15 21.06 14.78 14.78 18.17 23.58

22 Pradeep.T. 97 1918 19.77 20 31 66.65 0.21 36.51 44.43 30.55 24.90 44.62

23 Madras.G. 93 1898 20.41 22 33 59.96 0.24 36.32 43.97 28.90 26.94 42.93

24 Kumar.M. 92 914 9.93 16 19 39.70 0.17 25.20 21.17 19.47 17.44 29.33

25 Kumar.R. 89 473 5.31 11 20 29.89 0.12 18.13 10.96 14.41 14.83 21.42

26 Pal.T. 89 1943 21.83 24 34 56.27 0.27 36.75 45.01 27.83 28.57 42.35

27 Malhotra.B.P. 85 1724 20.28 23 32 52.09 0.27 34.61 39.94 25.87 27.13 39.67

28 Joy.P.A. 83 1088 13.11 6 9 126.03 0.07 27.50 25.21 26.84 7.35 45.68

29 Ravi.V. 83 725 8.73 14 22 35.99 0.17 22.45 16.80 17.55 17.55 26.27

30 Satyam,A 83 1719 20.71 22 41 54.30 0.27 34.56 39.82 26.66 30.03 40.18

31 Sharma.A. 83 1719 20.71 22 34 54.30 0.27 34.56 39.82 26.66 27.35 40.18

32 Sreedhar.B. 83 1731 20.86 21 29 57.29 0.25 34.68 40.10 27.61 24.68 41.00

33 Rajam.K.S. 82 1114 13.59 20 33 38.71 0.24 27.82 25.81 19.35 25.69 31.06

34 Mukherjee.T. 81 724 8.94 15 25 33.55 0.19 22.43 16.77 16.68 19.36 25.65

35 Vyas.S.P. 80 1041 13.01 18 38 40.19 0.23 26.90 24.12 19.99 26.15 30.75

36 Nair.K.G.m. 78 507 6.50 12 21 29.36 0.15 18.77 11.75 14.43 15.87 21.79

37 Ayyubg.P. 77 1093 14.19 18 23 42.20 0.23 27.56 25.32 20.87 20.35 31.77

38 Jasra.R.V. 77 996 12.94 17 22 40.72 0.22 26.31 23.07 20.08 19.34 30.43

39 Mehta.B.R. 77 711 9.23 13 19 38.01 0.17 22.23 16.47 18.03 15.72 26.58

40 Pasricha.R. 77 154 2.00 11 28 12.91 0.14 11.92 4.73 21.00 17.55 12.24

Page 108: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

189

Table 5.56 (Continued)

41 Raj.B. 77 664 8.62 16 25 28.84 0.21 21.48 15.38 14.33 20.00 23.70

42 Warrier.K.G.K. 77 982 12.75 17 23 40.15 0.22 26.12 22.75 19.84 19.77 30.15

43 Basu.B. 76 722 9.50 17 26 29.52 0.22 22.40 16.73 14.59 21.02 24.56

44 Bhattacharyya.K. 76 1876 24.68 24 36 54.33 0.32 36.11 43.46 26.98 29.39 41.38

45 Chattopadhyay.K.K. 76 896 11.79 17 34 36.63 0.22 24.95 20.76 18.27 24.04 28.36

46 Kantam.M.L. 74 1326 17.92 21 33 43.88 0.28 30.36 30.72 21.92 26.32 34.33

47 Ray.S.K. 74 392 5.30 11 20 24.77 0.15 16.51 9.08 12.31 14.83 18.90

48 Manna.I. 73 838 11.48 17 21 34.26 0.23 24.13 19.41 17.13 18.89 27.12

49 Shivaprasad.S.M. 72 581 8.07 14 19 28.84 0.19 20.09 13.46 14.42 16.31 22.67

50 Hegde.M.S. 68 1921 28.25 23 34 58.05 0.34 36.54 44.50 28.39 27.96 42.63

TOTAL 5325 86325 16.21

Page 109: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

190

Overall the top 50 authors have contributed 16.21% of Indian

contribution on Nanotechnology literature. The total of 5325 articles has been

contributed by top 50 Indian authors. These 5325 publications yielded 86325

citations with an average citation per paper works out to 16.21. The average

citation per paper ranges from 2.00 to 53.61 of which Govindarajan.A. has

53.61 citation per paper whereas number of contribution is only 107 which

received a total citation 5736. The author Gajbhiye.N.S. has published 287

articles with the citation of 12065 and received a highest h index (57). Among

these top 50 authors the property h<hg<g reflects. The author C.N.R. Rao

holds the first position by number of publications and g index.

5.11.9 Various indices of Indian contributions of top 50 Institutions by

authors contribution

First 50 Indian Institutions are also analysed by TNP, TCC, CPP and

various indices and the same is shown in Table 5.57.

Page 110: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

191

Table 5.57 Various indices of Top 50 Indian Institutions

S.No. Indian Institutions TNP TNC CPPh-

index

g-

index

A

index

h

(nom)

R

index

AR

index

e-

index

hg

index

p

index

1 Indian Institute of Science 1793 13515 7.5376 29 35 323.89 0.02 96.92 313.10 92.48 31.86 144.902 Indian Institute of Technology,

Kharagpur 1503 12313 8.1923 28 42 305.63 0.02 92.51 285.25 88.17 34.29 137.783 Bhabha Atomic Research Centre 1283 9386 7.3157 39 44 167.26 0.03 80.77 217.44 70.73 41.42 102.954 National Chemical Laboratory India 1014 18893 18.632 59 63 222.55 0.06 114.59 437.69 98.23 60.97 142.975 Indian Institute of Technology,

Kanpur 1008 12313 12.215 46 73 186.03 0.05 92.51 285.25 80.26 57.95 116.776 Indian Association for the Cultivation

of Science 974 12716 13.055 44 63 200.86 0.05 94.01 294.59 83.08 52.65 121.087 Indian Institute of Technology,

Madras 937 9631 10.279 39 52 171.63 0.04 81.81 223.12 71.92 45.03 104.738 Indian Institute of Technology,

Bombay 795 9013 11.337 36 44 174.00 0.05 79.15 208.80 70.48 39.80 102.919 Indian Institute of Technology, Delhi 772 7194 9.3187 37 49 135.13 0.05 70.71 166.66 60.26 42.58 87.75

10 Jadavpur University 680 5971 8.7809 33 52 125.75 0.05 64.42 138.33 55.32 41.42 80.5111 University of Delhi 654 6759 10.335 33 51 142.35 0.05 68.54 156.58 60.07 41.02 87.4512 Jawaharlal Nehru Centre for

Advanced Scientific Research 633 16855 26.627 60 93 195.24 0.09 108.23 390.47 90.08 74.70 131.7513 National Physical Laboratory India 611 4873 7.9755 27 38 125.43 0.04 58.20 112.89 51.55 32.03 75.1714 Indian Institute of Chemical

Technology 607 10537 17.359 47 54 155.81 0.08 85.58 244.11 71.51 50.38 104.5015 Indian Institute of Technology

Roorkee 444 4478 10.086 29 44 107.32 0.07 55.79 103.74 47.66 35.72 69.3816 Tata Institute of Fundamental

Research 439 8586 19.558 26 36 229.51 0.06 77.25 198.91 72.74 30.59 111.05

Page 111: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

192

Table 5.57 (Continued)

17 University of Pune 429 6887 16.054 41 52 116.74 0.10 69.18 159.55 55.73 46.17 82.37

18 Banaras Hindu University 416 895 2.1514 14 23 44.43 0.03 24.94 20.73 20.64 17.94 30.23

19 Anna University 396 3590 9.0657 28 36 89.11 0.07 49.95 83.17 41.36 31.75 60.58

20Central Electrochemical ResearchInstitute India 391 4030 10.307 30 44 93.36 0.08 52.92 93.36 43.60 36.33 63.95

21Indira Gandhi Centre for AtomicResearch 383 2996 7.8225 27 43 77.12 0.07 45.63 69.41 36.79 34.07 54.35

22 University of Hyderabad 379 7012 18.501 36 53 135.37 0.09 69.81 162.44 59.81 43.68 87.05

23 Shivaji University 373 318 0.8525 8 12 27.63 0.02 14.87 7.37 12.53 9.80 18.28

24Inter University Accelerator CentreIndia 328 362 1.1037 9 14 27.95 0.03 15.86 8.39 13.06 11.22 19.16

25Indian Institute of Technology,Guwahati 291 3094 10.632 27 32 79.64 0.09 46.37 71.68 37.70 29.39 55.53

26 Saha Institute of Nuclear Physics 271 327 1.2066 9 11 25.25 0.03 15.08 7.58 12.09 9.95 17.90

27 Dr. Harisingh Gour University, Sagar 269 3392 12.61 29 42 81.29 0.11 48.55 78.58 38.94 34.90 57.65

28Cochin University of Science andTechnology 268 1988 7.4179 21 32 65.79 0.08 37.17 46.06 30.67 25.92 44.96

29Central Glass and Ceramic ResearchInstitute India 263 3112 11.833 27 33 80.11 0.10 46.51 72.09 37.87 29.85 55.75

30 University of Madras 252 2584 10.254 27 39 66.51 0.11 42.38 59.86 32.66 32.45 49.25

31Central Salt and Marine ChemicalsResearch Institute India 251 3557 14.171 32 56 77.25 0.13 49.72 82.40 38.05 42.33 57.59

32UGC-DAE Consortium for ScientificResearch India 243 1470 6.0494 19 32 53.77 0.08 31.96 34.06 25.70 24.66 38.01

33 Materials Research Centre 239 2883 12.063 26 48 77.06 0.11 44.76 66.79 36.44 35.33 53.65

34 University of Calcutta 232 1582 6.819 20 34 54.97 0.09 33.16 36.65 26.45 26.08 39.24

Page 112: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

193

Table 5.57 (Continued)

35 Aligarh Muslim University 225 1587 7.0533 20 44 55.15 0.09 33.21 36.77 26.51 29.66 39.33

36The Maharaja Sayajirao University ofBaroda 224 1696 7.5714 20 32 58.94 0.09 34.33 39.29 27.91 25.30 41.11

37Centre for Materials for ElectronicsTechnology India 216 3007 13.921 30 43 69.66 0.14 45.72 69.66 34.49 35.92 52.61

38National Metallurgical LaboratoryIndia 215 1954 9.0884 21 37 64.67 0.10 36.85 45.27 30.28 27.87 44.45

39Institute of Technology BanarasHindu University 213 1733 8.1362 18 29 66.91 0.08 34.70 40.15 29.67 22.85 43.19

40Regional Research LaboratoryThiruvananthapuram 206 2066 10.029 21 41 68.37 0.10 37.89 47.86 31.54 29.34 46.13

41 Sri Venkateswara University 204 1889 9.2598 18 38 72.94 0.09 36.23 43.76 31.45 26.15 45.75

42 Alagappa University 204 1432 7.0196 16 27 62.20 0.08 31.55 33.17 27.19 20.78 39.56

43S N Bose National Centre for BasicScience 201 1393 6.9303 18 29 53.79 0.09 31.11 32.27 25.38 22.85 37.34

44

National Institute forInterdisciplinary Science andTechnology 199 1764 8.8643 18 22 68.11 0.09 35.01 40.87 30.03 19.90 43.71

45 Panjab University 189 1629 8.619 17 44 66.60 0.09 33.65 37.74 29.04 27.35 42.25

46 University of Rajasthan 187 1354 7.2406 14 32 67.22 0.07 30.68 31.37 27.30 21.17 39.84

47 Institute of Physics Bhubaneswar 182 1648 9.0549 19 30 60.28 0.10 33.84 38.18 28.01 23.87 41.02

48Bengal Engineering and ScienceUniversity 178 1944 10.921 19 27 71.11 0.11 36.76 45.04 31.47 22.65 45.80

49Raja Ramanna Centre for AdvancedTechnology 172 1542 8.9651 16 29 66.98 0.09 32.74 35.72 28.56 21.54 41.56

50Defence Metallurgical Research LabIndia 172 1894 11.012 17 27 77.43 0.10 36.28 43.88 32.05 21.42 46.71

TOTAL 23008 241644 10.502

Page 113: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

194

A total of 23,008 (74.75%) articles has been published by the top 50

Indian institutions which shows the priority of these Institutions. The average

citation of these 50 institutions is 10.50 with a total citation of 241644. It

shows the impact of these institutions research interest by their respective

scientists. It is observed from the Table 5.57, the academic institutions

involved more in research publications.

In all the institutions the p index is higher than g index and hg

index lies between h and g index. h(nom) is less than 0.1 Higher the h(nom)

indicates higher the citations. The value normally lies h(nom)>0.1 or

h(nom)<0.1. If greater than 0.1 citation pattern seems to be high and

increases. Accordingly from the table 5.57 can be seen that h(nom) ranges

between 0 to 0.14.

5.11.10 Highly cited publications (> 2000 citations)

The individual articles that are received more than 2000 citations

have taken up for the study and the same is shown in Table 5.58

Page 114: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

195

Table 5.58 Highly Cited articles with more than 2000 citations

S.No Authors Title Year Journal Title CitationsCountry of the

author/s

Average

Citation

Rank of

Age of

Citation

1 Iijima S. Helical microtubules of graphiticcarbon

1991 Nature 17853 Japan 892.65 1

2 O'Regan B., Gratzel M. A low-cost, high-efficiency solar cellbased on dye-sensitized colloidalTiO2 films

1991 Nature 6427 Switzerland,US 321.35 15

3 Novoselov K.S., et.al., Electric field in atomically thincarbon films

2004 Science 5735 UnitedKingdom,

Russia

819.29 2

4 Zhao D., et.al., Triblock copolymer syntheses ofmesoporous silica with periodic 50 to300 angstrom pores

1998 Science 4733 United States 364.08 13

5 Bruchez Jr. M., et.al., Semiconductor nanocrystals asfluorescent biological labels

1998 Science 4126 United State 317.38 18

6 Murray C.B., Norris D.J.,Bawendi M.G.

Synthesis and characterization ofnearly monodisperseCdE (E = S, Se,Te) semiconductor nanocrystallites

1993 Journal of theAmericanChemicalSociety

4106 United States 228.11 33

7 Baughman R.H., ZakhidovA.A., De Heer W.A.

Carbon nanotubes - The route towardapplications

2002 Science 3918 United States 435.33 11

Page 115: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

196

Table 5.58 (Continued)

8 Moulton B., Zaworotko M.J. From molecules to crystalengineering: Supramolecularisomerism and polymorphism innetwork solids

2001 ChemicalReviews

3839 United States 383.90 12

9 NovoselovK.S.,et.al., Two-dimensional gas of masslessDirac fermions in graphene

2005 Nature 3698 United States,Netherlands

616.33 5

10 Iijima S., Ichihashi T. Single-shell carbon nanotubes of1-nm diameter

1993 Nature 3654 Japan 203.00 39

11 Asahi R., et.al., Visible-light photocatalysis innitrogen-doped titanium oxides

2001 Science 3466 Japan 346.60 14

12 Kitagawa S., Kitaura R.,Noro S.-I.

Functional porous coordinationpolymers

2004 AngewandteChemie -

InternationalEdition

3448 Japan 492.57 8

13 Perkins D.N., et.al., Probability-based proteinidentification by searchingsequence databases using massspectrometry data

1999 Electrophoresis 3333 United Kingdom 277.75 21

14 Eidelman S., et.al., Review of particle physics 2004 Physics Letters,Section B:Nuclear,

ElementaryParticle andHigh-Energy

Physics

3281 Russia, UnitedStates,Switzerland,Italy, Japan, India,

Spain, South Korea,Germany, Australia,

UK, France andCanada

468.71 10

Page 116: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

197

Table 5.58 (Continued)

15 Takahashi K., Yamanaka S. Induction of Pluripotent StemCells from Mouse Embryonic andAdult Fibroblast Cultures byDefined Factors

2006 Cell 3223 Japan 644.60 4

16 Zhang Y., et.al., Experimental observation of thequantum Hall effect and Berry'sphase in graphene

2005 Nature 3157 United States 526.17 6

17 Kong J., et.al., Nanotube molecular wires aschemical sensors

2000 Science 3052 United States 277.45 22

18 Nazeeruddin M.K., et.al., Conversion of light to electricityby cis-X2bisruthenium(II) charge-transfer sensitizers (X = Cl-, Br-,I-, CN-, and SCN-) onnanocrystalline TiO2 electrodes

1993 Journal of theAmericanChemicalSociety

3045 Switzerland 169.17 46

19 Gratzel M. Photoelectrochemical cells 2001 Nature 3042 Switzerland 304.20 20

20 Zhao D.,et.al., Nonionictriblock and star diblockcopolymer andoligomericsufactant syntheses ofhighly ordered, hydrothermallystable, mesoporous silicastructures

1998 Journal of theAmericanChemicalSociety

3009 United States 231.46 32

21 Sun S., et.al., MonodisperseFePt nanoparticlesand ferromagneticFePtnanocrystalsuperlattices

2000 Science 3002 United States 272.91 24

Page 117: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

198

Table 5.58 (Continued)

22 Haykin S. Cognitive radio: Brain-empoweredwireless communications

2005 IEEE Journal onSelected Areas

inCommunication

s

2904 Canada 484.00 9

23 SolerJ.M.,et.al., The SIESTA method for ab initioorder-N materials simulation

2002 Journal ofPhysics

CondensedMatter

2824 Spain, UnitedKingdom

313.78 19

24 Hagfeld A., Gratzel M. Light-induced redox reactions innanocrystalline systems

1995 ChemicalReviews

2747 Switzerland, Sweden 171.69 44

25 Corma A. From microporous to mesoporousmolecular sieve materials and theiruse in catalysis

1997 ChemicalReviews

2716 United States 194.00 42

26 Alexandre M., Dubois P. Polymer-layered silicatenanocomposites: Preparation,properties and uses of a new classof materials

2000 MaterialsScience and

Engineering R:Reports

2683 Belgium 243.91 27

27 Takahashi K., et.al., Induction of Pluripotent StemCells from Adult HumanFibroblasts by Defined Factors

2007 Cell 2665 Japan 666.25 3

28 Martin C.R. Nanomaterials: A membrane-based synthetic approach

1994 Science 2590 United States 152.35 51

29 YaghiO.M.,et.al., Reticular synthesis and the designof new materials

2003 Nature 2567 United States 320.88 16

Page 118: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

199

Table 5.58 (Continued)

30 Aebersold R., Mann M. Mass spectrometry-basedproteomics

2003 Nature 2555 United States,Denmark

319.38 17

31 Inoue A. Stabilization of metallicsupercooled liquid and bulkamorphous alloys

2000 ActaMaterialia 2550 Japan 231.82 31

32 Treacy M.M.J., EbbesenT.W., Gibson J.M.

Exceptionally high Young'smodulus observed for individualcarbon nanotubes

1996 Nature 2542 United States 169.47 45

33 Ralevic V., Burnstock G. Receptors for purines andpyrimidines

1998 Pharmacological Reviews

2527 United Kingdom 194.38 41

34 Huynh W.U., Dittmer J.J.,Alivisatos A.P.

Hybrid nanorod-polymer solarcells

2002 Science 2397 United States 266.33 25

35 Masuda H., Fukuda K. Ordered metal nanohole arraysmade by a two-step replication ofhoneycomb structures of anodicalumina

1995 Science 2394 Japan 149.63 52

36 De Heer W.A., Chatelain A.,Ugarte D.

A carbon nanotube field-emissionelectron source

1995 Science 2365 Switzerland, Brazil 147.81 53

37 Leininger S., Olenyuk B.,Stang P.J.

Self-Assembly of Discrete CyclicNanostructures Mediated byTransition Metals

2000 ChemicalReviews

2355 United States 214.09 35

38 SegallM.D.,et.al., First-principles simulation: Ideas,illustrations and the CASTEP code

2002 Journal ofPhysics

CondensedMatter

2343 United Kingdom 260.33 26

Page 119: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

200

Table 5.58 (Continued)

39 Washburn M.P., Wolters D.,Yates J.R.

Large-scale analysis of the yeastproteome by multidimensionalprotein identification technology

2001 NatureBiotechnology

2336 United States 233.60 29

40 Bonhte P., et.al., Hydrophobic, Highly ConductiveAmbient-Temperature MoltenSalts

1996 InorganicChemistry

2322 Switzerland 154.80 49

41 Muzio M., et.al. FLICE, a novel FADD-homologous ICE/CED-3-likeprotease, is recruited to the CD95(Fas/APO-1) death-inducingsignaling complex

1996 Cell 2297 United States,Germany

153.13 50

42 Groom D.E., et.al. Review of particle physics 2000 European PhysicalJournal C

2267 United States, Japan,Spain, Italy, India,Germany, Russia,France, Canada

206.09 36

43 Kraft A., Grimsdale A.C.,Holmes A.B.

Electroluminescent ConjugatedPolymers - Seeing Polymers in aNew Light

1998 AngewandteChemie - International

Edition

2266 United Kingdom,Germany

174.31 43

44 Ferrari A.C., Robertson J. Interpretation of Raman spectra ofdisordered and amorphous carbon

2000 Physical Review B- CondensedMatter and

Materials Physics

2259 United Kingdom 205.36 38

45 Sinha Ray S., Okamoto M. Polymer/layered silicatenanocomposites: A review frompreparation to processing

2003 Progress inPolymer Science

(Oxford)

2206 Japan 275.75 23

Page 120: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

201

Table 5.58 (Continued)

46 Schlapbach L., Zuttel A. Hydrogen-storage materials formobile applications

2001 Nature 2179 Switzerland 217.90 34

47 Eddaoudi M., et.al., Systematic design of pore size andfunctionality in isoreticular MOFsand their application in methanestorage

2002 Science 2169 United States 241.00 28

48 Caruso F., Caruso R.A.,Mohwald H.

Nanoengineering of inorganic andhybrid hollow spheres by colloidaltemplating

1998 Science 2159 Germany 166.08 48

49 Peng X., et.al. Shape control ofCdSenanocrystals

2000 Nature 2152 United States 195.64 40

50 Giannelis E.P. Polymer layered silicatenanocomposites

1996 Advanced Materials 2142 United States 142.80 54

51 Dupont J., De Souza R.F.,Suarez P.A.Z.

Ionic liquid (molten salt) phaseorganometallic catalysis

2002 Chemical Reviews 2096 Brazil 232.89 30

52 Yu J., et.al. Induced pluripotent stem cell linesderived from human somatic cells

2007 Science 2071 United States 517.75 7

53 Gleiter H. Nanocrystalline materials 1989 Progress in MaterialsScience

2070 Germany 94.09 55

54 Suryanarayana C. Mechanical alloying and milling 2001 Progress in MaterialsScience

2058 United States 205.80 37

55 Hagrman P.J., Hagrman D.,Zubieta J.

Organic-inorganic hybridmaterials: From 'simple'coordination polymers toorganodiamine-templatedmolybdenum oxides

1999 AngewandteChemie- International

Edition

2029 US 169.08 47

Page 121: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

202

Out of 55 articles with more than 2000 citations the articles published

in ‘Nature’ Journal received 49826 total citations with 7 numbers of

publications. United States contributed 27 articles along with other countries and

received total 77164 citations. Single authored papers received cumulative

citation of 37925 from the seven single authored papers. Top ranked article with

citation of 17853 was published by an solo author. Based on the impact of

citation rank, the author Iijima.S., holds the first position by number of citations

as well as impact of citation rank. The authors Novoselov K.S., et.al., who has

published the article in the year 2004 has yield 5735 citations and positioned in

second among the impact of citation rank.

5.11.11 Indian collaborations with G20 countries

Indian authors collaborated with G20 countries and International

Collaborative publications are analysed and the same is shown in Table 5.59.

Table 5.59 Indian authors Collaboration with G20 countries

S.No. G20 Countries ICP ICP% India% of Indian

CollaborationTotal

% G20

countries

Collaboration

Rank

1 United States 78644 41.16 1923 6.25 191090 2.45 6

2 China 31670 20.69 209 0.68 153100 0.66 18

3 Japan 28734 31.11 981 3.19 92363 3.41 4

4 Germany 53847 73.94 1118 3.63 72825 2.08 7

5 France 40074 75.69 658 2.14 52947 1.64 10

6 Korea 14904 31.96 866 2.81 46640 5.81 2

7 United Kingdom 36004 77.27 566 1.84 46597 1.57 12

8 Italy 22744 71.87 329 1.07 31648 1.45 13

9 India 10141 32.95 - - 30777 - -

10 Russia 18417 59.93 120 0.39 30733 0.65 19

11 Canada 14435 60.57 208 0.68 23833 1.44 14

12 Australia 11632 68.52 186 0.60 16976 1.60 11

13 Brazil 6399 52.41 125 0.41 12209 1.95 8

14 European Union 3597 35.39 94 0.31 10163 2.61 5

Page 122: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

203

Table 5.59 (Continued)

15 Turkey 2766 44.43 35 0.11 6226 1.27 16

16 Mexico 4036 66.02 55 0.18 6113 1.36 15

17 Argentina 2417 73.20 22 0.07 3302 0.91 17

18 South Africa 1319 72.63 68 0.22 1816 5.16 3

19 Saudi Arabia 978 82.67 83 0.27 1183 8.49 1

20 Indonesia 421 99.29 7 0.02 424 1.66 9

Others 21848 25.42 2488 8.08 85949

Total 405027 44.17 10141 32.95 916914ICP – International Collaborative Publications

India has followed the policy of excellence through self-reliant

scientific research, with the purpose to initiate, advance and accelerate national

development in all segments of science and technology (S&T). Given this policy

initiative, India has been able to usher significant growth in its capacity and

capability building in basic research, applied research, and developmental

research in S&T. Its science & technology infrastructure has also become very

large, comprising more than 300 universities, 400 research laboratories, 13

institutes of national importance, and 1300 in-house industrial R&D units,

besides several other government departments, private, international and non-

profitable institutions.

Among the G20 collaborating countries, the leading ones from the

developed world that had a significant share in collaborations with India during

the study period 1981-2010 are Indonesia (99.29%) share and among this only

0.02% with India. United States collaborated with India (6.25%) of world share

holds the highest position in collaboration with India, followed by Germany

(3.63%) and Japan (3.19%). The International Collaboration of Saudi Arabia is

82.67% with Indian contribution of 8.49% followed by Indian contribution with

Korea (5.81%), South Africa (5.16%), Japan (3.41), European Union (2.61) and

United States (2.45%).

Page 123: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

204

5.11.12 Ranking of Journals on Nanotechnology Literature

A total 9,16,414 contribution in Nanotechnology literature from

various bibliographic form the articles published in various journals are ranked

and show in Table 5.60

Table 5.60 Ranking of Journals

S.No. Journals TP % Rank

1 Applied Physics Letters 19078 2.0818 12 Physical Review B Condensed Matter and

Materials Physics18173 1.9831 2

3 Journal of Applied Physics 12279 1.3399 34 Journal of Physical Chemistry B 8404 0.9171 45 Journal of the American Chemical Society 7455 0.8135 56 Langmuir 7443 0.8122 67 Journal of Physical Chemistry C 7205 0.7862 78 Physical Review Letters 6997 0.7635 89 Journal of Alloys and Compounds 5792 0.632 9

10 Journal of Chemical Physics 5663 0.618 1011 Chemistry of Materials 5410 0.5903 1112 Mcromolecules 5352 0.584 1213 Journal of Vaccum Science and technology B

Microelectronics and Nanometer Structures5330 0.5816 13

14 Chemical Communications 5324 0.581 1415 Thin Solid Films 4919 0.5368 1516 Journal of Applied Polymer Science 4755 0.5189 1617 Nanotechnology 4731 0.5163 1718 Materials Letters 4693 0.5121 1819 Journal of Magnetism and Magnetic

Materials4518 0.493 19

20 Journal of Materials Chemistry 4413 0.4816 2021 Applied Surface Science 4290 0.4681 2122 Materials Science and Engineering A 4258 0.4646 2223 Chemical Physics Letters 3908 0.4264 2324 Journal of the Electrochemical Society 3890 0.4245 2425 Surface and Coatings Technology 3864 0.4216 25

Page 124: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

205

Table 5.60 (Continued)

26 Optics Express 3748 0.409 2627 Journal of Physics Condensed Matter 3680 0.4016 2728 AngewandteChemie International Edition 3637 0.3969 2829 Advanced Materials 3632 0.3963 2930 Analytical Chemistry 3333 0.3637 3031 Polymer 3313 0.3615 3132 Journal of Colloid and Interface Science 3226 0.352 3233 Nano Letters 3222 0.3516 3334 Journal of Power Sources 3186 0.3477 3435 Journal of Materials Science 3129 0.3414 3536 ElectrochimicaActa 3080 0.3361 3637 Inorganic Chemistry 2944 0.3213 3738 Japanese Journal of Applied Physics Part 1

Regular Papers and Sort Notes and ReviewPapers

2844 0.3103 38

39 Journal of the American Ceramic Society 2788 0.3042 3940 Journal of Physics D Applied Physics 2769 0.3022 4041 Surface Science 2760 0.3012 4142 Physical Review E Statistical nonlinear and

Soft Matter Physics2716 0.2964 42

43 Journal of Materials Research 2714 0.2962 4344 Materials Chemistry and Physics 2623 0.2862 4445 Sensors and Actuators B Chemical 2538 0.2769 4546 Chemistry A European Journal 2524 0.2754 4647 Physica E Low Dimensional systems and

Nanostructure2500 0.2728 47

48 Journal of Non Crystalline Solids 2500 0.2728 4849 Carbon 2431 0.2653 4950 ScriptaMaterialia 2420 0.2641 5051 Biomaterials 2286 0.2495 5152 ActaMaterialia 2252 0.2457 5253 Physical Chemistry Chemical Physics 2185 0.2384 5354 Journal of Physical Chemistry A 2160 0.2357 5455 Journal of Membrane Science 2148 0.2344 5556 Microporous and Mesoporous Materials 2143 0.2338 5657 Chemistry Letters 2114 0.2307 5758 Physica B Condensed Matter 2083 0.2273 58

Page 125: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

206

Table 5.60 (Continued)

59 Solid State Communication 2074 0.2263 5960 Colloids and Surfaces A Physicochemical

and engineering Aspects2072 0.2261 60

61 Applied Physics A Materials Science andprocessing

2067 0.2256 61

62 Microelectronic engineering 2021 0.2205 6263 Journal of Crystal Growth 2003 0.2186 6364 Journal of Polymer Science Part A Polumer

Chemistry1996 0.2178 64

65 Diamond and Related Materials 1996 0.2178 6566 Journal of Nanoscience and Nanotechnology 1956 0.2134 6667 GongnengCailiao Journal of Functional

Materials1870 0.2041 67

68 Applied Catalysis A general 1863 0.2033 6869 Physical review A Atomic Molecular and

optical Physics1854 0.2023 69

70 Journal of the European Ceramic Society 1842 0.201 7071 Japapnese Journal of Applied Physics 1837 0.2005 7172 International Journal of Pharmaceutics 1810 0.1975 7273 Electrochemistry Comunications 1776 0.1938 7374 Materials Research Bulletin 1754 0.1914 7475 Xrystal Growth and Design 1717 0.1874 7576 Optics Letters 1691 0.1845 7677 Journal of Solid State Chemistry 1626 0.1774 7778 Journal of Catalysis 1617 0.1764 7879 Nuclear Instruments and Methods in Physics

Research1596 0.1742 79

80 Journal of Hazardous Materials 1589 0.1734 8081 Electrochemical and Solid State Letters 1579 0.1723 8182 Industrial and Engineering Chemistry

research1577 0.1721 82

83 Proceedings of the National Academy ofSciences of the United States of America

1560 0.1702 83

84 Advanced Functional Materials 1557 0.1699 8485 Materials Science and Engineering B Solid

State1532 0.1672 85

Page 126: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

207

Table 5.60 (Continued)

86 Journal of the Korean physical Society 1484 0.1619 8687 Envrionmental Science and Technology 1482 0.1617 8788 International Journal of Hydrogen energy 1481 0.1616 8889 Desalination 1446 0.1578 8990 Chinese Journal of Inorganic Chemistry 1438 0.1569 9091 Nanostructured Materials 1424 0.1554 9192 Synthetic Metals 1380 0.1506 9293 Biomacromolecules 1375 0.15 9394 IEEE Transactions on Electron Devices 1371 0.1496 9495 Dalton transactions 1370 0.1495 9596 Cheinese Physics Letters 1360 0.1484 9697 Journal of Controled Release 1359 0.1483 9798 Journal of Micromechanics and

Microengineering1337 0.1459 98

99 Tetrahedron Letters 1320 0.144 99100 Journal of Molecular Catalysis A Chemical 1312 0.1432 100101 Applied Caalysis B Environmental 1303 0.1422 101102 Physical review D Particles fields Gravitation

and Cosmoloy1297 0.1415 102

103 Journal of Biological chemistry 1296 0.1414 103104 Journal of Organic chemistry 1269 0.1385 104105 XiyouJinshuCailiao Yu gongcheng Rare

Metal1250 0.1364 105

106 WuliXubaoActahysicaSinica 1246 0.136 106107 Science 1245 0.1359 107108 Physics Letters Section A General Atomic an

Solid State physics1233 0.1345 108

109 Journal of Vacuum Science and technology AVacuum

1232 0.1344 109

110 Journal of Physics Conference Series 1216 0.1327 110111 Materials Science Forum 1207 0.1317 111112 European Journal of Inorganic Chemsitry 1200 0.1309 112113 Journal of Polymer Science Part B Polymer

Physics1188 0.1296 113

114 Journal of Sol Gel Science and Technology 1181 0.1289 114115 Catalysis Letters 1181 0.1289 115116 Solid state Ionics 1168 0.1275 116

Page 127: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

208

Table 5.60 (Continued)

117 Biosensors and Bioelectronics 1139 0.1243 117118 Journal of Physics and Chemisty of Solids 1137 0.1241 118119 Journal of Luminescence 1135 0.1239 119120 Macromolecular Rapid Communications 1128 0.1231 120121 Journal of Electroanalytical Chemistry 1124 0.1227 121122 Applied Optics 1123 0.1225 122123 Review of Scientific Instruments 1116 0.1218 123124 European Polymer Journal 1110 0.1211 124125 Catalysis today 1108 0.1209 125126 Journal of Biomedical Materials Research

Part A1096 0.1196 126

127 WujiCailiaXuebao Journal of InorganicMaterials

1090 0.1189 127

128 Organic Letters 1076 0.1174 128129 Lab on A Chip Miniaturisation for Chemistry

and biology1076 0.1174 129

130 Physica Stas Solidi B Basic research 1075 0.1173 130131 Ceramics Internaitonal 1064 0.1161 131132 Journal of Chromatography A 1056 0.1152 132133 Materials Transactions 1055 0.1151 133134 ACS Nano 1054 0.115 134135 Journal of Photochemistry and Photobiology

A Chemistry1049 0.1145 135

136 Optics Communications 1046 0.1141 136137 Journal of Nanoparticle Research 1035 0.1129 137138 InorganicaChimicaActa 1034 0.1128 138139 IEEE Electron Device Letters 1028 0.1122 139140 Solar Energy Materials and Solar Cells 1024 0.1117 140141 Materials Science and Engineering C 1023 0.1116 141142 Physics Letters Section B Nuclear

Elementary Particle and High Energy Physics1001 0.1092 142

143 Physics of the Solid State 996 0.1087 143144 Soft Matter 993 0.1084 144145 Small 991 0.1081 145146 Sensors and Actuators A Physical 975 0.1064 146147 Bulletin of the Korean Chemical Society 974 0.1063 147

Page 128: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

209

Table 5.60 (Continued)

148 Biophysical Journal 971 0.106 148149 Talanta 968 0.1056 149150 Physica C Superconductivity and Its

Applications960 0.1048 150

151 Tetrahedron 938 0.1024 151152 Electrophoresis 938 0.1024 152153 KueiSuan Jen HsuehPao Journal of the

Chinese Ceramic Society936 0.1021 153

154 Composites Science and Technology 925 0.1009 154155 Catalysis Communications 918 0.1002 155156 AnalyticaChimicaActa 916 0.1 156157 Crystengcomm 904 0.0986 157158 Organometallics 893 0.0974 158159 Nature 886 0.0967 159160 Inorganic Chemistry Communications 882 0.0962 160161 Nippon

SeramikkusuKyokaiGakujutsuRonbunshiJournal of the Ceramic Society of Japan

879 0.0959 161

162 New Journal of Physics 864 0.0943 162163 Mcromolecular Chemistry and Physics 859 0.0937 163164 Japanese Journal of Applied Physics Part 2

Lettes854 0.0932 164

165 Wear 850 0.0928 165166 Electroanalysis 843 0.092 166167 New Journal of chemistry 842 0.0919 167168 GaodengXuexiaoHuaxueXuebao Chemical

Journal of Chinese Universities833 0.0909 168

169 Current Applied Physics 820 0.0895 169170 Chemphyschem 812 0.0886 170171 Vacuum 809 0.0883 171172 Journal of Rare Earths 806 0.088 172173 GaofenziCailiaoKexue Yu Gongcheng

Polymeric Materials Science and Engineering802 0.0875 173

174 Journal of Molecular Structure 790 0.0862 174175 European Physical Journal B 789 0.0861 175176 Chemical Engineerign Journal 784 0.0856 176

Page 129: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

210

Table 5.60 (Continued)

177 Journal of Computational and theoreticalNanoscience

783 0.0854 177

178 Solid State Electronics 782 0.0853 178179 Semiconductor Science and technology 758 0.0827 179180 Physica Status Solidi A Applications and

Materials756 0.0825 180

181 Colloids and Surfaces B Biointerfaces 749 0.0817 181182 Colloid and Plymer Science 749 0.0817 182183 Journal of Optoelectronics and Advanced

Materials746 0.0814 183

184 Solid State Sciences 743 0.0811 184185 Studies in Surface Science and catalysis 738 0.0805 185186 Bioconjugate Chemistry 727 0.0793 186187 IEEE Photonics Technology Letters 725 0.0791 187188 Journal of Materials Science Letters 721 0.0787 188189 Polymer Degradation and Stability 714 0.0779 189190 Polyhedron 712 0.0777 190191 Optical Materials 701 0.0765 191192 Rapid Communications in Mass

Spectrometry698 0.0762 192

193 Journal of Materials Science Materials inMedicine

694 0.0757 193

194 Analytical and bioanalytical Chemistry 685 0.0747 194195 Journal of Materials Processing Technology 675 0.0737 195196 Ultramicroscopy 674 0.0735 196197 Chemical Engineering Science 659 0.0719 197198 Journal of the Optical Society of America B

Optical Physics655 0.0715 198

Ranking of the journals on Nanotechnology during the study period

has been presented in the Table 5.60.

Page 130: CHAPTER 5 ANALYSIS AND INTERPRETATION OF DATAshodhganga.inflibnet.ac.in/bitstream/10603/15477/10/10_chapter 5.pdf · year 1981 to 1,51,427 papers in the year 2010. The ratio of growth

211

The highly productive journals up to the 5 ranks are as follows:

1. ‘Applied Physics Letters’ with 19078 contributions amounting to

2.08% of total contributions.

2. ‘Physical Review B Condensed Matter and Materials Physics’

with 18173 contributions amounting to 1.98%.

3. ‘Journal of Applied Physics’ with 12279 contributions

amounting to 1.34%.

4. ‘Journal of Physical Chemistry B’ with 8404 contributions

amounting to 0.009%.

5. ‘Journal of the American Chemical Society’ with 7455

contributions amounting to 0.008%.

In the next chapter the major findings based on the analysis are

enumerated.