Chapter 33 - The Brain and Spinal Cord · changes (particularly in the spinal cord with...

37
835 SHIAO Y. WOO The Brain and Spinal Cord 33 TOLERANCE OF THE CENTRAL NERVOUS SYSTEM TO IRRADIATION Postirradiation Cerebral Necrosis Postirradiation Myelopathy Other Late Effects CENTRAL NERVOUS SYSTEM NEOPLASMS TUMORS COMMON IN CHILDREN Medulloblastoma Astrocytoma Brainstem Gliomas Ependymomas Pineal Region and Germ Cell Tumors Craniopharyngioma Primitive Neuroectodermal Tumors Tumors in Children Younger than 3 Years TUMORS COMMON IN ADULTS Malignant Gliomas: Anaplastic Astrocytoma and Glioblastoma Multiforme Oligodendroglioma Meningioma Primary Malignant Lymphoma of the Central Nervous System Carcinoma Metastatic to the Brain SPINAL CORD TUMORS TOLERANCE OF THE CENTRAL NERVOUS SYSTEM TO IRRADIATION The central nervous system (CNS) is a relatively sensitive, often dose-limiting tissue in curative radiation therapy for CNS and adjacent neoplasms. 1 Radiation injury has been documented on the basis of clinical signs, imaging findings, and histopathologic correlations. 2-6 CNS effects are more pronounced in children and seem to be inversely related to age, with the youngest children having the greatest CNS sensitivity. Of further concern is that numerous chemother- apy agents are associated with unique or enhanced sequelae when given in conjunction with radiation therapy. 7 Studies of laboratory models of cerebral and spinal cord changes have helped to clarify the pathophysiology of radiation-induced neural damage and to associate the extent of damage with time, dose, delivery, and volume. 8-10 For example, Caveness 11 reported a detailed investiga- tion of the clinical, histologic, and physiologic findings in primates after irradiation comparable with that used clini- cally. In that study, a single fraction of 20 Gy was uniformly fatal by week 26; this dose produced increased intracranial pressure and ventriculomegaly with scattered necrotic foci most dramatically affecting the brainstem. A single frac- tion of 15 Gy produced discrete microfoci of white matter necrosis by 26 weeks, with coalescing areas of white matter necrosis evident by 56 weeks. Pathologic findings were less pronounced in animals killed 78 weeks after irradiation, suggesting that some recovery had taken place. No clini- cal or histologic abnormalities were observed after whole- brain irradiation with a single fraction of 10 Gy or with 40 Gy delivered in 20 fractions over 4 weeks. In experiments more relevant to clinical radiation ther- apy, delivering 60 Gy to the whole brain in fractions of 2 Gy over a period of 6 weeks caused papilledema and anorexia in pubertal monkeys, but no overt clinical findings were apparent in adult primates. Histologically, the adult brains showed discrete microfoci of white matter necrosis with calcifications by 26 weeks; healing of the degenerative foci along with increased microcalcifications was seen by 52 weeks. The radiation-induced changes were quantita- tively greater in younger animals. After 80 Gy delivered in 40 fractions, confluent areas of necrosis appeared in the cerebral hemispheres of younger animals by 32 weeks, pro- gressive necrosis was observed at 52 weeks, and coalescent necrotic regions and atrophy were seen by 78 weeks. Caveness’ findings at lower dose levels are similar to the mineralizing microangiopathy seen in children with acute leukemia treated with cranial irradiation (20 to 24 Gy) and methotrexate. 12 Small, coalescent foci of necrosis related to microvascular changes may account for the clinically silent lacunar lesions evident in magnetic resonance imag- ing (MRI) studies of long-term survivors of childhood brain tumors. 13 Postirradiation CNS effects are typically classified tem- porally as acute, subacute, and late reactions. Fractionated radiation rarely produces clinically apparent acute changes, even when the total dose approaches 70 to 80 Gy. 14 Anec- dotal reports of transient exaggeration of neurologic signs have been related theoretically to perilesional or intralesion- al edema that develops at the beginning of irradiation. 15-17 Young and colleagues 18 found abrupt neurologic deteriora- tion in 50% of patients who were given large (7.5- to 10- Gy) fractions for the treatment of symptomatic cerebral metastases; the investigators attributed this effect to the radiation therapy. Although no similar phenomena were reported in studies by the Radiation Therapy Oncology Group (RTOG) in which 6-Gy fractions were adminis- tered, this finding might have been related to the more consistent use of corticosteroids by the RTOG. 16 Subacute CNS effects are rather common. Jones 19 observed transient, self-limited paresthesias with neck flexion (Lhermitte’s sign) that lasted for 1 to 2 months after spinal cord irradiation. These paresthesias, which occur in 15% to 25% of patients after mantle irradiation for Hodgkin disease, are thought to result from transient

Transcript of Chapter 33 - The Brain and Spinal Cord · changes (particularly in the spinal cord with...

Page 1: Chapter 33 - The Brain and Spinal Cord · changes (particularly in the spinal cord with end-arterial blood supply to portions of the thoracic cord) and direct effects of the radiation

shiao Y. Woo

The Brain and Spinal Cord 33

TOLERANCE OF THE CENTRAL NERVOUS SYSTEM TO IRRADIATIONPostirradiation Cerebral NecrosisPostirradiation MyelopathyOther Late Effects

CENTRAL NERVOUS SYSTEM NEOPLASMS

TUMORS COMMON IN CHILDRENMedulloblastomaAstrocytomaBrainstem GliomasEpendymomasPineal Region and Germ Cell Tumors

CraniopharyngiomaPrimitive Neuroectodermal TumorsTumors in Children Younger than 3 Years

TUMORS COMMON IN ADULTSMalignant Gliomas: Anaplastic

Astrocytoma and Glioblastoma Multiforme

OligodendrogliomaMeningiomaPrimary Malignant Lymphoma of the

Central Nervous SystemCarcinoma Metastatic to the Brain

SPINAL CORD TUMORS

toleranCe of the Central nervous system to IrradIatIon

The central nervous system (CNS) is a relatively sensitive, often dose-limiting tissue in curative radiation therapy for CNS and adjacent neoplasms.1 Radiation  injury has been documented on the basis of clinical signs, imaging findings, and histopathologic correlations.2-6 CNS effects are more pronounced  in  children  and  seem  to be  inversely  related to age, with the youngest children having the greatest CNS sensitivity. Of further concern is that numerous chemother-apy agents are associated with unique or enhanced sequelae when given in conjunction with radiation therapy.7

Studies  of  laboratory  models  of  cerebral  and  spinal cord  changes have helped  to  clarify  the pathophysiology of  radiation-induced  neural  damage  and  to  associate  the extent of damage with time, dose, delivery, and volume.8-10  For  example,  Caveness11  reported  a  detailed  investiga-tion of the clinical, histologic, and physiologic findings  in  primates after irradiation comparable with that used clini-cally. In that study, a single fraction of 20 Gy was uniformly fatal by week 26; this dose produced increased intracranial pressure and ventriculomegaly with scattered necrotic foci most  dramatically  affecting  the  brainstem. A  single  frac-tion of 15 Gy produced discrete microfoci of white matter necrosis by 26 weeks, with coalescing areas of white matter necrosis evident by 56 weeks. Pathologic findings were less pronounced  in  animals  killed  78  weeks  after  irradiation, suggesting  that  some  recovery had  taken place. No clini-cal or histologic abnormalities were observed after whole-brain  irradiation with  a  single  fraction of  10 Gy or with  40 Gy delivered in 20 fractions over 4 weeks.

In experiments more relevant to clinical radiation ther-apy,  delivering  60  Gy  to  the  whole  brain  in  fractions  of 2  Gy  over  a  period  of  6  weeks  caused  papilledema  and  anorexia in pubertal monkeys, but no overt clinical findings were apparent  in adult primates. Histologically,  the adult brains showed discrete microfoci of white matter necrosis 

835

with calcifications by 26 weeks; healing of the degenerative foci along with  increased microcalcifications was  seen by 52  weeks. The  radiation-induced  changes  were  quantita-tively  greater  in  younger  animals. After  80  Gy  delivered in 40 fractions, confluent areas of necrosis appeared in the cerebral hemispheres of younger animals by 32 weeks, pro-gressive necrosis was observed at 52 weeks, and coalescent necrotic regions and atrophy were seen by 78 weeks.

Caveness’ findings at lower dose levels are similar to the mineralizing microangiopathy seen in children with acute leukemia treated with cranial irradiation (20 to 24 Gy) and methotrexate.12 Small,  coalescent  foci of necrosis  related to  microvascular  changes  may  account  for  the  clinically  silent lacunar lesions evident in magnetic resonance imag-ing (MRI) studies of long-term survivors of childhood brain tumors.13

Postirradiation CNS effects are typically classified tem-porally as acute, subacute, and late reactions. Fractionated radiation rarely produces clinically apparent acute changes, even when the total dose approaches 70 to 80 Gy.14 Anec-dotal reports of transient exaggeration of neurologic signs have been related theoretically to perilesional or intralesion-al edema that develops at the beginning of irradiation.15-17 Young and colleagues18 found abrupt neurologic deteriora-tion in 50% of patients who were given large (7.5- to 10-Gy)  fractions  for  the  treatment  of  symptomatic  cerebral metastases;  the  investigators  attributed  this  effect  to  the radiation  therapy. Although  no  similar  phenomena  were reported  in  studies  by  the  Radiation  Therapy  Oncology Group  (RTOG)  in  which  6-Gy  fractions  were  adminis-tered,  this  finding  might  have  been  related  to  the  more consistent use of corticosteroids by the RTOG.16

Subacute  CNS  effects  are  rather  common.  Jones19  observed  transient,  self-limited  paresthesias  with  neck flexion  (Lhermitte’s  sign)  that  lasted  for  1  to  2  months after  spinal  cord  irradiation.  These  paresthesias,  which  occur  in 15% to 25% of patients after mantle  irradiation for Hodgkin disease, are  thought  to  result  from transient 

Page 2: Chapter 33 - The Brain and Spinal Cord · changes (particularly in the spinal cord with end-arterial blood supply to portions of the thoracic cord) and direct effects of the radiation

PART 10  Central Nervous System836

demyelination. Comparable transitory neurologic changes, called the somnolent syndrome, occur after cranial  irradia-tion such as that given for acute leukemia; mild encepha-lopathy or  focal neurologic  changes  can  appear  after  the treatment of intracranial tumors.20,21 The cranial syndrome is  thought  to  stem  from  a  transient  demyelinating  event and is the result of the effects of radiation on the replicat-ing oligodendrocytes.8 MRI can detect specific dose-related changes in gray and white matter within several weeks of conventionally fractionated irradiation.22 The potential for self-limited neurologic deterioration, most often occurring during the second month after irradiation, is important to bear  in mind because clinical  and  radiologic changes can sometimes mimic tumor progression.23,24

Late reactions of the normal brain are the dose-limiting toxicities  for  radiation  treatment.  Clinical  manifestations of  focal neurologic deficits, encephalopathy, or neuropsy-chological  dysfunction  accompany  various  morphologic findings, such as atrophy, calcifications, diffuse white mat-ter degeneration, and focal necrosis. Permanent or progres-sive  myelopathy  can  result  from  spinal  cord  irradiation. Late changes in hypothalamic-pituitary function manifest as specific radiation-induced endocrine deficits.

Postirradiation Cerebral NecrosisPostirradiation cerebral necrosis, the most direct effect of CNS irradiation, is thought to result from direct effects of radiation  on  the  replicating  glial  cell  compartments  and the capillary endothelial cells.8,9 The theoretical  relation-ship between primary glial cells (i.e., type II astrocytes and oligodendrocytes)  and  vascular  endothelial  components is  shown  in  Figure  33-1.8,25-29  Clinical  signs  of  postir-radiation cerebral necrosis are  seen 6  to 36 months after 

Vascularendothelium Astrocyte I Astrocyte II Oligodendrocyte

Blood-brain barrier (BBB)

Myelinated nerve fiber

Inter-nodal

Paranodal

Earlydemyelination

Transient edema(high dose)

1–2months?

?

3–6 monthsProgressiveBBB

breakdown

Capillariesvenules

White matternecrosis

Late delayed effects

Progressivedemyelination

Glialatrophy

Telangiectasiainfarcts

FIGURE 33-1. The direct effects of radiation on glial cells (as-trocyte II and oligodendrocyte) and the indirect effects resulting from  vascular  changes  are  shown  in  a  scheme  developed  by van der Kogel. (From van der Kogel AJ. Central nervous system radiation injury in small animal models. In Gutin PH, Leibel SA, Sheline GE [eds]: Radiation Injury to the Nervous System. New York: Raven Press, 1991, pp 91-112.)

therapy.15,16,30  Cerebral  changes  often  mimic  residual  or recurrent  tumor,  with  mass  effect,  enhancement,  or  cyst formation evident on computed  tomography (CT)  scans; these changes occur at or near the site of the primary tumor (i.e., the high-dose volume for intracranial neoplasms).31

Cerebral  necrosis  unrelated  to  intraparenchymal  neo-plasms  has  been  described  in  reviews  by  Kramer  and colleagues32  and  Sheline  and  coworkers.16  Necrosis  has been observed after therapy for extracranial tumors (pre-dominantly  those  of  the  skin  and  paranasal  sinuses)  and for  noninvasive  pituitary  tumors  or  craniopharyngiomas. Postirradiation  necrosis  is  a  dose-related  phenomenon with a relative threshold radiation dose of 50 to 55 Gy if treatment is given in a conventional fractionation schedule (1.8-  to 2-Gy  fractions  given once daily).16,30,33,34 Marks and colleagues30 reported the occurrence of necrosis in 5% of 139 patients with intracranial tumors treated with con-ventional  fractionation  to doses  higher  than 45 Gy;  6  of the 7 patients who had necrosis were given total doses in excess of 63 Gy.

The  dose-time  relationship  is  critical  in  determining CNS  tolerance,  with  fraction  size  the  dominant  factor among patients  receiving doses of 60  to 63 Gy. Necrosis in patients who receive less than 60 Gy usually has been  associated with fractions of greater than 2.5 Gy.16 Aristiza-bal and colleagues33 documented necrosis after treatment for pituitary tumors in 3% of 106 patients given less than 2.2 Gy per day (total dose of about 50 Gy) compared with 15% of 13 patients given doses of greater than 2.2 Gy daily. The  influence of  fraction  size was made  apparent  in  the isoeffect analyses of brain necrosis reported by Sheline and colleagues.16

Sheline and coworkers16 contend that the brain can tol-erate a total radiation dose of 50 to 54 Gy given in fractions of 2 Gy once daily. At that dose, cerebral necrosis  is esti-mated to occur in 0.04% to 0.4% of patients. The likelihood of necrosis is higher among patients with primary brain tu-mors, although the incidence is still estimated to be less than 5% among patients receiving a dose of 55 Gy at 1.8 to 2 Gy per  fraction.34 Tolerance  is  affected by  age;  experimental and clinical data indicate that children younger than 2 years can  tolerate  approximately  10%  to  20%  less  radiation  to the brain than those older than 2 years.11,35,36

Postirradiation MyelopathyPostirradiation  myelopathy  is  the  spinal  cord  equivalent of cerebral necrosis. The myelopathy manifests as sensory and motor signs referable to a single cord level, signs that are  often  clinically  indicative  of  hemisection  of  the  cord (Brown-Séquard syndrome).37,38 Symptoms occur as early as 6 months after treatment (median, 20 months).39 The pathophysiology  of  spinal  cord  myelopathy  is  similar  to that  of  cerebral  necrosis,  and  there  is  continued  debate concerning the relative importance of vascular endothelial changes  (particularly  in  the  spinal  cord with  end-arterial blood supply to portions of the thoracic cord) and direct effects of the radiation on glial elements.28,29,40

The time-dose relationship and tolerance of the spinal cord  to  irradiation have been  analyzed  in  the  context  of  extraspinal tumors. The thoracic spinal cord seems to be the most sensitive portion; few instances of lumbar myelopa-thy have been reported. Phillips and Buschke41 suggested that  the  thoracic  spine  could  tolerate  a  dose  as  high  as  

Page 3: Chapter 33 - The Brain and Spinal Cord · changes (particularly in the spinal cord with end-arterial blood supply to portions of the thoracic cord) and direct effects of the radiation

33  The Brain and Spinal Cord 837

50 Gy given in fractions of 2 Gy once daily. Abbatucci and colleagues42 observed cervical cord myelopathy after doses of 55 Gy or more. The incidence of myelopathy rises rapidly with increasing doses, approaching 50% at 65 Gy.29 Many clinical  trials  of  large-fraction  irradiation  for  lung  cancer have  confirmed  that  the  frequency of  reactions  increases as the fraction size exceeds 2.5 Gy.43-46 Fraction size also seems to correlate inversely with the latent interval before the development of myelopathy42; however, no experimen-tal evidence exists to suggest  improved tolerance to frac-tions less than 2 Gy.47 The Continuous Hyperfractionated, Accelerated Radiation Therapy (CHART) regimen for lung cancer was originally based on a presumed cord tolerance of a  low dose per  fraction, but that regimen initially was associated  with  an  unacceptable  risk  of  myelopathy.48,49 Tolerance decreases as the volume or length of cord irradi-ated increases.41,42

Other Late EffectsA unique  late effect of cranial  irradiation combined with  chemotherapy,  called  leukoencephalopathy,  has  been  observed  in  children with  acute  lymphoblastic  leukemia, adults with small cell carcinoma of the lung, and patients with primary CNS tumors.12,50,51 Leukoencephalopathy is a profoundly demyelinating, necrotizing reaction that usu-ally occurs 4 to 12 months after combined treatment with methotrexate  and  radiation.52  Dementia  and  dysarthria may progress  to  seizures,  ataxia,  focal  long-tract  signs, or death. Although most of  these  symptoms  regress  after  systemic,  intrathecal,  or  intraventricular  methotrexate  therapy  is discontinued, patients are  left with permanent neurologic deficits. The occurrence of leukoencephalopathy in patients treated with systemic and intrathecal methotrex-ate without radiation and a dose-effect relationship that is more apparent for methotrexate than for radiation suggest that the clinical leukoencephalopathy is more significantly related to the methotrexate than to the radiation.7 How-ever,  white  matter  changes  interpreted  as  leukoencepha-lopathy (and so coded in the NCI Common Terminology Criteria  for Adverse Events) must  be distinguished  from the clinical syndrome previously described.

Decline in intellectual function has been related to cra-nial  irradiation of  adults  and particularly of  children.53-57 Neurocognitive changes  in children correlate  significantly with  cranial  irradiation,  young  age  at  diagnosis  and  ther-apy,  and  functional  level  at  the  time  the  irradiation  was begun.53-55,58,59 The  occurrence  of  dose-related  neuroco-gnitive alterations suggests a role for continued, if cautious, reduction in the full cranial radiation dose for patients with medulloblastoma, for example, who exhibit favorable pre-senting signs.60 Changes in white matter volume obtained by MRI segmentation constitute an objective variable that is closely tied to intellectual function and that may permit more detailed studies of the effects of radiation therapy and chemotherapy in the current generation of clinical trials.61 Intellectual  impairment  in  adults  has  occurred  primarily  after intensive chemotherapy and radiation for the preven-tion of metastasis from small cell carcinoma of the lung and for treatment of primary CNS lymphomas.62

Peripheral nervous system tissue is relatively resistant to irradiation. Acute and  subacute  symptoms or  signs occur infrequently;  transient  cranial  nerve  neuropathies  are  observed only with high-dose,  single-fraction, high–linear 

energy transfer (LET) radiation for pituitary or parasellar tumors.63 The optic chiasm is often considered a dose-lim-iting structure when irradiation for suprasellar or adjacent temporal lobe lesions is being planned, and special attention is given to limiting the risk of dose-related visual complica-tions.64 Optic nerve or chiasm injury has been documented in almost 20% of patients treated with fraction sizes of 2.5 Gy or greater (to total doses of 45 to 50 Gy), compared with 0 of 27 patients and 0 of 500 patients treated with fraction  sizes of 1.7  to 2 Gy  to  the  same  level.16,65 Late injury to the brachial plexus observed after the treatment of breast cancer similarly seems to occur largely after high-dose fractions.66

Central nervous system neoplasms

Primary  tumors of  the CNS  represent 2% of  all  cases of cancer  in  the  United  States. Approximately  20,500  new cases  are  diagnosed  annually.67  The  incidence  of  these  tumors exceeds that of Hodgkin disease in adults, and they account for 20% of all cases of childhood cancer.

The  natural  history  of  tumors  of  the  brain  and  spinal cord  is  relatively  unusual  because  aggressive  malignant  lesions rarely disseminate beyond the neuraxis. Categoriz-ing CNS tumors as benign or malignant  is often difficult because histologically  low-grade or benign neoplasms are sometimes associated with a poorer prognosis than certain histologically malignant tumors. It is instead the potential for local invasiveness or metastasis along the cerebrospinal fluid (CSF) pathways that determines the “malignancy” of CNS tumors. The challenge for neurosurgeons and radia-tion oncologists  is  to  remove or devitalize neoplastic  tis-sue in the functionally vital, anatomically confined nervous system.

tumors Common In ChIldren

Brain tumors  in children account for one  in five cases of childhood cancer. The incidence of primary CNS tumors, particularly  the  astrocytic  lesions,  increased  in  children during the first half of the 1990s; since then, the incidence has  leveled  off,  perhaps  because  of  the  added diagnostic sensitivity  of  MRI.68  Pediatric  brain  tumors  arise  most often  in  the posterior  fossa. Posterior  fossa  tumors often produce  symptoms  and  signs  of  increased  intracranial pressure  because  the  growing  tumor  obstructs  the  flow of CSF through the fourth ventricle. Ataxia often accom-panies pressure-related headaches and morning vomiting. Brainstem gliomas cause cranial nerve palsies, ataxia, and long-tract  signs,  including  lateralizing  weakness  and  sen-sory deficits.

Supratentorial tumors occur in the cerebral hemispheres and  the  central  or  deep-seated  areas  of  the  thalamus,  hypothalamus, suprasellar area, and pineal–third ventricular region. Symptoms are local and include lateralizing neuro-logic deficits and seizures, which are associated with hemi-spheric and thalamic tumors; visual and endocrine changes; and specific oculomotor findings, which are associated with tumors of the pineal region.

Primary tumors of the spinal cord account for only 5% of tumors in children. Metastasis to the CNS is uncommon 

Page 4: Chapter 33 - The Brain and Spinal Cord · changes (particularly in the spinal cord with end-arterial blood supply to portions of the thoracic cord) and direct effects of the radiation

PART 10  Central Nervous System838

in  childhood  cancer.  Contiguous  extradural  compression within the spinal canal or at the base of the skull (e.g., in neuroblastoma, rhabdomyosarcoma, primary bone tumors) is  more  common  than  hematogenous  metastasis  to  the brain.

Common primary intracranial tumors diagnosed in chil-dren are listed in Table 33-1.25,26 The histologic classification of pediatric brain tumors has been relatively standardized by the World Health Organization (WHO).69 The most com-mon  tumors  are  the  astrocytic  lesions  (i.e.,  astrocytomas, malignant gliomas, and brainstem gliomas). Medulloblasto-ma, which accounts for 20% of all childhood CNS tumors, is part of the broader category of supratentorial primitive neu-roectodermal  tumors (PNETs) and other embryonal CNS tumors  (i.e.,  cerebral  neuroblastoma,  ependymoblastoma, and pineoblastomas).69-71

Biologic findings increasingly define the nature of CNS tumors in children, providing some associations with tumor aggressiveness and outcome. Medulloblastoma,  for exam-ple, is often associated with gene deletions in chromosomal region p17; expression of the EGFR gene (formerly desig-nated ERBB1), which encodes the epidermal growth fac-tor receptor, and NTRK3 (formerly called TRKC), which encodes  the  neurotrophic  tyrosine  kinase  receptor  type 3, are negatively and positively correlated with outcome, respectively.72,73 Several other molecular markers, such as cyclin-dependent kinase 6, MYC, apurinic or apyrimidinic endonuclease activity, and members of the WNT pathway, also have prognostic significance.74-77 Several investigators have proposed combining information on gene expression patterns  and  clinical  stage  for  stratifying  risk  groups  in  medulloblastoma.78,79

TABLE 33-1. Relative Incidence of Brain Tumors in Children

Tumor Type Incidence (%)

Infratentorial 55

Medulloblastoma 25

Astrocytoma (cerebellum) 15

Brainstem glioma 10

Ependymoma (fourth ventricular region) 6

Supratentorial 45

Astrocytoma 23

Malignant glioma (anaplastic astrocytoma, glioblastoma multiforme)

6

Embryonal (primitive neuroectodermal) tumors

4

Ependymoma 3

Craniopharyngioma 6

Pineal region tumors 4

Oligodendroglioma 2

Modified from Duffner PK, Cohen ME, Myers MH, et al. Survival of children with brain tumors: SEER program, 1973-1980. Neurology 1986;36:597-601; Childhood Brain Tumor Consortium. A study of childhood brain tumors based on surgical biopsies from 10 North American institutions: sample description. J Neurooncol 1988;6:9-23.

MedulloblastomaMedulloblastoma  represents  20%  of  childhood  brain  tumors. Common throughout the pediatric age range, the median age at diagnosis is 6 years, and 25% of tumors occur in children younger  than 3 years. Approximately 10% to 20% of medulloblastomas occur  in adults, predominantly in the third to fifth decades. The classic presenting triad of posterior  fossa  tumors such as medulloblastomas consists of  headaches  and  vomiting,  which  are  signs  of  increased intracranial pressure and ataxia.

Medulloblastoma is by definition a posterior fossa tumor, most often arising in the cerebellar vermis, within the cere-bellar hemispheres (typically in adolescents and frequently as the desmoplastic variant) or along the cerebellopontine peduncle. The  tumor grows  to fill  the fifth ventricle  and often  attaches  to  the  brainstem.  Medulloblastoma  is  the characteristic “seeding” CNS tumor and is associated with subarachnoid  dissemination  through  the  CSF;  metastasis may be  apparent  from cytologic findings or  from  images of radiographic deposits within the  intracranial subarach-noid space (i.e., along the convexities or within the basal cisterns,  sometimes  limited  to  the  region of  the pituitary stalk) or within the spinal subarachnoid space. Subarach-noid  disease  is  apparent  at  diagnosis  in  20%  to  25%  of affected children.13,80 Extraneural disease, usually  involv-ing the bone or bone marrow, is an uncommon finding at  diagnosis or disease recurrence.81

The embryonal CNS tumors represent a group of his-tologically  related  neoplasms  that  occur  predominantly in children (Box 33-1).69 The WHO classification defines the embryonal tumors as round, blue, small cell tumors that tend  to  seed  the  neuraxis  and  respond  to  radiation  and chemotherapy, although the prognosis varies widely. Less common tumors in this category include the supratentorial PNETs; the rare, primitive medulloepithelioma; and atypical or rhabdoid tumor (see “Tumors in Children Younger than 3 Years”). Pineoblastoma is classified separately (see “Pineal Region and Germ Cell Tumors”). The term posterior fossa PNET is synonymous with medulloblastoma.69

BOX 33-1. Embryonal Central Nervous System Tumors*

MedulloblastomaCentral neuroblastomaEpendymoblastomaPrimitive neuroectodermal tumor (PNET)†

Additional Tumors with a Distinct Histology and Different Genetic Pathway of EvolutionMedulloepitheliomaAtypical teratoid or rhabdoid tumor

Pineal Parenchymal Tumor Classified Clinically as an Embryonal TumorPineoblastoma

*In the definition proposed by Kleihues and Cavenee,69 embryonal central nervous system tumors are “histologically identifiable entities [that] all develop on the background of an undifferentiated round-cell tumor but show a variety of divergent patterns of differentiation.”†PNET refers to supratentorial tumors; tumors that occur in the posterior fossa are known as medulloblastomas.

Page 5: Chapter 33 - The Brain and Spinal Cord · changes (particularly in the spinal cord with end-arterial blood supply to portions of the thoracic cord) and direct effects of the radiation

33  The Brain and Spinal Cord 839

Medulloblastoma is thought to originate from the prim-itive external granular layer of the developing cerebellum. The  tumor  is  characterized  by  undifferentiated  small, round, blue cells, often including neuroblastic rosettes and with various degrees of neuronal and glial differentiation. The desmoplastic tumors are classically identified by their prominent nodularity and dense areas of reticular fibers.69  Other histopathologic subsets include medulloblastoma with extensive nodularity or advanced neuronal differentiation and large cell or anaplastic medulloblastoma.73

Surgery and StagingSurgery  is  the  initial  therapy,  with  the  goal  of  maximal  resection  for  the  sake  of  therapy  and  reestablishing  CSF flow.  Intraoperative  ventriculostomy  has  replaced  the routine  initial placement of a ventriculoperitoneal  shunt; with current surgical approaches, less than 25% of children  require postoperative conversion of the temporary ventric-ulostomy to a permanent ventriculoperitoneal shunt. Gross total resection is limited only by substantial invasion of the tumor into the brainstem or infiltration into the peduncle. Gross  total  or  near-total  resection  (i.e.,  more  than  90% of the tumor removed, with less than 1.5 cm2 of residual disease) is achieved in almost 90% of children older than  3 years in the United States.82 The operative mortality rate should be less than 1% or 2% for children treated with cur-rent approaches, and the postoperative morbidity is typical-ly acceptable, with a small proportion of children left with permanent new cranial nerve deficits or marked ataxia.82,83 The  posterior  fossa  syndrome,  marked  by  severe  truncal ataxia, difficulties with  speech and  swallowing  stemming from bulbar effects, and  sometimes mutism,  seems  to be associated with extensive dissection along the lower brain-stem;  symptoms  usually  abate  considerably  over  several months after the surgery, although late residual deficits of various degrees of severity have been seen.84

Postoperative  neuraxis  staging  is  standard  in  defining risk groups and  subsequent  therapy  for medulloblastoma and  the  other  embryonal  tumors.  Immediate  postopera-tive  cranial  MRI  or  CT  (preferably  done  within  1  to  3 days of surgery) defines the postoperative residual effect, which is a more reliable prognostic factor than the opera-tive coding of  the extent of  resection.82 Neuraxis  staging begins  with  a  contrast-enhanced  spinal  MRI  (preferably more  than  10  days  after  surgery  to  eliminate  the  confu-sion of findings with postoperative debris) and subsequent lumbar CSF cytologic studies; routine bone scanning and bone marrow assessments  are  standard only  in  investiga-tional  settings.13,80  Staging  is  based  on  the  extent  of  re-sidual  tumor  (average  risk  is  defined  as  the  presence  of ≤1.5 cm2 of residual tumor) and the presence or absence of subarachnoid or extraneural metastasis (defined accord-ing to a modification of the Chang system85) (Box 33-2). Most  important  from the standpoint of planning therapy is determining whether isolated CSF cytologic evidence of metastatic disease (M1 disease), imaging evidence of intra-cranial disease outside the posterior fossa (M2 disease), or imaging evidence of spinal metastasis (M3 disease) is pres-ent;  extranodal  disease  is  classified  as  M4.85  Standard  or  average-risk disease is defined as that which has been totally removed or has residual tumor volume of less than 1.5 cm2 with M0 disease; almost 60% to 65% of children enrolled in U.S. studies at the turn of the century were so classified. 

The presence of only local residual disease is uncommon in children with high-risk disease; more often, these children have neuraxis dissemination.

Radiation TherapyPostoperative  management  consists  of  radiation  therapy and  chemotherapy.86  Infants  and  young  children  (i.e., those younger than 3 years) are treated in accordance with  developing  investigational  approaches  (see  “Tumors  in Children Younger than 3 Years”). The standard sequence of therapy for children 3 years old or older is to begin radia-tion therapy within 28 to 31 days of surgery, followed by chemotherapy.87  Although  studies  of  preirradiation  che-motherapy have  added  significantly  to  our  knowledge of chemosensitivity, randomized trials have shown no benefit from administering chemotherapy before the radiation, and in some instances, results have suggested that this sequence is ultimately detrimental to disease control.88-91

Radiation  therapy  for  medulloblastoma  is  technically demanding  and  biologically  unforgiving.  It  requires  the systematic inclusion of the entire subarachnoid space (i.e., craniospinal irradiation [CSI]) followed by a boost to the posterior  fossa. One standard technique  involving  immo-bilization of patients in the prone position is illustrated in Figure  33-2.  Lateral  craniocervical  fields  encompass  the  intracranial and upper cervical spine regions, with particu-lar attention to including the subfrontal and infratemporal regions (at  the cribriform plate  in  the midline subfrontal area and along the infratemporal regions) (Fig. 33-3).

The  conventional  dose  to  the  neuraxis  in  patients  given surgery and radiation is 36 Gy (delivered in 1.8-Gy 

BOX 33-2. Chang Staging System for Medulloblastoma

Primary Tumor (T)*T1 Tumor less than 3 cm in diameterT2 Tumor at least 3 cm in diameterT3a Tumor larger than 3 cm in diameter with

extension into the aqueduct of Sylvius and/ or into foramen of Luschka

T3b Tumor larger than 3 cm in diameter with unequivocal extension into the brainstem

T4 Tumor larger than 3 cm in diameter with extension up past the aqueduct of Sylvius and/or down past the foramen magnum (i.e., beyond the posterior fossa)

Distant Metastasis (M)M0 No evidence of gross subarachnoid or

hematogenous metastasisM1 Microscopic tumor cells found in cerebrospinal

fluidM2 Gross nodule seedings demonstrating in the

cerebellar, cerebral subarachnoid space, or in the third or lateral ventricles

M3 Gross nodular seeding in spinal subarachnoid space

M4 Metastasis outside the cerebrospinal axis

*The T stage is no longer thought to be prognostically related to outcome.Modified from Chang CH, Housepian EM, Herbert C Jr. An operative staging system and a megavoltage radiotherapeutic technic for cerebellar medulloblastoma. Radiology 1969;93:1351-1359.

Page 6: Chapter 33 - The Brain and Spinal Cord · changes (particularly in the spinal cord with end-arterial blood supply to portions of the thoracic cord) and direct effects of the radiation

PART 10  Central Nervous System840

Posteriorspine

A BFIGURE 33-2. A, Classic craniospinal  irradiation configurations, with a divergent posterior spinal field matching opposed lateral craniocervical fields. The collimator rotation enabling the craniocervical fields to be matched to the divergence of the posterior spi-nal field is typically modified at least every 5 fractions. Field markings for medulloblastoma are determined by the cribriform plate at the orbital level (see Fig. 32-3). B, The parallel inferior border from the craniocervical fields is achieved by couch rotation, calculated to achieve a three-dimensional match in the depicted plane.

 fractions once daily). The progression-free survival rate for patients with localized disease after maximal resection and CSI (36 Gy) is approximately 65% at 5 to 10 years (Table 33-2).36,92-96 A randomized study of patients with average-risk medulloblastoma conducted by  the Pediatric Oncol-ogy Group (POG) and Children’s Cancer Group (CCG) in the late 1980s established the superiority of a total dose of 

FIGURE 33-3. A  conventional  fluoroscopic  image  used  for simulating  the  lateral  craniocervical  fields  used  in  craniospi-nal  irradiation  for  medulloblastoma  (see  Fig.  33-2).  The  long arrow  indicates  the  margins  along  the  cribriform  plate.  The  radiopaque dot and the small arrows indicate the anterior mar-gins of the lateral orbital rims. Divergence rather than a collima-tor angle is needed when only the subarachnoid space is to be  targeted.

36 Gy compared with 23.4 Gy for CSI and the benchmark outcome of more than 90% tumor removal with less than 1.5  cm2  of  residual  disease.92  Later  findings  suggest  that the combination of reduced-dose CSI (23.4 Gy) and che-motherapy produces disease control rates comparable with or  superior  to  those  for  conventional-dose  CSI  alone.97 Large-scale prospective studies are documenting the effi-cacy of what is now considered the standard treatment for localized medulloblastoma, which is radiation (CSI dose of 23.4 Gy) followed by cisplatin-containing chemotherapy.

Reports  of  outcome  from  nonrandomized,  single-arm trials,  further  supported  by  neuropsychological  findings from the POG-CCG study previously mentioned, suggest that cognitive function in children with average-risk disease after therapy is superior among those given CSI to 23.4 Gy instead of 36 Gy, especially in children 3 to 8.5 years old.60 The  current  Children’s  Oncology  Group  (COG)  trial  is testing, in children between 3 and 7 years old with average-risk disease, whether the CSI dose can be further reduced from 23.4 Gy to 18 Gy. Children with metastatic disease at presentation (i.e., M1 to M3 disease) require a dose of 36 to 39 Gy to the neuraxis. The use of proton therapy for CSI has a  theoretical  advantage over photon  therapy because of the lack of exit dose from proton therapy. Miralbell and colleagues  estimated  that  the  risk  of  second  neoplasms could be reduced with proton therapy relative to photon therapy.98

Irradiation includes a boost to the posterior fossa region, classically defined as the entire infratentorial volume. The use of opposed lateral posterior fossa fields has been stan-dard,  but  radiation  oncologists  are  increasingly  using  a three-dimensional conformal radiation therapy approach99 to  spare  the  auditory  apparatus  and,  when  possible,  the pituitary-hypothalamic region (Fig. 33-4). Proton therapy for  pediatric  medulloblastoma  is  also  being  considered as a way of maximizing target dose coverage and sparing normal  tissues  (Fig.  33-5).  The  cumulative  dose  deliv-ered  to  the posterior  fossa  is  typically 54  to 55.8 Gy. A few institutional summaries of patterns of treatment fail-ure  for  patients  with  medulloblastoma  and  descriptions of  preliminary  experience  with  target  volumes  confined 

Page 7: Chapter 33 - The Brain and Spinal Cord · changes (particularly in the spinal cord with end-arterial blood supply to portions of the thoracic cord) and direct effects of the radiation

33  The Brain and Spinal Cord 841

TABLE 33-2. Survival Rates after Craniospinal Irradiation for Medulloblastoma

Study and Reference Period Number of Patients Survival Rate at 5 Years (%) Survival Rate at 10 Years (%)

Bloom et al, 196936 1950-1964 71 40 30

Berry et al, 198193 1958-1978 122 56 43

Hughes et al, 198694 1977-1985 53 64 42

Bloom et al, 199095 1970-1981 53 53 45

Jenkin et al, 199096 1977-1987 72 71 63

Thomas et al, 200092 1978-1991 42 (CSI = 36 Gy) 67* 67*

46 (CSI = 23 Gy) 52* 52*

*Event-free survival rates at 5 and 8 years.CSI, craniospinal irradiation.

A

FIGURE 33-4. A, Treatment plans for a three-dimensional conformal technique demonstrating the ideal dose distribution for a six-field, non-coplanar approach targeting the entire posterior fossa. Anatomically, this approach includes the tentorium as it extends superiorly in the posterior clinoid and then inferiorly to define the anterior and superior margins of the posterior fossa. The inferior and posterior margins are defined by the calvarium and the lower margin of foramen magnum.   (Continued)

to  the  operative  or  tumor  bed  highlight  investigational  approaches that are being studied prospectively in a COG study.100,101

Chemotherapeutic AgentsSeveral  categories  of  chemotherapeutic  agents  have shown efficacy in medulloblastoma: alkylating agents (e.g.,  cyclophosphamide, lomustine), platinating agents (e.g., cis-platin, carboplatin), topoisomerase II  inhibitors (e.g., eto-poside), and the vinca alkaloids (e.g., vincristine). The most common adjuvant treatment for standard- or average-risk disease was described by Packer and colleagues87 and con-sists of concurrent vincristine during irradiation and post-irradiation  cycles  of  lomustine,  cisplatin,  and  vincristine. The addition of  concurrent  carboplatin or  etoposide  and high-dose, peripheral stem cell–supporting chemotherapy regimens  has  been  studied  in  two  separate  protocols  for the  treatment  of  high-risk  disease.102 The  first  report  of  

a multi-institutional phase II trial of this approach showed 5-year  event-free  survival  rates of 83%  for  children with average-risk  disease  and  70%  for  children  with  high-risk disease.103

Although  posterior  fossa  recurrence  previously  was  regarded  as  the  dominant  pattern  of  failure,  later  stud-ies have  indicated  that more patients exhibit neuraxis or  combined  local  and  disseminated  failure. Approaches  to the management of disease recurrence are not standardized but often include chemotherapy, further surgery for local-ized disease, and the judicious use of additional irradiation. Secondary or salvage therapies are rarely successful.

AstrocytomaAstrocytomas are the most common glial  tumors  in chil-dren,  developing  in  the  cerebellum,  brainstem,  cerebral hemispheres, diencephalon (i.e.,  thalamus, hypothalamus, and third ventricular region,  including the optic chiasm), 

Page 8: Chapter 33 - The Brain and Spinal Cord · changes (particularly in the spinal cord with end-arterial blood supply to portions of the thoracic cord) and direct effects of the radiation

PART 10  Central Nervous System842

B

FIGURE 33-4.—cont’d B, Three-dimensional conformal dose distribution demonstrates coverage of the primary tumor site, which in this case is the operative bed after surgical resection of a medulloblastoma. A multifield, non-coplanar, 6-MeV photon approach uses a gross tumor volume that outlines the operative bed, expanded by 2 cm (as modified by anatomic boundaries) to identify the clinical target volume. A 5-mm planning target volume geometrically surrounds the clinical target volume.

or  spinal  cord.104-106  In  adults,  low-grade  tumors  occur  primarily in the cerebral hemispheres and thalamus; how-ever, malignant astrocytomas far exceed the number of his-tologically benign lesions beyond the age of 20 years.

The  WHO  grades  astrocytomas  as  grade  I  (juve-nile  pilocytic  astrocytoma  [JPA])  or  grade  II  (fibrillary  astrocytoma or astrocytoma not otherwise specified); high-grade lesions are deemed grade III (anaplastic [malignant] astrocytoma)  or  grade  IV  (glioblastoma  multiforme).69 Grossly,  the  tumors  are  solid  with  discrete  or  infiltrat-ing  margins  or  cystic.  Pilocytic  astrocytomas  are  biologi-cally nonaggressive lesions that are often cystic, occurring  predominantly  in  the  cerebellum  and  diencephalon  in  children (Fig. 33-6).

The natural history of astrocytomas depends on the age of the patient and the site of origin and histologic classifi-cation of the tumor. Pilocytic tumors rarely progress to a more malignant histology; however, fibrillary astrocytomas progress to a more malignant histology in 30% to 50% of cases.107-109  The  proliferative  index,  assessed  by  staining for Ki-67 with the murine monoclonal antibody MIB1, has been reported to influence prognosis.110

Cerebellar AstrocytomasCerebellar astrocytomas involve the vermis or hemispheres in 75% of patients; in 25% of children, tumors manifest as transitional neoplasms that involve the cerebellum and the cerebellar peduncles or adjacent brainstem.111-114 Cerebel-lar astrocytomas are classically cystic lesions; the textbook appearance consisting of a large cyst associated with a mural nodule occurs in about one fourth of cases. Grossly, most tumors  are  mixed  cystic  and  solid  lesions  or  apparently solid tumors with small cystic components. Histologically, 75% of astrocytomas in this location are JPAs.111,112,114,115 Debate continues about whether high-grade gliomas occur 

in  the  cerebellum  in  children;  if  they  do,  they  are  quite uncommon.116

Therapy  for cerebellar astrocytomas  is  largely  surgical. Reports from institutions indicate that gross total resection is done in 65% to 90% of cases, although this rate has risen to approximately 85% to 90% in recent series.100,112,114,115 Resection is more often incomplete in patients with tumors involving the cerebellar peduncles or the brainstem.112-115 The operative mortality rate should be less than 4%, unlike the rate for patients with medulloblastomas and ependy-momas that may invade the adjacent brainstem. Morbidity after radical resection of cerebellar astrocytomas usually is limited.

Recurrence of tumor after radioimaging confirmation of complete surgical removal is uncommon; in the most recent series,  the  recurrence  rate  is  less  than  10%.112,114,117,118 Prognosis  most  closely  parallels  the  extent  of  resection; multivariate analyses have also identified solid (rather than cystic)  lesions,  transitional  lesions  (versus  those  confined to the cerebellum), and lesions showing a fibrillary or dif-fuse histology (versus JPA) as potentially significant prog-nostic  factors.112,114,115,119  A  direct  correlation  between the volume of residual tumor and outcome has also been reported.112

Indications for radiation therapy are limited in patients with  cerebellar  astrocytomas. Although  radiation  therapy has been suggested to be effective for incompletely resected solid lesions, enthusiasm is generally limited for postopera-tive  irradiation  for  any  cerebellar  astrocytomas.117,120  A small subset of tumors, often those that primarily involve the cerebellar peduncle, will recur after initial surgery; our approach to the treatment of such tumors is to use irradia-tion only after  tumor progression after a  second attempt at resection. MRI (T2-weighted or fluid attenuation inver-sion recovery [FLAIR] sequences) and MRI/CT fusion are 

Page 9: Chapter 33 - The Brain and Spinal Cord · changes (particularly in the spinal cord with end-arterial blood supply to portions of the thoracic cord) and direct effects of the radiation

33  The Brain and Spinal Cord 843

A D

B E

C F

FIGURE 33-5. Medulloblastoma treatment plans. Posterior fossa axial slices are shown for three-dimensional conformal radiation therapy (3D CRT) (A), intensity-modulated radiation therapy (IMRT) (B), and protons (C). Isodose lines are designated for 3D CRT and IMRT: blue, 30.6 Gy; red, 15 Gy; yellow, 10 Gy; purple, 5 Gy. Isodose lines are designated for protons: red, 30.6 Gy; green,  15 Gy. For craniospinal irradiation, axial slices are shown for 3D CRT electrons (D), 3D CRT photons (E), and protons (F). Isodose lines are designated for 3D CRT and IMRT: blue, 23.4 Gy; red, 20 Gy; yellow, 10 Gy; purple, 5 Gy. Isodose lines are designated for protons: aqua/green, 23.4 Gy; light blue, 20 Gy; darker blue, 10 Gy; indigo, 5 Gy.   (Continued)

useful for target delineation, and a margin of 0.5 to 1 cm seems adequate. The total dose is 50 to 54 Gy in conven-tional fractionation.

Supratentorial AstrocytomasSupratentorial  astrocytomas  include  diencephalic  or  central lesions and lesions of the cerebral hemispheres. In children,  total  resection  can  be  achieved  for  up  to  90% of  astrocytomas  in  the  cerebral  hemisphere.104,108,121,122  Diffuse cerebral lesions, including those labeled gliomatosis cerebri, can arise in several cerebral lobes with an often low-grade histologic appearance (i.e., fibrillary, WHO grade II) but clinically malignant potential. Similarly, thalamic tumors represent a mix of circumscribed JPAs and diffuse, some-times bithalamic fibrillary tumors; up to 40% of thalamic 

gliomas  are  histologically  malignant  (i.e.,  WHO  grade III  to  IV,  anaplastic  astrocytoma  or  glioblastoma).122-124  Biopsy alone has been the standard surgery for most tha-lamic astrocytomas because knowledge of the tumor his-tology  is  important  in  guiding  therapy.95,125,126 However, Bernstein and colleagues127 reported that major resections were  performed  in  up  to  33%  of  patients  with  circum-scribed thalamic tumors, and the incidence of major opera-tive morbidity was only 7%. Further experience confirmed that limited or aggressive resection might each have a role in the treatment of low-grade thalamic gliomas.128

The role of radiation therapy in childhood astrocytomas is evolving. It is thought to depend on tumor histology and site, age of the patient, and presence or absence of clinical signs. Several reviews129 have shown that radiation therapy 

Page 10: Chapter 33 - The Brain and Spinal Cord · changes (particularly in the spinal cord with end-arterial blood supply to portions of the thoracic cord) and direct effects of the radiation

PART 10  Central Nervous System844

G H

I

FIGURE 33-5.—cont’d Sagittal slices are shown for 3D CRT electrons (G), 3D CRT photons (H), and protons (I). Isodose lines are designated for 3D CRT and IMRT: green, 54 Gy; orange, 35 Gy; blue, 20 Gy; red, 15 Gy; yellow, 10 Gy; purple, 5 Gy. Isodose lines are designated for protons: orange, 54 Gy; green, 35 Gy; light blue, 20 Gy; aqua/green, 15 Gy; violet, 10 Gy; dark purple, 5 Gy. (From Lee CT, Bilton SD, Famiglietti RM, et al. Treatment planning with protons for pediatric retinoblastoma, medulloblastoma, and pelvic sarcoma: how do protons compare with other conformal techniques? Int J Radiat Oncol Biol Phys 2005;63:362-372.)

is effective in terms of tumor response, prolonged progres-sion-free  interval,  and  long-term  disease  control. A  joint CCG-POG  prospective  trial  of  postoperative  irradiation for  incompletely  resected  astrocytomas  was  abandoned in  the early 1990s because  the proportion of  children  in whom gross total or near-total resection could be achieved had  increased  substantially  and  because  the  wisdom  of performing  irradiation before  symptomatic or  radioimag-ing-documented progression of disease precluded uniform  acceptance of irradiation as a randomized option. Prelimi-nary  experience  in  that  trial  suggested  that  observation might  be  appropriate  after  substantial  resection  because disease seems to progress in only a minority of such cases  3 to 5 years after surgery126 (J. Wisoff, personal communica-tion, 2001). For some patients with central low-grade glio-mas (e.g., tectal plate or midbrain; less often, hypothalamic or  thalamic),  cautious  observation  can  identify  indolent, stable tumors that may not require immediate intervention if  the  child  is  neurologically  stable.106,130  However,  this  approach  implies  a  commitment  to  intervene  with  sur-gery  or  radiation,  or  both,  when  clinical  or  radiographic  evidence of tumor progression appears.

The systematic use of postoperative irradiation has also been  questioned  in  adults.125,131-133  Adults  more  often have sizable peripheral cerebral hemispheric tumors. Out-come at 5 and 10 years seems to be improved for patients given  radiation  therapy  for  incompletely  (as  opposed  to 

completely)  resected  tumors.131-134 A  trial  by  the  Euro-pean Organisation for Research and Treatment of Cancer to evaluate postoperative observation versus irradiation for WHO grade I and II hemispheric lesions in adults showed no  convincing  advantage  for  early  irradiation or  for  low-dose (45 Gy) versus high-dose (60 Gy) therapy.135

The  effect  of  radiation  therapy  is  well  documented for  central  supratentorial  lesions.  Neurologic  improve-ment has been observed  in 80% of patients after  irradia-tion  for  diencephalic  tumors.  Objective  reduction  in  the size of supratentorial astrocytomas has been confirmed in  approximately one half of the patients studied by prospec-tive  CT  assessment.  Long-term  survival  of  patients  with biopsy-proven  diencephalic  lesions  usually  has  required irradiation  to  therapeutic dose  levels.125 Limited-volume, fractionated irradiation has been reported to control most such lesions, with toxicity apparently being more limited in the pediatric age group.136

Optic Pathway GliomaTumors  of  the  optic  nerves  and  chiasm  are  low-grade  astrocytomas that occur predominantly in young children, often younger than 3 to 5 years. In 25% to 30% of cases, the tumors  are  associated  with  neurofibromatosis.137 Tumors of the optic nerve often behave as hamartomatous lesions, although  up  to  50%  may  extend  proximally  toward  the chiasm. Chiasmatic gliomas manifest with visual and often 

Page 11: Chapter 33 - The Brain and Spinal Cord · changes (particularly in the spinal cord with end-arterial blood supply to portions of the thoracic cord) and direct effects of the radiation

33  The Brain and Spinal Cord 845

with endocrine signs; it is often difficult to distinguish chi-asmatic from hypothalamic tumors. In collected reports of 500  cases,  25%  of  patients  with  chiasmatic  involvement died  of  tumor-related  events.138,139  In  an  often-quoted  series of 36 children, Hoyt and Baghdassarian140 indicated that chiasmatic tumors were indolent and nonthreatening. However, follow-up at a median of 20 years documented a 25% tumor-related mortality rate in a population weighted toward the apparently more benign tumor associated with neurofibromatosis.141,142

The  efficacy  of  radiation  therapy  for  tumors  of  the  optic  chiasm with or without hypothalamic  involvement has been documented in numerous series.138,143,144 Visual acuity or visual fields are improved in approximately 25% 

A

h.t.

B

h.t.

FIGURE 33-6. Midline sagittal T1-weighted MRI scans depict a hypothalamic–optic chiasmatic juvenile pilocytic astrocytoma that filled much of the sella and suprasellar region at diagnosis (A) and at 2 years after completion of radiation therapy (54 Gy delivered in 30 fractions in a multifield, three-dimensional con-formal approach)  (B). The involution is typical of  juvenile pilo-cytic astrocytomas at this site, including the fairly long interval to reduction. h.t., hypothalamic tumor.

of patients  receiving radiation therapy, and neuroimaging shows  a  reduction  in  the  size  of  the  lesion  in  these  patients.145,146 Survival rates after irradiation for chiasmatic gliomas reportedly range between 75% and 100% in large series of patients followed for 5 to 10 years.138,143-145

Controversy  regarding management  appropriately  sur-rounds  the  often-benign  clinical  course  of  the  disease  in relation  to  the  potential  for  treatment-related  morbid-ity with  surgery  or  irradiation. Exophytic  JPAs  arising  in the  chiasmatic  or  hypothalamic  region  are  amenable  to  incomplete surgical resection147; the potential advantage of partial resection lies in delaying more definitive irradiation. Particularly  among  younger  children,  a  balance  between disease progression and the potential risk of adverse endo-crine and intellectual effects from irradiation has favored a conservative  approach.138,143  Packer  and  colleagues148-150 described their experience with chemotherapy, particularly the  carboplatin  and  vincristine  regimen.  In  most  young children,  previously  progressive  or  symptomatic  disease was  stabilized  with  chemotherapy;  objective  responses were documented in up to 50% of cases, and the median time to disease progression was in excess of 3 years. Initial management  with  relatively  toxicity-free  chemotherapy approaches  is  logical  for children with progressive symp-tomatic chiasmatic or hypothalamic tumors, certainly  for those younger than 3 to 5 years and possibly for all children before  puberty.  The  frequency  and  durability  of  disease control are not clear  for children for whom irradiation  is begun when their disease progresses during or after chemo-therapy. Outside the investigational setting, the treatment of choice remains primary irradiation for children between 5 and 10 years old because long-term disease control can be achieved in up to 90% of these cases.138,143-145

Radiation Therapy TechniqueRadiation  therapy  for  low-grade  astrocytomas  uses  local target volumes to encompass the typically discrete primary tumor  quite  narrowly.136,151,152  Uncommonly,  low-grade  tumors diffusely infiltrate one or more cerebral lobes, requir-ing more wide-field or total cranial irradiation (Fig. 33-7).  Low-grade,  often  pilocytic,  astrocytomas  are  associated with  multifocal  disease  or  subarachnoid  involvement  at  diagnosis (or, less commonly, at recurrence) in 15% to 20% of patients with childhood astrocytomas.153-155 Multifocal or metastatic disease  is  rarely confined to the spinal  sub-arachnoid region; multiple disease sites are almost always  apparent on cranial MRI studies, obviating any requirement for  spinal  imaging or  staging  in patients with  this  tumor. Specific  histologic  subtypes  of  tumors  (i.e.,  pleomorphic xanthoastrocytoma and meningocerebral astrocytoma) can directly infiltrate the contiguous meninges, but this seems to be associated with an indolent, benign course after sur-gery alone.156-158

Establishing  the  target  volume  requires  detailed  MRI. A 1-cm margin beyond the abnormalities shown on T1- or T2-weighted  images seems adequate on the basis of early follow-up data from patients for whom three-dimensionally planned  and  delivered  radiation  techniques  were used.136,151,152,159 A phase II trial by the COG is using MRI/CT fusion for target delineation, a 0.5-cm margin for clinical target  volume,  and  a  0.3-  to  0.5-cm  margin  for  planning  target volume. The planning target volume is treated by us-ing a conformal technique to 54 Gy in 30 fractions.

Page 12: Chapter 33 - The Brain and Spinal Cord · changes (particularly in the spinal cord with end-arterial blood supply to portions of the thoracic cord) and direct effects of the radiation

PART 10  Central Nervous System846

A  dose-response  relationship  for  astrocytoma  has not been well defined.  In most  series, a  radiation dose of  approximately 50 Gy delivered in 1.8-Gy, once-daily frac-tions  has  proved  adequate.129,138  However,  in  statistical analyses of rather sizable series of patients, Albright125 and Laws108  and  their  associates  observed  an  apparent  bene-fit conferred by doses above 40 Gy. Justifying dose levels above 54  to 55 Gy  in children  is difficult  in view of  the increase in risk at radiation levels approaching cerebral tol-erance. For adults with supratentorial astrocytomas, Shaw and colleagues,134 having shown a dose-response relation-ship indicating improved survival after at least 53 Gy, rec-ommend levels of 55 to 60 Gy. However, two randomized studies of adults with  low-grade gliomas  testing 50.4 Gy versus 64.8 Gy or 45 Gy versus 59.6 Gy showed no signifi-cant difference  in outcome between the  lower doses and the higher doses.135,160

PrognosisLaws  and  colleagues108  reviewed  the  Mayo  Clinic  expe-rience  with  461  patients  of  all  ages  with  supratentorial astrocytomas  treated between 1915 and 1975. The most important  correlates  of  10-  and  15-year  survival  were age (86% long-term survival  for children and adolescents younger than 20 years versus 33% for those 20 years old or  older)  and  the  degree  of  tumor  involvement,  reflect-ed  by  the  neurologic  deficit  and  the  extent  of  resection  (37% survival rate for patients after biopsy or limited re-moval compared with 55% for those after subtotal or total resection). In Shaw’s review134 of the same Mayo experi-ence with adult patients with supratentorial astrocytomas, 

FIGURE 33-7. MRI  scan demonstrates  the diffuse, multilobar involvement of a biopsy-proven fibrillary astrocytoma. Although predominantly in the left temporal lobe, the lesion also extends throughout the left parietal, right parietal, and mesencephalic regions.  Objective  improvement  in  response  to  irradiation  is  often transitory. This type of diffuse cerebral tumor, sometimes called gliomatosis cerebri, is a supratentorial lesion analogous to the more typical diffusely infiltrating pontine glioma.

a role for radiation therapy was clearly indicated for most patients  with  astrocytomas,  with  5-  and  10-year  survival rates  of  68%  and 39%,  respectively,  after  at  least  53  Gy. Patients treated with less than 53 Gy or no irradiation had a  5-year  survival  rate  of  47%  (both  groups)  and  10-year survival rates of 27% and 11%, respectively.

The  long-term  potential  for  radiation  therapy  to  con-trol disease specifically in children with hemispheric astro-cytomas has been documented in reviews by Bloom95 and Jenkin96 and their colleagues, who independently reported that the survival rate reached a plateau between 5 and 15 years  after  postoperative  irradiation. The  benefit  of  add-ing irradiation after incomplete resection for children with  supratentorial hemispheric  tumors was made apparent  in the Pittsburgh series reported by Pollack and colleagues.161

Site-specific  survival  rates  suggest  that  patients  with hypothalamic  and  chiasmatic  astrocytomas  enjoy  longer survival  times  than do patients with most other  types of supratentorial astrocytomas. Bloom and colleagues95 cited 5-year survival rates of 60% to 70% for patients with tha-lamic  or  hypothalamic  tumors  after  primary  irradiation. Albright and colleagues125 reported a mean survival dura-tion of 5.1 years after radiation therapy for patients with diencephalic gliomas compared with a mean survival time of less than 1 year for patients who did not undergo irradia-tion. The virtual lack of tumor progression beyond 5 years after radiation therapy further suggests a role for radiation therapy as a curative modality in the primary management of hypothalamic or chiasmatic tumors.145,162

Brainstem GliomasTumors  of  the  brainstem  most  often  involve  the  pons (70%),  followed  by  the  medulla  (15%  to  20%)  and  the midbrain (10% to 15%).163,164 Brainstem gliomas are char-acterized as diffusely infiltrating or focal, depending on the pattern of involvement; focal tumors are well demarcated, confined  to one anatomic  segment of  the brainstem, and occupy less than one half of the brainstem.165 Most focal tumors  are  JPAs histologically;  they  occur more  often  in the midbrain or medulla but can arise in the pons.163,166-

168  Pontine  gliomas  are  largely  diffuse  (Fig.  33-8).164,165 Dorsally  exophytic  lesions  are  relatively  benign  tumors that usually arise at the pontomedullary junction or from the medulla; histologically, they are JPAs.166-169 In the past, brainstem  tumors  have  been  treated  conservatively,  with histologic confirmation limited to focal or cystic lesions for which knowledge of the histology or drainage might facili-tate treatment.163,164 Findings from biopsied cases indicate that malignant glioma exists in 40% of patients at diagno-sis164;  the  remaining  tumors  are  largely fibrillary  astrocy-tomas.163,170 At  autopsy,  however,  malignant  gliomas  are found in more than 80% of cases.164,170

Radiation  therapy  is  primarily  used  for  diffusely  infil-trating brainstem gliomas. Substantial neurologic improve-ment  occurs  in  60%  to  70%  of  patients  with  diffusely  infiltrating pontine gliomas, although long-term survival is limited to 10% to 20% of patients with these gliomas.164 Dorsally  exophytic  tumors  are  usually  identified  during surgery for a tumor that otherwise fills much of the fourth ventricle. The lesions in more than one half of the patients remain  indolent  after  incomplete  resection;  the  40%  or more of tumors that do progress are most often controlled with radiation (Fig. 33-9).167,168

Page 13: Chapter 33 - The Brain and Spinal Cord · changes (particularly in the spinal cord with end-arterial blood supply to portions of the thoracic cord) and direct effects of the radiation

33  The Brain and Spinal Cord 847

A B

FIGURE 33-8. A, Sagittal MRI scan depicts a diffusely infiltrating brainstem glioma involving much of the pons and extending to-ward the midbrain and the medulla. B, A typical two-dimensional treatment approach is shown. Use of three-dimensional conformal techniques also may be advantageous.

Radiation Therapy TechniqueBrainstem  gliomas  tend  to  infiltrate  longitudinally,  usu-ally  extending  beyond  the  pons  to  involve  the  midbrain or  medulla  and  extending  peripherally  into  the  cerebel-lum or medial temporal lobes (see Fig. 33-8). Irradiation is limited to the brainstem and immediately adjacent neural tracts. The infiltrative nature of these tumors can be better appreciated  on T2-weighted  MRI  studies.  Clinical  target volumes  are  defined  with  2-cm  margins  along  the  tracts of infiltration (i.e., into the midbrain or medulla, through the peduncles, and into the adjacent cerebellum).171 Given the poor overall outcome for patients with pontine lesions, many  centers  continue  to  use  two-dimensional,  opposed lateral fields in this setting, providing a margin around the known tumor extent.

The standard dose for brainstem gliomas is 54 to 56 Gy, given in a conventional fractionation scheme. In a series of trials, hyperfractionated doses given to total doses of 66, 70 to 72, and 76 to 78 Gy indicated no real benefit from the higher  doses.172-174  Most  long-term  survivors  have  been adults or children with focal brainstem lesions often located outside the pons (i.e., in the midbrain or medulla).172

The  decade-long  experience  with  hyperfractionated therapy  for  these  tumors  has  encouraged  neurosurgeons, radiation  oncologists,  and  pediatric  oncologists  to  enroll patients  in multi-institutional protocols.  In a  randomized trial conducted by the POG, conventional fractionation to 54 Gy was documented to be as effective as 70 Gy given in twice-daily 1.2-Gy fractions.175 This trial also documented the apparent negative effect of irradiation in combination with concurrent cisplatin in this setting.175,176

PrognosisThe  5-year  overall  survival  rates  are  10%  to  20%  for  children  with  brainstem  gliomas  and  20%  to  30%  for adults.172-174  Median  survival  after  irradiation  is  only  8 months  for  patients  with  classic  intrinsic  tumors  in  the pons. Hoffman and colleagues166,167  initially  identified as highly  favorable a  subset of children  in whom exophytic tumors extended into the fourth ventricles. However, it is 

now understood that these tumors are usually JPAs168; sur-vival after  surgery, with or without  radiation, approaches 90% in this selected group.166-168 Intrinsic pontine tumors, constituting  most  of  the  classically  identified  brainstem gliomas, are usually associated with multiple cranial nerve palsies,  diffusely  hypodense  lesions  on  CT  or  MRI  stud-ies, and a high-grade histologic appearance indicative of an infiltrating, aggressive neoplasm. Long-term survival  rates 

FIGURE 33-9. Sagittal  MRI  scan  shows  a  dorsally  exophytic brainstem  glioma.  This  discrete,  briskly  enhancing  tumor  fills much of the fourth ventricle, attaching along the posterior aspect of the brainstem at the pontomedullary junction. Invasion may not be apparent on imaging, and at surgery, lesions often are found to blend imperceptibly with the underlying brainstem.

Page 14: Chapter 33 - The Brain and Spinal Cord · changes (particularly in the spinal cord with end-arterial blood supply to portions of the thoracic cord) and direct effects of the radiation

PART 10  Central Nervous System848

for the latter group have consistently been less than 15%. Less common intrinsic tumors that are focal and confined to a segment of the pons or midbrain are associated with slightly better long-term survival rates.165

Chemotherapy regimens have little effect on brainstem gliomas. Adjuvant  therapy did not  affect outcome  in  the only published randomized trial.177

EpendymomasIntracranial ependymomas occur predominantly  in young children, but they are also seen in older children and adults. Ependymomas  also  occur  as  primary  spinal  cord  neo-plasms,  but  this  presentation  is  more  common  in  adults. Posterior  fossa  ependymomas  typically manifest with  the same symptom triad as other posterior fossa tumors in chil-dren—headache,  vomiting,  and  ataxia.  Associated  symp-toms include torticollis and lower cranial nerve dysfunction. The median age of children with these tumors is 4 years; however, almost 30% of infant brain tumors (i.e., those in children  younger  than  3  years)  are  ependymomas.178,179  Infratentorial lesions in younger children may occur more often in girls than in boys. Supratentorial lesions more often manifest  with  seizures  or  focal  neurologic  abnormalities and are most common in adolescents and adults.

Tumors  of  the  posterior  fossa  occur  predominantly  in children; these tumors show a predilection for the fourth ventricle  in  young  children  and  often  involve  or  origi-nate  within  the  region  of  the  foramen  of  Luschka  (Fig.  33-10).179,180 Direct extension through the foramen mag-num into the upper cervical spinal canal is a characteristic pattern of growth. Ependymomas disseminate into the sub-arachnoid space in approximately 12% of children.95,181-184 However, this manifestation is more often seen at diagno-sis or as  a primary  site of  recurrence  in very young chil-dren and may be associated with an anaplastic histology; in older children, this pattern is more common after local recurrence than earlier in the disease.183,184 Supratentorial tumors  often  arise  in  regions  adjacent  to  the  ventricular system, and growth occurs largely through intraparenchy-mal extension.185

Ependymomas  arise  from  the  ependymal  cells  lining the  ventricular  system  and  the  central  spinal  canal. The tumor  characteristically  includes  ependymal  rosettes  and perivascular  pseudorosettes.  Ependymomas  are  differen-tiated or  low-grade lesions; variants  include cellular, clear cell, tanycytic, and papillary types.69 In one series, 15% to 30% of ependymomas were classified as anaplastic tumors (i.e., WHO grade III), marked by increased cellularity and  mitotic rate. The tumors usually are well demarcated but can  show  parenchymal  invasion.69,115  Although  ependy-momas were regarded by leading neuropathologists in the 1980s as being of little clinical significance, an association has since been recognized between an anaplastic histology and  a  less  favorable  outcome.186-192  Ependymoblastomas are rare embryonal tumors and are discussed with the other supratentorial PNETs.

Surgery is the initial  intervention for most  intracranial ependymomas. Even extensive tumors of the fourth ventri-cle can often be grossly resected; total resection of tumors extending into or arising in the cerebellopontine angle has been achieved.180,190 The advantage of near-total or  total resection  is  apparent,  with  considerable  improvement  in disease  control  in  children  in  whom  complete  resection was achieved.189-191 The price of this control is a significant incidence of new postoperative neurologic deficits, includ-ing  the  posterior  fossa  syndrome  and  major  new  bulbar signs (e.g., palsies of cranial nerves IX and X resulting in difficulty with speech and airway protection),  sometimes requiring  postoperative  tracheostomy  or  the  placement of  a  feeding  tube.88  Institutional  experience  shows  that gross total resection can be accomplished in 50% to 60% of  patients with infratentorial ependymoma; however, a total resection rate as high as 90% has been reported.190

Postoperative irradiation is essentially routine for patients with ependymomas, almost regardless of age, because ad-juvant radiation has been shown to increase disease control rates in several major series.190,192 However, a single expe-rience suggests that disease could be controlled in a certain subgroup  of  children  with  supratentorial  ependymomas who are treated with total resection alone; in this ongoing 

A B

FIGURE 33-10. A typical ependymoma involving the fourth ventricle. A, Axial CT scan reveals a lesion that fills much of the fourth ventricle and extends through the right foramen of Luschka. B, Sagittal MRI scan shows the tumor extending caudally along the medulla and below the foramen magnum into the upper cervical spinal canal.

Page 15: Chapter 33 - The Brain and Spinal Cord · changes (particularly in the spinal cord with end-arterial blood supply to portions of the thoracic cord) and direct effects of the radiation

33  The Brain and Spinal Cord 849

COG prospective trial, only a small proportion of patients with such ependymomas is being treated with observation only.193 For all  lesions of  the  fourth ventricle or  cerebel-lopontine  angle,  high  rates  of  tumor  control  have  been achieved only for patients treated with local postoperative radiation and radical resection.189-191,194 Long-term disease control was accomplished  in approximately 70% of  such children, compared with 20% to 30% of those treated with incomplete resection and similar radiation.

Ependymomas respond to a variety of chemotherapeu-tic  agents,  including  cyclophosphamide  and  vincristine,  cisplatin  and  carboplatin,  and  etoposide.  A  randomized trial  of  adjuvant  lomustine,  vincristine,  and  prednisone  conducted  by  the  CCG  showed  no  benefit  from  this  chemotherapy.195  The  initial  experience  in  infants  with ependymomas  indicated  an  inverse  relationship  between the duration of chemotherapy (equivalent to the time of initiating  radiation  therapy)  and  disease  control,  encour-aging current institutional and cooperative group trials to limit the use of chemotherapy for this tumor; only for the youngest  children  (<18  months  old)  has  a  brief  (3  to  4 month) course of chemotherapy been used before radiation (or second resection and radiation if measurable disease is  apparent  at  the  completion  of  chemotherapy).194  For  infants,  interest  in  chemotherapy  dose  escalation  contin-ues because of positive preliminary results from the second POG study of  infant brain  tumors,  results  that  suggested that  dose-intensified  chemotherapy  produced  better  dis-ease  control  rates  than did  standard  chemotherapy.196  In older children, the usefulness of limited-duration chemo-responsiveness  in  facilitating  second  operative  resections before radiation is being examined in a COG trial.

Most  clinical  experience  with  ependymomas  is  based on  treatment  volumes  for  infratentorial  lesions  that  include the entire posterior fossa and often the upper cer-vical spinal canal to one to two vertebral levels below the caudal  tumor extent. Because  recurrent disease  is  almost always localized to the initial tumor bed and often the site of attachment and because minimal residual disease is left adjacent  to  the  brainstem  or  peduncle,  current  prospec-tive  investigations are  targeting only the  local  tumor bed (with  margins  as  tight  as  1  cm)  using  three-dimensional conformal  or  intensity-modulated  radiation  therapy  (Fig. 33-11).159 However, findings during an as yet  insufficient follow-up period indicate that the limited treatment vol-umes should be used with caution outside a controlled set-ting. For supratentorial lesions, a 1- to 2-cm margin around the initial tumor extent is indicated, with potential modi-fications when the normal brain is reconfigured by tumor resection. Treatment  volumes  for  differentiated  and  ana-plastic ependymomas usually are not different.197,198 Pre-vious interest in CSI for anaplastic infratentorial lesions has not  continued  into  contemporary protocols  or  treatment standards, except in cases in which neuraxis involvement is documented at diagnosis.

Classically,  radiation  doses  of  45  to  54  Gy  have  been used.182,189,192 However, doses of 54 to 55.8 Gy have been reported to achieve superior results and are indicated even after gross total resection.199,200 Despite apparently encour-aging results from a small POG trial of hyperfractionated radiation (70 Gy given twice daily in 1.2-Gy fractions) for patients with posterior fossa ependymomas, no substanti-ated role has been established for altered fractionation. The 

potential value of dose escalation is being explored in trials testing cumulative doses approaching 60 Gy.159

Pineal Region and Germ Cell TumorsA  unique  group  of  tumors  occur  in  the  pineal  region: germ  cell  tumors,  pineal  parenchymal  tumors,  and  glial and ependymal  tumors  (Table 33-3).69,116,201  Intracranial germ cell tumors occur predominantly in the pineal region,  although they can also arise in the anterior third ventricu-lar (suprasellar) region and, less commonly, in thalamic or deep cerebral hemispheric areas.

This unique group of tumors manifests with clinically and histologically linked syndromes. Pineal region germinomas occur predominantly in adolescent boys and are associated with  multifocal  or  metastatic  disease  in  the  anterior third  ventricular  region  in  10%  to  40%  of  cases.202-206  Suprasellar  (anterior  third  ventricular)  germ  cell  tumors occur  more  broadly  throughout  the  pediatric  age  group and about equally in girls and boys; these tumors are often germinomas but also include other germ cell types. Pineal parenchymal  tumors  in  children  are  overwhelmingly  malignant pineoblastomas, with a considerable proportion occurring in infants and children younger than 2 to 3 years as  highly  aggressive,  widely  metastasizing,  small,  round, blue cell tumors. Pineocytomas are decidedly less common in children occurring more often in adults.69,207-209

Regardless  of histology, pineal  region  tumors  typically manifest with Parinaud’s syndrome, consisting of near-light dissociation  (i.e.,  pupillary  responses  are  diminished  to 

FIGURE 33-11. The treatment plan shows the isodose volumes for  a  three-dimensional  conformal  approach,  using  multiple non-coplanar  6-MeV  photon  fields  to  encompass  the  tumor within the  lower aspect of the posterior  fossa and the upper-most spinal canal. The target volume in contemporary protocols more often addresses the tumor bed or surgical bed than the full posterior fossa.

Page 16: Chapter 33 - The Brain and Spinal Cord · changes (particularly in the spinal cord with end-arterial blood supply to portions of the thoracic cord) and direct effects of the radiation

PART 10  Central Nervous System850

light but are maintained with attempted accommodation), lack of upward gaze, and incomplete ability to accommo-date.  Obstructive  hydrocephalus  often  occurs  when  the  tumors are near  the  sylvian aqueduct. Suprasellar  lesions can  also  manifest  as  hydrocephalus  when  the  growing  tumor obstructs the foramen of Monro; diabetes insipidus and visual field deficits are often apparent.

Although sometimes debated in the past, it is important to  histologically  establish  the  diagnosis  of  pineal  region tumors. Suprasellar lesions have usually been biopsied be-cause of their relative accessibility and the broad differential diagnosis that  includes astrocytomas of the hypothalamic or  chiasmatic  region  and  craniopharyngioma.  Germ  cell tumors  can occasionally be definitively diagnosed on  the basis of chemical markers. Any significant elevation of the alpha-fetoprotein level in the serum or CSF is diagnostic of a malignant germ cell histiotype (typically embryonal car-cinoma, yolk sac tumor, or teratocarcinoma), and marked elevation  of  β-human  chorionic  gonadotrophin  level  (β-HCG; typically more than 100 to 1000 mIU/mL) is diag-nostic of a choriocarcinoma or malignant mixed germ cell tumor  (with  choriocarcinomatous  elements).210,211  Mod-erate elevation of the β-HCG level (50 to 100 mIU/mL) is compatible with a germinoma, but cytologic or histologic evidence  is  required  to  confirm  the  diagnosis.212 After  a diagnosis is established, neuraxis staging (e.g., spinal MRI, lumbar CSF  cytology)  is mandatory  for  any of  the  germ cell tumors and pineoblastoma.

TABLE 33-3. Histologic Classification and Relative Incidence of Pineal Region Tumors

Histologic Type* Relative Frequency†

Tumors of Germ Cell Origin

Germinoma 60% to 80%

Teratoma (differentiated, immature, malignant)

65%

Endodermal sinus tumor 18%

Embryonal carcinoma 7%

Choriocarcinoma 5%

Tumors of Pineal Parenchymal Origin

14%

Pineoblastoma

Pineocytoma

Tumors of Glial Origin 15%

Astrocytoma

Malignant glioma

Ganglioglioma (ganglioneuroma)

Ependymoma

*Modified from Burger PC, Scheithauer BW, Vogel FS (eds). Surgical Pathology of the Nervous System and its Coverings, 3rd ed. New York: Churchill Livingstone, 1991.†Modified from Burger PC, Scheithauer BW, Vogel FS (eds). Surgical Pathology of the Nervous System and its Coverings, 3rd ed. New York: Churchill Livingstone, 1991; Kleihues P, Cavenee WK (eds). Tumours of the Nervous System. Lyon, France: IARC Press, 2000.

An open  craniotomy  is  usually  required  to  biopsy  su-prasellar tumors.213 Biopsy has been possible during third ventriculoscopy, often at the time of ventriculoperitoneal shunt  insertion  or  third  ventriculostomy.  Pineal  region  tumors can be approached stereotactically, but their chal-lenging  location  adjacent  to  the  major  draining  intracra-nial veins has  led many neurosurgeons to prefer an open approach. Tumor resection is feasible in the pineal region, although done in only a few instances because of the high rate  of  potential  complications.  Although  insertion  of  a ventriculoperitoneal  shunt  is often necessary,  the notable incidence of shunt metastasis (with tumor arising through-out the peritoneal cavity),212,213 although low in absolute terms, is relatively more common for this group of tumors than  for  any  other  intracranial  lesions.  Performance  of  a third ventriculostomy, rather than placement of a ventricu-loperitoneal shunt, is encouraged for accomplishing inter-nal decompression.

Radiation Therapy TechniqueRadiation  therapy  is  highly  curative  in  patients  with  germinomas  in  the pineal  region, anterior  third ventricle, or  multiple  midline  locations.205,211,214-220  Considerable debate, however, surrounds the appropriate radiation vol-ume for these tumors.206 Given the recognized incidence of  intraventricular  and  subarachnoid  dissemination,  cra-niospinal  (or  less  often,  full  cranial)  irradiation  has  been recommended  for pineal  region and  suprasellar germino-mas.205,214,221 The outcome  in many  series  indicates  that disease is controlled in up to 95% of patients treated with full  neuraxis  radiation  as  a  component  of  their  therapy (Table  33-4).203,206,215,218-225  Local  irradiation,  variably defined  as  encompassing  the  primary  tumor  site  with a margin or  the  entire  third  ventricular  region, has  been  associated  with  long-term  disease-free  survival  rates  of more than 80% (see Table 33-4).203,206,215,218-225 The inci-dence of neuraxis dissemination varies from less than 10% to  35%.206,214,219,221,226  No  consensus  has  been  reached regarding  the  appropriate  radiation volume because  cure rates are relatively high for local and full-neuraxis irradia-tion,  and  the  toxic  effects  associated  with  the  relatively low  doses  necessary  for  this  disease  are  exquisitely  age  related.218,220

Evidence is increasing that 45 Gy delivered to the pri-mary  tumor  site  is  adequate  to  ensure  virtually  uniform control  of  pineal  region  and  suprasellar  germinomas.  Wider-field components (craniospinal or, as done at some  institutions, full cranial irradiation) can be limited to doses of 25 Gy.216,218,219 CSI doses as  low as 18 to 19.8 Gy in children  with  no  detectable  leptomeningeal  metastasis from  germinomas  at  diagnosis  have  been  reported  to  be  effective in preventing leptomeningeal recurrence.227

Considerable  interest  has  been  expressed  in  chemo-therapy for intracranial germinomas. Although a high rate of response has been documented, durable control of dis-ease has been achieved in only about one half of the pa-tients treated with chemotherapy only, including some of the more rigorous treatment regimens that carry a 5% to 10% rate of toxicity-related death.222,224,225,228 CSI is often a  successful  salvage  treatment  for germinomas  that  recur after such therapy.218

Early  studies conducted by Allen and colleagues223,229  established that disease control was excellent after combined 

Page 17: Chapter 33 - The Brain and Spinal Cord · changes (particularly in the spinal cord with end-arterial blood supply to portions of the thoracic cord) and direct effects of the radiation

33  The Brain and Spinal Cord 851

TABLE 33-4. Therapy and Outcome in Intracranial Germinomas

Therapy

Radiation Therapy

Chemotherapy 5-Year NED Rate (%) Study and ReferenceCSI Local (Gy)

RT only + 50-55 85 Shibamoto et al, 1988221

+ 45-55 86 Rich et al, 1985203

+ 45-59 97 Hardenbergh et al, 1997219*

+ 45-50 91 Bamberg et al, 1999222

CrI, VtI 50-54 91 Wolden et al, 1995206

0 40-50 87 Calaminus et al, 1994220

0 44 90 Haddock et al, 1997215

+ 50 100 Merchant et al, 2000218

Chemotherapy and reduced RT

0 30 Cyclophosphamide 91 Allen et al, 1987223

0 40 VP-16/CBCDA; VP-16/ ifosfamide

96† Bouffet et al, 1999224

0 30 (CBCDA or CDDP); vinblastine; bleomycin

92 Calaminus et al, 1994220

Chemotherapy only 0 0 CDDP, VP-16, bleomycin 42 Balmaceda et al, 1996225

*Includes cases from Rich et al, 1985203 (CSI or CrI, dose of 15 to 44 Gy).†Event-free survival at 3 years.CBCDA, carboplatin; CDDP, cisplatin; CrI, full cranial irradiation; CSI, craniospinal irradiation (dose levels 24 to 30+ Gy for localized tumors); NED, no evidence of disease; RT, radiation therapy; VP-16, etoposide; VtI, full ventricular volume irradiation (typically to doses of 20 to 36 Gy), +, used; 0, not used.

chemotherapy  (with  cyclophosphamide  or  carboplatin) followed by limited-volume, reduced-dose radiation. Strat-egies  incorporating  moderately  aggressive  chemotherapy and  local  radiation (to 30 to 36 Gy for patients  showing a  good  partial  or  complete  response,  as  shown  on  imag-ing studies and by normalization of any elevated markers) or limited-dose CSI (for those with disease dissemination) result in disease control rates exceeding 90%, with limited toxic  effects.220,222,224,228 Whether  such  an  approach  of-fers any advantage over radiation therapy alone is unclear; prospective trials of this approach are being conducted in Europe and by the COG. It is difficult to improve on the disease control  rates produced by primary  irradiation, al-though  prepubertal  patients  and  those  who  require  CSI before completion of skeletal growth may benefit from a combined-modality approach.

In patients with malignant germ cell  tumors (i.e., em-bryonal  or  yolk  sac  carcinoma,  choriocarcinoma),  treat-ment  with  radiation  therapy  alone  has  rarely  controlled disease in more than 25% to 40% of cases.213,220 Combined radiation and chemotherapy seems to be beneficial in such cases, but the chemotherapy must be relatively aggressive, and  the  radiation dose  to  the  craniospinal  axis  is  usually 24 to 36 Gy, followed by a boost dose to the tumor bed of 9 to 25 Gy, depending on the response to prior chemo-therapy.230,231

PrognosisA fairly favorable outcome has been observed for patients with  pineoblastomas  treated  with  radiation  therapy  (in-cluding  CSI)  and  chemotherapy  (including  alkylating 

agents or nitrosoureas in conjunction with vincristine).232 Disease  has  been  controlled  in  up  to  60%  of  patients, compared with  the 0%  to 10%  survival  rates  for  infants treated  with  prolonged  chemotherapy  with  or  without  radiation.178

CraniopharyngiomaCraniopharyngiomas are histologically benign tumors de-rived from squamous cell rests in the region of the pituitary stalk. More than one half of these tumors occur in patients younger than 18 years, and craniopharyngiomas represent 3% to 9% of the intracranial tumors of children. The tumor arises as an extra-axial lesion, typically a densely calcified, solid tumor in the suprasellar region with large cystic com-ponents (Fig. 33-12). These histologically classic adaman-tine tumors occur in children and adults.233 Less common are the noncalcified, squamous papillary type, which usu-ally occur in adults.69,115

Total surgical resection is usually curative in patients with craniopharyngiomas.233-240 The decision about whether to use  surgery  or  radiation  therapy  depends  on  the  site  of origin and growth of the tumor, which often damages the hypothalamus or optic chiasm and sometimes damages the adjacent major vessels. Although encapsulated,  the  lesion usually  adheres  to  these  vital  structures,  even  though  it does not infiltrate to the level of the tuber cinereum.234-236  Modern microsurgical  techniques allow total  resection  in up to 75% of cases, with operative mortality rates of 1% to 3%.236,241-243 The incidence of long-term functional deficits may be higher among patients who undergo radical resec-tion than among those treated with radiation.237,244-247

Page 18: Chapter 33 - The Brain and Spinal Cord · changes (particularly in the spinal cord with end-arterial blood supply to portions of the thoracic cord) and direct effects of the radiation

PART 10  Central Nervous System852

Kramer and colleagues248,249 established the effectiveness of high-dose radiation after limited cyst aspiration, initially reporting 5-year survival for 9 of 10 patients and with later follow-up showing 13- to 15-year survival  for 6 of 6 chil-dren.250 Subsequent series showed similarly impressive long-term survival data.239,251-254 Bloom and colleagues95 updat-ed Kramer’s initial findings, reporting a 10-year survival rate of 85% for the children and a 10-year relapse-free survival rate of 80%.95 Disease control is even better in young adults (92% at 20 years for patients 16 to 39 years old at the time of  diagnosis).254 These  latter  figures  are  equal  to  the  best results observed in primary surgical series when corrected to account for cases with incomplete resection.235,243

Radiation Therapy TechniqueRadiation  therapy  for  craniopharyngioma  is  designed  to narrowly encompass the solid and cystic components of a well-delineated, central neoplasm. Much of the published information  involves  treatment using coronal arcs of 180 to 220 degrees;  three-dimensional  conformal or  fraction-ated stereotactic radiation therapy is being used to improve dose conformity.239,251-254

Craniopharyngiomas  show  a  radiation  dose-response  relationship. Bloom and  colleagues95,181  reported  a  supe-rior outcome in response to 50 to 55 Gy compared with the response to less than 50 Gy. Doses of 50 to 54 Gy at 1.8 Gy per fraction are recommended for children. It is not clear that higher doses are necessary or desirable for adults. Doses in excess of 60 Gy are associated with significantly greater toxicity, especially in the visual system, with little improvement in survival.95,181,255

Single-fraction radiosurgery has been used more broadly in  Europe  than  in  the  United  States.255,256  Radiosurgery may be appropriate for children with small foci of residual disease, particularly disease that is limited to intrasellar de-posits or foci of disease remote from the hypothalamus and chiasm.255,257

FIGURE 33-12. Midline sagittal non-enhanced MRI scan dem-onstrates  a  craniopharyngioma  involving  the  upper  aspect  of the sella, with a solid component extending into the suprasellar region along the pituitary-hypothalamic stalk. The cystic com-ponent is visible superiorly.

PrognosisExcellent  long-term survival  rates have been attained  for patients  who  undergo  total  resection  or  planned  limited surgery and radiation. The proportion of patients in recent series  who  underwent  successful  resection  approximates 75%.233-241,243,258 However, even the most vociferous ad-vocates of  surgery  acknowledge  the existence of  residual calcifications or apparently viable, radiographically obvious tumor in up to 50% of postoperative CT studies of patients who have undergone gross total resection.234-236 The rate of disease recurrence after complete resection ranges from 10% to 30%.233-235,241-243,259 Despite the benign nature of craniopharyngioma, tumor progresses in 70% to 90% of pa-tients after incomplete resection and without radiation at a median of 2 to 3 years.254,259,260

Primary  radiation  after  cyst  decompression  or  par-tial  resection  has  been  associated  with  progression-free survival  rates  of  80%  to  95%  at  5  to  20  years.95,181,238, 

251-255,258,259,261 Survival rates of 90% to 100% are common among children and adults.

The  relative  toxicity  of  primary  surgery  and  radiation for  craniopharyngioma  are  becoming  increasingly  appar-ent. Diabetes insipidus occurs in 75% to 100% of patients after  complete  surgical  resection.233,241,246,247  Endocrine dysfunction  involving  other  pituitary-hypothalamic  hor-mones has occurred  in 40% to 80% of patients after sur-gery.246,247 Hypothalamic obesity is apparent in more than 50% of long-term survivors; it is less common among those who undergo limited surgery and radiation.246,247 Undesir-able personality changes are associated with resections that damage the hypothalamus.

An  increased  endocrine  deficit  has  been  identified  in patients whose primary treatment was surgery compared with  those  who  underwent  limited  resection  and  radia-tion.246 Up to 25% of children show significant decreases in  vision  after  resection241,243;  reports  of  visual  compli-cations  from  radiation  therapy  have  been  anecdotal.255 Overall  performance,  intellectual  function,  and  memory seem  to be  equal  or better  in  the population  treated by  conservative  surgery  and  radiation  than  in  those  treated  surgically.237,245,253,255

Primitive Neuroectodermal TumorsIn 1973, Hart  and Earle262 described  the  cerebral PNET as a malignant embryonal tumor that affects children and young adults. The  tumor accounts  for  approximately 3% of supratentorial neoplasms. PNETs are large, often cystic hemispheric tumors characterized histologically by a highly cellular,  undifferentiated  infiltrate  that  includes  vascular endothelial  hyperplasia  and  necrosis.69,262,263  In  classic  descriptions, focal areas of glial or neuronal differentiation constitute  less  than  5%  to  10%  of  the  tumor. The  clini-cally similar cerebral neuroblastoma is distinguished from the Hart/Earle PNET by  its degree of neuronal differen-tiation.264-266 The  specific cerebral PNET encountered  in a patient, however, must be distinguished from the broad concept of PNETs advanced by Rorke  and colleagues,  as discussed earlier in this chapter.69,70,162,267

Cerebral  PNETs  infiltrate  widely  despite  their  cir-cumscribed  gross  appearance.  The  tumor  can  also  arise  multifocally.  About  one  third  of  cases  involve  ventricu-lar  or  spinal  subarachnoid  dissemination.261  The  more 

Page 19: Chapter 33 - The Brain and Spinal Cord · changes (particularly in the spinal cord with end-arterial blood supply to portions of the thoracic cord) and direct effects of the radiation

33  The Brain and Spinal Cord 853

 differentiated cerebral neuroblastoma has been associated with CSF metastasis in an equal proportion of patients at autopsy,  although  isolated  involvement  of  the  subarach-noid space is uncommon.261,264,266,268

Studies conducted by the CCG have documented the efficacy  of  combining  chemotherapy  (the  tested  regi-men  included  lomustine,  prednisone,  and  vincristine) with CSI for children with cerebral PNETs who are more than 3 or 4  years old.232,263,267,269-271 Long-term  survival  approached 60% in this group. For infants and young chil-dren,  therapeutic  approaches  are  comparable  with  those used  for  other  embryonal CNS  lesions  in  this  age  group (see “Tumors in Children Younger than 3 Years”). Despite anecdotal  reports  of  disease  control  after  cranial  irradia-tion, CSI is considered standard therapy for supratentorial PNETs, including cerebral neuroblastoma and pineoblasto-ma.232,268 The doses and techniques used for supratentorial PNETs are similar to those described for medulloblastoma, with  typically  a 2-cm margin planned around  the  tumor bed to define the clinical target volume.

Tumors in Children Younger than 3 YearsBetween 15% and 20% of pediatric brain tumors occur in infants and children younger than 3 years. The most common tumors in this age group are astrocytomas (pri-marily  optic  chiasmatic  or  hypothalamic  tumors;  cere-bellar astrocytomas are uncommon), embryonal tumors (medulloblastoma, PNET, and pineoblastoma), ependy-moma,  and  malignant  gliomas.272-274 Tumors  occurring almost uniquely in this age group include atypical tera-toid or rhabdoid tumors and choroid plexus neoplasms (papillomas  and  carcinomas).275-279  Desmoplastic  in-fantile  astrocytoma  and  ganglioglioma  are  uncommon, and when they do occur, they are typically large tumors that are biologically benign.280 The operative mortality is relatively high in this age group because of tumor pre-sentations  (often  sizable,  midline  or  multilobed  supra-tentorial lesions) and the relative lack of elasticity of the still-myelinating brain.

The infant brain is particularly vulnerable to the effects of radiation therapy, particularly with regard to neurocog-nitive  development.281  Survival  rates  for  patients  in  this age group with ependymoma or medulloblastoma are sig-nificantly  lower  than  those  for  other  age  groups because the tumor in these very young patients is often advanced at presentation and because tumoricidal radiation doses can-not be used.95,177,181,271,282-284

The  use  of  prolonged  chemotherapy  after  surgery to delay or obviate  the use of  radiation  therapy  for  very young children has been studied for almost 20 years (Fig. 33-13).178,285-291 Trials of  treatment  for medulloblastoma in infants conducted by the POG, CCG, and International  Society of Paediatric Oncology (SIOP) have documented that  chemotherapy  is  effective  in  only  a  minority  of  patients; durable disease control has been achieved in 20% to 30% of patients with chemotherapy alone and in only 35% of those treated with response-defined consolidative radiation.178,288-292 Salvage radiation has achieved a surpris-ing  degree  of  secondary  control  after  progression  during chemotherapy, but the dose required to overcome chemo-therapy  resistance  produces  late  changes  in  intelligence quotient that make this an ethically unacceptable alterna-tive.291,293 A  trial  from Germany  in which postoperative 

 intravenous  and  intraventricular  chemotherapy  without radiation  therapy was used  for  infants with medulloblas-toma showed 5-year progression-free survival rates of 82%, 50%,  and  33%  for  infants  who  had  complete  resection,  residual  tumor,  and  macroscopic  metastases,  respective-ly.294 Because  these  results  seem  to be better  than  those in  any  previous  report,  they  will  need  confirmation.  For infants  with  ependymoma,  earlier  intervention  with  radiation after prolonged chemotherapy may help control disease; however,  this  strategy too seems to work  in only a minority  of  cases.194 Chemotherapy  alone has  been  an unsuccessful postoperative intervention.295 Reports of sur-vival of patients with pineoblastoma and atypical teratoid or rhabdoid tumors treated with this approach have been  anecdotal.178,194,232,296

The current generation of infant brain tumor trials foc-uses on the judicious use of irradiation. Based on preliminary data  for  children  with  recurrent  medulloblastoma,  the frontline approach in the Pediatric Brain Tumor Consortium and COG trials is to introduce early, limited-volume, three-dimensional conformal  radiation  therapy  to  the posterior fossa and primary  tumor  site alone  for patients with M0 medulloblastoma and to the local tumor bed only for those 

Years postdiagnosis

Time from diagnosis in years

A0 2 4 6 8

0

120

0

10.90.80.70.60.50.40.30.20.1

90

60

304 8

10 1

Pro

babi

lity

B

Inte

llige

nce

quot

ient

Progression-free survival

(51 ± 10%)

(21 ± 8%)

Survival

FIGURE 33-13. A,  Survival  and  progression-free  survival  for  29 infants and children younger than 4 years with medulloblasto-ma. During the study period (1984-1995), prolonged chemother-apy was used in the hope of delaying or obviating the substantial neurotoxicity associated with irradiation in young children. The stable  progression-free  survival  rate  after  18  months  (21%)  reflects the use of irradiation as adjuvant therapy (for those with resected or stable disease during 12 to 24 months of chemo-therapy); the 51% overall survival rate at 5 years reflects a high salvage  rate obtained  from  the use of  craniospinal  irradiation for persistent or progressive disease. B, Among the 19 patients who survived  for more  than 24 months,  the high survival  rate came  at  the  cost  of  a  steady  decline  in  full-scale  intelligence quotient  scores,  from  a  pretreatment  level  approximating  90 to a level  just above 60 at 7 years.  (From Walter AW, Mulhern RK, Gajjar A, et al. Survival and neurodevelopmental outcome of young children with medulloblastoma at St. Jude Children’s Research Hospital. J Clin Oncol 1999;17:3720-3728.)

Page 20: Chapter 33 - The Brain and Spinal Cord · changes (particularly in the spinal cord with end-arterial blood supply to portions of the thoracic cord) and direct effects of the radiation

PART 10  Central Nervous System854

with  supratentorial  PNETs.292  For  patients  with  atypical teratoid  or  rhabdoid  tumors,  targeted  radiation  volumes are used after just 2 months of chemotherapy for children 12 months of age and older.296 For those with ependymo-mas,  the  trend  is  toward  immediate  postoperative  radia-tion, at least for patients with tumors that can be grossly resected.159

tumors Common In adultsMalignant Gliomas: Anaplastic Astrocytoma and Glioblastoma MultiformeThe  dominant  primary  intracranial  tumors  that  occur in  adults  in  terms  of  frequency  and  mortality  are  the  malignant  gliomas.  These  tumors  occur  in  the  cerebral hemispheres  as  sizable,  rapidly  growing  lesions  with  a characteristic  ringlike,  enhancing  appearance  on  CT  or MRI, with  central  necrosis,  infiltrating margins,  and  sur-rounding  low-density  changes  (Fig.  33-14).  Malignant gliomas  occur  in  all  age  groups  but  predominate  in  the fifth and sixth decades, and they account for 35% to 45% of all adult brain tumors.

Histologically,  malignant  gliomas  are  heterogeneous neoplasms composed of fibrillary astrocytes; gemistocytes; large, bizarre glial cells; and small anaplastic cells.69,115 In Kernohan and Sayre’s classic categorization297 of astrocytic neoplasms,  which  defined  these  tumors  as  grade  III  and grade IV astrocytomas, malignant gliomas were thought to represent progressively dedifferentiated astrocytic tumors marked by a certain degree of pleomorphism, hyperchro-maticism,  and  mitosis.  In  contemporary  neuropathology, malignant gliomas are classified as anaplastic astrocytoma or  the  more  malignant  glioblastoma  multiforme,  with the latter identified by the presence of tumor necrosis.298  Anaplastic astrocytomas account for 10% to 15% of malig-nant gliomas; more than 85% are glioblastomas.299

Malignant gliomas typically  infiltrate the adjacent nor-mal brain. Detailed comparisons of imaging and histologic findings have  established  the  anatomy of malignant  glio-mas. Histologically, the central low-density region seen on neuroimaging  studies  is  a necrotic  and hypocellular  area. The surrounding ring of enhancing tissue  is composed of densely cellular tumor. The hypodense area beyond the en-hancing tissue seen on CT scans is hypocellular and edema-tous but  infiltrated by small anaplastic T cells.300  In 50% of  cases,  scattered  tumor  cells  immediately  surrounding the  hypodense  volume  are  evident  histologically.301 The often sizable area of increased signal on T2-weighted MRI similarly contains infiltrates of viable T cells.302 Tumor cells characteristically extend along neural tracts and across the corpus  callosum.301  Distant  subarachnoid  or  subependy-mal extension occurs in 5% to 9% of patients with malig-nant gliomas.303,304

Surgery  for  malignant  gliomas  is  usually  limited  to subtotal  resection.  Macroscopically,  complete  removal  is achieved in only 10% to 20% of cases.305-308 The extent of residual tumor visualized on postresection CT scans seems to correlate with outcome, with increased time to progres-sion and survival being associated with smaller residual tu-mor volumes among adults and children.297,309

Radiation  therapy has  been  the most  effective  treat-ment for these aggressive lesions, but it usually can only delay  disease  progression  or  recurrence.  Early  clinical trials  conducted by  the Brain Tumor Study Group con-firmed the clinical efficacy of radiation. Median survival increased  from  14  weeks  after  surgery  to  36  weeks  for  patients given postoperative radiation.306 The survival rate at 1 year was 24% for patients also treated with radiation therapy,  compared  with  only  3%  for  patients  who  had surgery only.306 One fourth to one half of patients who receive radiation therapy show clinical improvement. Up to 60% of patients are able to return to work and achieve full function.310-312

A B

FIGURE 33-14. MRI scans show a glioblastoma multiforme arising in the left thalamic region and extending just beyond midline.  A, Gadolinium-enhanced T1-weighted MR image shows a ring-enhancing periphery with a dark, necrotic center. B, T2-weighted MR image shows surrounding edematous changes.

Page 21: Chapter 33 - The Brain and Spinal Cord · changes (particularly in the spinal cord with end-arterial blood supply to portions of the thoracic cord) and direct effects of the radiation

33  The Brain and Spinal Cord 855

Despite documented improvement in time to progres-sion and survival,  the  response  to  radiation  illustrated by imaging studies is complex and rarely indicative of rapid or significant  disease  reduction.  Essentially  all  glioblastomas and 65% to 80% of anaplastic astrocytomas  recur within 2  to 5 years and result  in  rapid death, causing malignant gliomas to live up to their reputation of being one of the most aggressive and  lethal  tumors.310 Although the anat-omy of malignant gliomas suggests that disease extension or metastasis is the source of recurrence, recurrent disease almost always arises from within the central or enhancing portion of the tumor.313-317 The central tumor is relatively radioresistant, perhaps because of an  inherent  lack of  ra-diosensitivity  or  a  hypoxic,  relatively  radioinsensitive  ne-crotic  core.316,317 This  pattern of  intralesional  recurrence has stimulated several lines of clinical investigation to over-come hypoxic cell resistance; considerable interest has also been expressed in exploiting the time-dose relationship to identify an altered fractionation regimen of value in treating this tumor.299,312 Several trials have tested modifications in radiation delivery, including physical modalities other than photons and local boost techniques incorporating intersti-tial brachytherapy or stereotactic radiosurgery.318-329

Early  trials  of  radiosensitizers  focused  on  the  nitro-imidazoles  misonidazole  and  etanidazole.330  Later  stud-ies have  investigated carbogen and nicotinamide. Despite some improvement realized from use of these agents with suboptimal radiation, clinically meaningful benefit was not achieved.331,332 Long-standing interest in the halogenated pyrimidines bromodeoxyuridine and iododeoxyuridine has resulted in several trials of their use with conventional and altered fractionation, but only a marginal benefit has been suggested by the results.333-336

The use of radiation with high-LET particles has been examined in clinical trials as a possible way of overcoming the  apparent  oxygen-related  radioresistance  of  these  tu-mors. However, the use of fast–neutron beam radiation has produced  no  significant  improvement  over  conventional  photon radiation.318,322,337 The rationale for using proton radiation stems more  from the ability  to  restrict  the vol-ume of  tissue  irradiated  than  from  its being  less affected by oxygenation; trials of doses as high as 90 Gy suggest a potential benefit in terms of central tumor control, but no early demonstration of improvement in outcome has been seen.338

Stereotactic  interstitial  implantation  of  radioactive sources  has  been  done  at  several  European  centers  since the 1950s. Over the past 2 decades, prospective studies of temporary  stereotactic  brain  implants  using  high-activity iodine 125 (125I) have evaluated the toxicity and efficacy of volume-limited, high-dose radiation delivery.319-321 Among selected patients with limited-volume recurrent malignant gliomas, geometrically planned implantations of radiation sources delivering an average of 60 Gy  to  the enhancing lesion over 6 days resulted in survival durations of approxi-mately 1 year  for those with glioblastomas and 1.5 years for those with anaplastic astrocytomas.319-321,326,339 Results of the Brain Tumor Cooperative Group’s prospective ran-domized  trial  suggested  that  interstitial  boost  radiation could be beneficial in appropriately selected cases.340

Patients  with  malignant  gliomas  who  are  potentially suitable for local types of therapy (e.g., brachytherapy, ra-diosurgery) are those with a relatively favorable prognosis, 

constituting 20% to 40% of cases. The criteria for implanta-tion include Karnofsky performance status scores above 70, unifocal supratentorial lesions less than 6 cm in the great-est  diameter,  and  no  involvement  of  the  midline,  corpus callosum, or subependyma.319,321 A retrospective review of unselected patients treated with standard external beam ra-diation therapy to the brain (EBRT) revealed that outcome was  significantly  better  among  implant-eligible  patients with  glioblastoma  (median  survival  of  14  months)  than among those who were ineligible (median survival of less than 6 months),341 indicating that any perceived improve-ment in outcome in patients attributed to the brachyther-apy may be  artificial. However, median  survival duration and 2- and 3-year survival rates for patients with glioblas-toma treated with 125I brachytherapy seem to be superior in  single-institution  experiences  and  in  comparison  with the  previously  described  findings.319,321,341  Comparable data for anaplastic astrocytomas are less convincing.321,341

Symptomatic  local  necrosis  occurs  in  40%  to  50% of  patients  with  interstitial  implants,  and  this  often  requires  surgical  intervention.320,321,326,327,332  Ultimate  survival has been reported to be superior in patients who  require a second operation, which presumably reflects the  combination-treatment effect.320

Stereotactic radiosurgery has been used to achieve a high-dose boost. Eligibility criteria are selective, typically includ-ing single lesions less than 4 to 5 cm in diameter without subependymal extension and more than 5 mm away from the  optic  chiasm  or  brainstem.  In  the  initial  U.S.  series, which included a high proportion of patients who had un-dergone limited surgical resection, the median survival time was  at  least  equal  to  that  among patients with  implants: 26  months  for  those  with  glioblastoma  and  more  than  36 months for those with anaplastic astrocytoma.342,343 In a multi-institutional trial of 189 patients, the median sur-vival time was 86 weeks for those with glioblastoma who met  all  criteria  for  gamma  knife  intervention,  compared with 40 weeks for those with more extensive tumors or a less favorable performance status score.323,328,341 The inci-dence of  symptomatic necrosis may be  less  than  that  for patients with interstitial implants.271

Several  trials  in  the  United  States,  Europe,  and  Japan have assessed modifications in the radiation time-dose relationship.299,312,338,344-347 Despite an early suggestion that  hyperfractionated delivery to higher doses might be ben-eficial,  subsequent  studies conducted by  the RTOG have shown  no  substantial  benefit  from  such  therapy. A  large randomized dose-escalating trial conducted by the RTOG tested hyperfractionated doses of 64.8 to 81.6 Gy, given in 1.2-Gy fractions twice daily with an interfractional interval of 4 to 8 hours. The results  indicated that the  ideal dose response  occurred  at  72  Gy,  although  the  superiority  of this schedule over 60 Gy delivered in conventionally frac-tionated radiation therapy was inapparent.344 Patients who received doses of 75 to 81.6 Gy fared less well.344 Without documentation of any reduction in neurotoxicity from hy-perfractionated  delivery,  few  objective  data  indicate  that the  therapeutic  ratio and effect of hyperfractionation are greater than those for conventional fractionation.344,348,349

Alternative time-dose regimens have included accelerat-ed hyperfractionation (1.5- or 1.6-Gy fractions given twice daily),  accelerated  fractionation  (1.9- or 2.0-Gy  fractions given three times daily), and hypofractionation (fractions 

Page 22: Chapter 33 - The Brain and Spinal Cord · changes (particularly in the spinal cord with end-arterial blood supply to portions of the thoracic cord) and direct effects of the radiation

PART 10  Central Nervous System856

of 2.5 to 6 Gy).332,334-347 Although the hypofractionation regimens may expedite palliation in patients with advanced or  unfavorable  conditions,  these  regimens  have  provided no overall benefit.

Chemotherapy has been investigated extensively for the treatment  of  glioblastomas.  As  sole  adjuvants  to  surgery,  nitrosoureas  have  been  ineffective.306  When  combined with radiation, nitrosoureas or combinations of agents (e.g., carmustine-hydroxyurea  plus  procarbazine-teniposide,  carmustine-hydroxyurea,  vincristine-procarbazine)  have been  associated  with  only  marginally  improved  survival times for patients enrolled in prospective studies.306,311,350 Despite one report of encouraging early results with pen-ciclovir,351  a  randomized  trial  conducted  by  the  Medical  Research  Council  in  the  United  Kingdom  of  more  than  670 patients showed no survival benefit for patients given penciclovir in addition to standard radiation therapy.352 Two randomized  trials  testing  concurrent  temozolomide  plus  radiation therapy with radiation therapy alone demonstrated a  significant  survival  benefit  for  the  combination.353-354 In a  trial by  the European Organisation  for Research and Treatment  of  Cancer,  the  survival  benefit  from  temo-zolomide was more apparent when the MGMT gene was  epigenetically  silenced.355  The  current  RTOG  trial  uses MGMT status in the tumor as one of the criteria for stratifi-cation. Many biological agents are available for the treatment of  malignant  gliomas,  including  compounds  with  specific biological  targets  (e.g.,  epidermal  growth  factor,  platelet- derived growth factor) and antiangiogenesis agents.356 One ongoing trial is using a vaccine against a truncated form of the epidermal growth  factor  receptor  (EGFRvIII)  for patients whose glioblastomas have undergone gross  total  resection and demonstrate overexpression of EGFRvIII. Studies of lo-cal chemotherapy, specifically carmustine-impregnated wa-fers (Gliadel), have yielded inconclusive results in patients with  malignant  gliomas,  producing  an  apparent  response but being of uncertain value as an adjuvant therapy.357

Radiation Therapy TechniqueRadiation therapy remains the most effective single agent in prolonging survival in patients with malignant gliomas. It should consist of standard EBRT with wide local coverage of the neoplasm.310,314 Anatomic studies of tumor extent, imaging analyses of patterns of recurrence, and clinical tri-als have shown that the appropriate initial target volume should extend 2 to 3 cm beyond the low-density periphery shown on CT scans or 2 cm beyond the abnormal signal shown on T2-weighted MRI  studies.301,302,314,315,350 Mar-gins of less than 2 cm are theoretically inadequate because of  the  histologic  nature  of  the  tumor301  and  the  way  in which the initial sites of disease progress.315

The use of limited high-dose treatment volumes deliv-ered by  three-dimensional  conformal or proton  radiation may be associated with a relative increase in the peripheral failure rate.338,358 Central or intralesional disease progres-sion is  less common in patients with interstitial  implants. Studies of patterns of  failure  in  series of patients  treated with brachytherapy have shown that disease recurs primar-ily in the tumor margin, often within 2 cm of the high-dose implant; the incidence of distant intracranial recurrence is also relatively high.316,317

Dose-response  data  were  established  early  in  clinical trials  involving  patients  with  malignant  gliomas.  Walker 

and  colleagues306  showed  that  median  survival  time  im-proved from 28 weeks for patients given 50 Gy in 25 to  28 fractions to 42 weeks for patients given 60 Gy in the first  Brain  Tumor  Study  Group  studies  (Fig.  33-15).306 Three-dimensional conformal and proton-based regimens have  made  it  possible  to  escalate  doses  to  70  to  90  Gy; however, although central tumor control may be improved, no  increase  in survival has been found.338,358 As summa-rized earlier, none of the altered fractionation regimens has been shown to improve outcome over that achieved with conventionally  fractionated  radiation  to 60  to 65 Gy  (in 1.8- to 2-Gy fractions given once daily).345 No data exist to suggest that these recommendations for radiation therapy for adults be adjusted for children; however, the require-ment for high-dose radiation to reasonably large volumes limits the use of this modality in young children with ma-lignant gliomas.

PrognosisReports of survival beyond 2 years for adults with glio-blastoma  remain  anecdotal.359 However,  approximately 15% to 25% of patients with anaplastic astrocytoma sur-vive 5  years, with  gradually  decreasing  survival  beyond that  time  documented  in  most  series.  Levin  and  col-leagues351 reported that adjuvant penciclovir chemother-apy is associated with a 35% survival rate at 3 to 5 years for patients with anaplastic  lesions; however,  these and similar  results  seen  in  other  small  series  were  not  sub-stantiated  in a Medical Research Council  trial.314,352,360 Other factors influencing prognosis include age (survival is progressively better among younger patients, with the best among 18 to 39 year olds, the next best among 40 to 59 year olds, and the worst among those 60 years old or older) and initial performance status.305,325 Among chil-dren with malignant gliomas, the overall progression-free survival  rates  at  3  to  5  years  range  from  15%  to  20%; for  the  small  subset  with  completely  resected  lesions, corresponding  survival  rates  of  up  to  75%  have  been  reported.309,361,362

Rads

Sur

viva

l in

wee

ks

70

30

40

50

60

20

104500 5000 5500 6000

75th percentile0.174

0.110

0.004Median

25th percentile

FIGURE 33-15. Dose-response  analysis  for  survival  of  adults with malignant gliomas. (Data from Walker MD, Green SB, Byar DP, et al. Randomized comparisons of radiotherapy and nitro-soureas for the treatment of malignant glioma after surgery. N Engl J Med 1980;303:1323-1329.)

Page 23: Chapter 33 - The Brain and Spinal Cord · changes (particularly in the spinal cord with end-arterial blood supply to portions of the thoracic cord) and direct effects of the radiation

33  The Brain and Spinal Cord 857

OligodendrogliomaOligodendroglioma  is a  relatively uncommon tumor  that occurs  in  all  age  groups. The  tumor  arises  most  often  in the frontal lobes and occasionally involves the infratento-rial or spinal regions. The most common symptom is sei-zures. The relatively nonaggressive nature of this tumor is indicated by the median survival time, which is more than 5 years from the onset of symptoms and diagnosis.363 The co-deletion of  the  short  arm of  chromosome 1  (1p)  and the  long  arm  of  chromosome  19  (19q)  has  been  associ-ated with less aggressive behavior of the tumor and better response to therapy.364,365

Primary surgical resection is the initial therapy for low-grade oligodendrogliomas.366,367 The role of postoperative radiation has been poorly defined. In a small, retrospective study, Sheline and colleagues368 found an improvement in 5-year  survival  rates  for patients who underwent  irradia-tion compared with those who did not (85% versus 55%), but  the  survival  rate at 10 years was not  statistically  im-proved. Chin and colleagues369 reported a progression-free survival rate of 100% at 5 years for 24 patients complet-ing postoperative  radiation. Lindegaard  and  colleagues370 observed a benefit from radiation only among those who had undergone incomplete surgical resection. In a study of a similar group of patients treated during roughly the same period, Reedy and colleagues371 found no survival advan-tage from radiation therapy.

In the absence of a prospective trial assessing the effi-cacy of radiation therapy, it seems justified and prudent to use postoperative radiation for subtotally resected lesions. Local fields to doses of 50 to 54 Gy approximate the treat-ment recommended for other low-grade tumors.106,372

Although  5-year  survival  rates  in  excess  of  65%  to 90%  have  been  observed  in  major  clinical  series,  the ultimate  survival  rate  beyond  15  or  20  years  was  only 30% in two large reviews from an earlier era that exam-ined the pathologic behavior of tumors from more than  500 patients.363,373 Late tumor progression and death take place more than 5 to 10 years after diagnosis. Histologic grading  is  of  increasing  importance  because  a  role  for penciclovir  chemotherapy  in  the  treatment of  anaplas-tic  oligodendrogliomas  has  been  established.374  Long-term survival  is higher  for patients younger than 40 or  50 years.373

MeningiomaMeningiomas are common CNS tumors, most often occur-ring as intracranial tumors along the convexities or in para-sagittal regions. The usually benign meningioma constitutes 15% of adult CNS tumors, with a female-to-male ratio of 2.5 to 1. The natural history of this tumor was elegantly de-scribed  in Cushing and Eisenhardt’s 1938 monograph,375 in  which  they  identified  the  broad  dural  attachment  (or local infiltration), growth along or into the venous sinuses, and osseous invasion or overlying reactive bone formation that  typify  these  lesions. Angioblastic  meningiomas  have a  less  favorable outcome  than  the other  so-called benign tumors.376 Less than 10% of meningiomas are malignant, and these lesions seem to be associated with an unfavorable outcome.376-378

Surgery is the primary treatment for most peripherally located intracranial meningiomas. Local tumor recurrence 

after complete resection occurs in 10% to 20% of cases, re-lated in part to the extent of dural and sinus excision.376-379

Symptomatic tumor recurrence or progression takes place in approximately 50% of patients with subtotally excised lesions,  most  often  in  patients  with  meningiomas  of  the sphenoid ridge and parasellar areas, which represent almost 30% of all meningiomas (Fig. 33-16).376,379-381 The efficacy of  radiation  therapy  for  incompletely  resected meningio-mas  has  been  well  documented. Wara  and  colleagues382 reported  local  tumor  recurrence  in 74% of patients after incomplete  resection  and  in  29%  of  patients  given  post-operative radiation. Progression-free survival rates beyond  5 years average 70% to 90% for patients undergoing incom-plete resection and radiation; disease control rates in excess of 70% to 80% at 8 to 10 years are associated with survival rates  exceeding  90%.383-385  Similar  outcomes  have  been observed  among patients who  receive  radiosurgery  alone or as  an adjunct  to  incomplete  surgery.386-389 Neurologic improvement has occurred in 44% of patients after radia-tion  for  unresected  primary  lesions.376  Serial  CT  studies have confirmed the regression of neoplasms in response to radiation  therapy (see Fig. 33-16).381  In  sites  such as  the optic nerve sheath, operative intervention may be associ-ated with a  significant  functional deficit. Primary  irradia-tion can improve tumor-related defects in visual acuity and visual fields in these patients.390

Radiation Therapy TechniqueBecause  meningiomas  are  locally  infiltrating  tumors  that produce local tissue changes by means of direct tumor ex-tension or have subclinical, limited multicentricity,391 local irradiation should include a reasonable margin despite the circumscribed  appearance  of  these  tumors  on  CT  scans. Large  tumors  of  the  sphenoid  ridge  may  extend  beyond the cranial vault into the orbit or the facial or cervical re-gions. Optimal radiologic assessment of tumor extent and the use of wide inferior treatment margins are important in these cases.381 Three-dimensional conformal techniques, intensity-modulated radiation therapy, and proton therapy are suitable for the treatment of meningiomas.

Carella and colleagues383 were unable to identify a dose-response  relationship  for  meningiomas  between  50  and 75  Gy.  However,  excellent  local  tumor  control  has  been achieved at doses approaching CNS tolerance, and the rec-ommended treatment is a total dose of 50 to 55 Gy given in 25 to 30 fractions.376,381,384 The use of radiosurgery as the  primary  treatment  for  selected  lesions  has  produced equally positive results; at many centers, radiosurgery is the treatment of first choice for limited-volume lesions that are difficult to approach surgically or are residual or recurrent after initial resection.386,388,389,392,393

PrognosisThe  benign  nature  of  meningiomas  is  confirmed  by  the limited  number  of  recurrences  seen  in  patients  after  to-tal surgical resection. After incomplete resection, however, the median time to clinically apparent tumor progression is 4 years after surgery. The median intervals to tumor pro-gression  in  patients  given  radiation  therapy  exceed  5  to  10 years.381,383,384

Initial  postoperative  irradiation  for  incompletely  resected or biopsied meningiomas has achieved excellent local tumor control, as described in the previous paragraphs. 

Page 24: Chapter 33 - The Brain and Spinal Cord · changes (particularly in the spinal cord with end-arterial blood supply to portions of the thoracic cord) and direct effects of the radiation

PART 10  Central Nervous System858

FIGURE 33-16. CT scans of an orbital sphenoidal meningioma demonstrate residual disease after surgery (top row) and 2 years after  irradiation  (bottom row).  (From Petty AM, Kun LE, Meyer GA. Radiation therapy for incompletely resected meningiomas. J Neurosurg 1985;62:502-507.)

Indications for initial or delayed radiation therapy remain controversial, although increasing information suggests that incompletely resected lesions along the cavernous sinus and those with malignant histologic features may warrant im-mediate  postoperative  irradiation.377,385,389,392  No  appar-ent decrease in tumor control has been observed in most series of patients who undergo  repeat  surgery  and  radia-tion therapy for disease that recurs after initial incomplete resection.376,380,384 A more  rapid  rate of  tumor  regrowth after subtotal excision has been indicated in children, rais-ing some concern about the advisability of delaying radio-therapeutic intervention in this age group.394,395

Identifying  the histologic  subtype of meningioma69,378 is important because the local recurrence rate is higher for malignant (anaplastic) meningiomas and because postoper-ative radiation therapy can effectively control these tumors. For example, Dziuk and colleagues377 and others378,380 have reported  15%  to  80%  differences  in  5-year  progression-free survival rates related to radiation. A long-term disease control rate of only 25% at 5 years has been observed for patients who receive  single-fraction radiosurgery,  in most cases for recurrent malignant meningiomas.393

Primary Malignant Lymphoma of the Central Nervous SystemPrimary malignant lymphoma of the CNS was previously a  rare  neoplasm,  occurring  spontaneously  in  conjunction with  immunosuppression.  However,  the  frequency  with which it occurs has increased greatly in conjunction with 

the  acquired  immunodeficiency  syndrome  (AIDS)  epi-demic.396-398 The tumor occurs primarily in the supraten-torial region, most often as an isodense, diffusely enhancing lesion involving the basal ganglia or thalamus, the periven-tricular white matter, or the corpus callosum.399 Up to 15% to 40% of tumors are multifocal intracranial lesions.400,401 The CSF contains tumor cells in 10% to 20% of cases; in-volvement of the ocular vitreous at diagnosis or metachro-nously occurs in 10% to 25% of cases.400,402

The  lesion  is usually classified as an  immunoblastic or lymphoblastic  diffuse,  large  cell,  malignant  lymphoma, most  often  of  a  B-cell  immunophenotype.  Systematic evaluation  is necessary  to distinguish primary  lymphoma of the brain from secondary CNS manifestations of malig-nant  lymphoma,  although  intraparenchymal  deposits  oc-cur more often with primary tumors than with secondary tumors.

Surgery is limited, often to biopsy alone, but radiation therapy produces a high rate of objective response. Neu-rologic improvement can be achieved in up to 70% of pa-tients, but median survival has been only 7 to 8 months.403 Long-term  survival  after  radiation  alone  has  been  lim-ited.398,400,401,404,405  Chemotherapy  has  shown  increas-ing  efficacy  in  patients  with  CNS  malignant  lymphoma, with  rates  of  objective  response  often  exceeding  50%  to 70%  in  those  treated  with  regimens  including  high-dose methotrexate  or,  less  often,  with  conventional  systemic chemotherapy regimens (e.g., cyclophosphamide, doxoru-bicin, vincristine, and prednisone).406-410 The combination 

Page 25: Chapter 33 - The Brain and Spinal Cord · changes (particularly in the spinal cord with end-arterial blood supply to portions of the thoracic cord) and direct effects of the radiation

33  The Brain and Spinal Cord 859

of preirradiation chemotherapy and cranial irradiation re-sulted in median survival times as long as 60 months and 4-year  progression-free  and  overall  survival  rates  of  ap-proximately 50% in a moderate-size series from Memorial Sloan-Kettering  Cancer  Center.408,411  One  drawback  to the use of combined methotrexate-radiation regimens has been  their  considerable  neurotoxicity,  which  sometimes produces  frank  dementia,  particularly  in  patients  older than 60 years.407,408,412

Radiation Therapy TechniqueGiven the size and often the multiplicity of most prima-ry  CNS  lymphomas,  the  minimal  target  volume  is  often full  cranial  irradiation.401-404  Isolated  subarachnoid  spinal recurrence after cranial radiation occurs in 4% to 25% of patients.106,404 The inability to control the primary tumor within  the  cranium  in  a high proportion of patients  and the need to coordinate radiation with chemotherapy have led clinicians away from considering CSI. This raises a valid argument for avoiding spinal irradiation in deference to the potential benefits conferred by chemotherapy.

A  radiation  dose-response  relationship  has  been  suggested  in  the  treatment  of  primary  malignant  lym-phoma  of  the  CNS.  Murray  and  colleagues401  reviewed 198  cases  reported  in  the  literature  and  found  a  statisti-cally significant improvement in the 5-year survival rate for  patients given doses of more than 50 Gy (42% versus 13%) (Fig. 33-17).401 However,  an analysis  at Memorial Sloan-Kettering  Cancer  Center  did  not  find  additional  benefit from doses higher than 45 Gy. Recurrence of tumor at the primary site even in patients treated with doses of 50 to 55 Gy led to a major RTOG trial, the results of which failed to demonstrate a significant added benefit from high-dose cranial  irradiation.403  In small series of patients, however, the addition of radiation therapy seems to have prolonged disease control and improved survival relative to the out-come for patients given chemotherapy only.398,408,411

PrognosisOverall  survival  in patients with primary malignant  lym-phoma seems to have increased among those treated with combined, sequential chemoradiotherapy; median survival times  have  increased  several-fold  to  approximately  4  to  5 years. However, most patients do die of the disease, some-times as long as 5 years after diagnosis.408,411

Carcinoma Metastatic to the BrainIntracranial metastasis, primarily in the cerebrum, occurs in 10% to 15% of patients with cancer.413 Of the types of can-cer that metastasize preferentially to the brain, cancer of the lung and breast predominate, and gastrointestinal and renal carcinomas are less common. Brain metastasis often occurs at multiple sites. In a classic autopsy series, solitary metasta-ses were found in approximately 40% of cases, two to three lesions in 25% of cases, and four or more foci in 35%.414

Treatment  of  brain  metastases  is  palliative;  long-term survival can be achieved for up to 20% of patients with fa-vorable presenting characteristics, such as age younger than 60  to 65 years,  favorable performance  status  (typically,  a Karnofsky performance status score of at least 70), control of  the primary  tumor,  and absent or  controlled extracra-nial metastasis.415-417 Corticosteroids alone can transiently reduce symptoms in 60% of patients.347 However, cranial 

irradiation achieves more prolonged palliation, with objec-tive improvement in neurologic function in 50% to 70% of patients treated in this manner.319

Earlier  time-dose  studies  showed  the  relative  equiva-lence  of  the  following  treatment  regimens:  30  to  36  Gy given in 10 to 12 fractions; 20 Gy given in 5 fractions; and 40 Gy given in 15 fractions.417a The current standard ther-apy  is 30 Gy given  in 10  fractions; however,  randomized trials to assess the benefit of surgery or radiosurgery in se-lected settings favor 37.5 Gy given in 15 fractions.418,419

For  patients  with  a  solitary  metastasis,  the  addition  of surgical resection or radiosurgery has significantly improved survival time (from a median of 15 weeks to a median of  40 weeks in a randomized trial reported by Patchell and col-leagues420) and the rate of local control at metastatic sites (from less than 50% for patients treated with cranial irradi-ation alone to 80% for patients undergoing resection). This increase in survival also has been associated with improved functional outcome.420 In several series, the outcome from radiosurgery has been similar to that from operative removal; in all of these series, the patients with favorable factors (e.g., age, performance status, absence of disease at other  sites) are the ones who benefit the most from the addition of local therapy.388,418,419,421,422 Surgery  and  radiosurgery  seem  to achieve equivalent  results  in most  reports.419,421 Detailed analyses have shown that the addition of full cranial irradia-tion improves survival and local tumor control and may be associated with long-term survival of a small but meaning-ful number of patients undergoing  aggressive  local  thera-py.423 One randomized trial comparing radiosurgery alone 

Survival (months)

Frac

tion

surv

ival

1.00

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

<50 Gy

P<.05

³50 Gy

FIGURE 33-17. Dose-response analysis for survival of patients with  primary  cerebral  malignant  lymphoma  after  irradiation. (From Murray K, Kun L, Cox J. Primary malignant lymphoma of the central nervous system. J Neurosurg 1986;65:600-607.)

Page 26: Chapter 33 - The Brain and Spinal Cord · changes (particularly in the spinal cord with end-arterial blood supply to portions of the thoracic cord) and direct effects of the radiation

PART 10  Central Nervous System860

with the combination of radiosurgery and whole-brain irra-diation showed significantly fewer intracranial recurrences with the combination therapy, although survival times were similar in both groups.424 Results for patients with malig-nant  melanoma  that  has  metastasized  to  the  brain  have generally paralleled those seen for patients with other car-cinomas; however, local therapy may be particularly advan-tageous for patients with few metastatic sites and favorable performance status.421,425

The treatment selected for patients with brain metastasis depends on the absence or presence of the clinical features consistently  associated  with  improved  outcome  (i.e.,  age younger than 60 to 65 years, Karnofsky performance status score of 70 or higher, and the lack of apparent or symptom-atic  disease  at  the primary  site  or  other  extracranial  loca-tions). However, there does seem to be a definite advantage to surgery or radiosurgery for patients with only one meta-static focus; a similar advantage seems to exist for those with only two or three metastatic foci.388,418,419,421,422,426 In all of these patients and in those with more advanced cranial or ex-traneural disease, the addition of full cranial irradiation is an important and worthwhile palliative intervention.415,418,423

spInal Cord tumors

Primary  tumors  of  the  spinal  cord  represent  10%  to 15%  of CNS neoplasms. Extramedullary  tumors,  including schwannomas  and  meningiomas,  account  for  almost  one half of the lesions in the spinal canal. Primary intramedul-lary neoplasms are most often gliomas or vascular tumors.

Intramedullary  gliomas  include  ependymomas  (60%) and astrocytomas (30%). Ependymomas occur more often in the lumbar region, affecting the conus and cauda equina. Spinal  ependymomas  usually  are  low-grade  neoplasms; those  occurring  in  the  cauda  equina  usually  are  well- differentiated  myxopapillary  tumors.427  The  ependymo-mas tend to develop as discrete lesions, facilitating subtotal or gross total resection.

Gross total resection led to systemic disease control in recent  series with  a 5-year  follow-up. Aggressive  surgery, however, is associated with postoperative neurologic dete-rioration in 15% of patients.428 Response to radiation is well documented, with 75% of patients showing improvement in neurologic status and progression-free survival  rates of 70% to 100% at 10 years.429-431 A local tumor control rate of 80% with no identifiable long-term neurologic toxicity despite doses  in  excess of 45 Gy  indicates  that  radiation has a role in the treatment of patients whose spinal tumors are incompletely resected.431 Patients with tumors of the cauda equina region and conus have particularly high sur-vival rates after radiation or surgical resection.432,433

Spinal  astrocytomas  are  evenly  distributed  along  the length  of  the  spinal  cord.  These  lesions  often  contain cystic  components  and  most  often  are  low-grade  fibril-lary  tumors. Astrocytomas  are  more  infiltrating  than  ep-endymomas,  limiting  surgery  to  cyst  decompression  and partial  resection.432  Epstein  and  colleagues,434-437  how-ever,  described  operative  techniques  that  can  be  used  to completely  resect  many  low-grade  astrocytomas  in  chil-dren  and  adults. Aggressive  operative  intervention  is  not  advantageous for high-grade spinal astrocytomas.429,438,439  Long-term  control  in  patients  with  spinal  astrocytomas treated  with  radiation  is  less  predictable  than  that  in 

 patients  with  ependymomas  despite  frequent  neurologic improvement.429,431 The disease-free survival  rate at 5 to  10 years ranges from 25% to 60% among patients with spi-nal  astrocytomas.429,438,439  However,  the  histologic  grade affects outcome, in that patients with low-grade astrocyto-mas enjoy a short-term (5-year) survival rate of as high as 89%, compared with 0% among patients with higher-grade tumors (e.g., glioblastoma).438

Spinal cord tolerance is an important consideration when reviewing  results  of  patients  with  intramedullary  tumors treated with  radiation.440 Doses of approximately 50 Gy are  recommended  for most  spinal cord  tumors; however, higher doses and the suggestion of a dose-response effect at or above 50 Gy have been reported for localized spinal cord lesions.441,442

Extradural metastasis is the most common oncologic di-agnosis for patients with spinal cord disease. An estimated 5% of patients who die of cancer have clinical signs of epi-dural metastases.443 Extradural involvement usually results from  the  contiguous  extension  of  a  vertebral  metastasis, most often in patients with primary cancer of the breast, lung,  or  prostate.  Less  common  are  vertebral  metastases from  malignant  lymphomas  and  myeloma  or  carcinomas of the kidney and gastrointestinal tract.

Early evaluation with spinal MRI has been advocated for patients with pain and radiographic evidence of vertebral metastasis  without  objective  neurologic  signs.443,444  The treatment  of  epidural  metastases  is  controversial,  largely with respect to the use of surgery before radiation. Con-ventional  procedures  have  included  decompressive  lami-nectomy, at least for patients with rapidly evolving signs or complete block shown by myelography; patients for whom the diagnosis is uncertain or the diagnosis of malignancy is not established require surgical intervention.339

Retrospective and prospective studies comparing lami-nectomy and postoperative radiation with radiation alone confirm  an  apparent  advantage  to  surgical  intervention only for patients with nonambulatory symptoms; however, there  has  been  little  difference  in  outcome  for  most  pa-tients.443,445-447 Experience with vertebral body  resection in  selected  cases  indicates  improved neurologic  outcome after a more aggressive operative approach.448-450 Primary irradiation is often the treatment of choice for certain his-tologic types of tumors known to respond relatively rapidly and for patients with residual functional deficits.

Irradiation  for  spinal  cord  compression  is  considered a  radiotherapeutic emergency. Prompt  initiation of dexa-methasone and high-dose (2- to 4-Gy) fractions are indi-cated. After two or three treatments, the dose per fraction and total dose depend on the type of malignancy and clini-cal status of the patient.

Carcinomatous  meningitis  or  diffuse  leptomeningeal infiltration is a relatively uncommon late manifestation of systemic cancer. Primary tumors are usually carcinomas of the breast  or  lung;  small  cell  lung  cancer  in particular  is often  associated  with  intracranial  metastasis.  Symptoms and signs referable to the spine predominate in 25% of pa-tients; signs related to spinal root infiltration are often ap-parent.451 Treatment consists of cranial irradiation or CSI (depending on the histologic findings and coordinated use of chemotherapy), with or without intrathecal or systemic chemotherapy. Responses  to  treatment  are  common, but long-term survival results are largely anecdotal.

Page 27: Chapter 33 - The Brain and Spinal Cord · changes (particularly in the spinal cord with end-arterial blood supply to portions of the thoracic cord) and direct effects of the radiation

33  The Brain and Spinal Cord 861

REFERENCES

     1.   Schultheiss TE , Kun L E , Ang K K, et al. Radiation response of  the  central  nervous  system.  Int  J  Radiat  Oncol  Biol  Phys 1995;31:1093-1112.

     2.   Fajardo LF, Berthrong M, Anderson RE. Central nervous system and spinal cord. In Radiation Pathology. New York: Oxford Uni-versity Press, 2001, pp 351-361.

     3.   Burger  PC,  Mahaley  MS  Jr,  Dudka  L,  et  al. The  morphologic effects  of  radiation  administered  therapeutically  for  intracra-nial gliomas: a postmortem study of 25 cases. Cancer 1979;44: 1256-1272.

     4.   Constine LS, Konski A, Ekholm S, et al. Adverse effects of brain irradiation  correlated  with  MR  and  CT  imaging.  Int  J  Radiat  Oncol Biol Phys 1988;15:319-330.

     5.   Valk PE, Dillon WP. Radiation injury of the brain. AJNR Am J Neuroradiol 1991;12:45-62.

     6.   Gutin PH. Treatment of radiation necrosis of the brain. In Gutin PH, Leibel SA, Sheline GE (eds): Radiation Injury to the Nerv-ous System. New York: Raven Press, 1991, pp 271-282.

     7.   DeAngelis  LM,  Shapiro  WR.  Drug/radiation  interactions  and central nervous system injury. In Gutin PH, Leibel SA, Sheline GE (eds): Radiation Injury to the Nervous System. New York: Raven Press, 1991, pp 361-382.

     8.   Van  der  Kogel AJ.  Central  nervous  system  radiation  injury  in small animal models. In Gutin PH, Leibel SA, Sheline GE (eds): Radiation Injury to the Nervous System. New York: Raven Press, 1991, pp 91-112.

     9.   Fike JR, Gobbe GT. Central nervous system radiation injury in large animal models. In Gutin PH, Leibel SA, Sheline GE (eds): Radiation Injury to the Nervous System. New York: Raven Press, 1991, pp 113-136.

   10.   Ostertag CB. Experimental central nervous system injury from implanted isotopes. In Gutin PH, Leibel SA, Sheline GE (eds): Radiation Injury to the Nervous System. New York: Raven Press, 1991, pp 183-190.

   11.   Caveness WF.  Experimental  observations:  delayed  necrosis  in normal monkey brain. In Gilbert HA, Kagen AR (eds): Radia-tion Damage  to  the Nervous System. New York: Raven Press, 1980, pp 1-38.

   12.   Price RA, Jamieson PA. The central nervous system in childhood leukemia. Subacute  leukoencephalopathy. Cancer 1975;35 (Pt 2):306-318.

   13.   Fouladi M, Langston J, Mulhern R, et al. Silent lacunar lesions de-tected by magnetic resonance imaging of children with brain tu-mors: a late sequela of therapy. J Clin Oncol 2000;18:824-831.

   14.   Salazar OM, Rubin P, Feldstein ML, et al. High dose radiation therapy in the treatment of malignant gliomas: final report. Int J Radiat Oncol Biol Phys 1979;5:1733-1740.

   15.   Kramer S, Lee KF. Complications of radiation therapy: the cen-tral nervous system. Semin Roentgenol 1974;9:72-83.

   16.   Sheline  GE, Wara WM,  Smith V. Therapeutic  irradiation  and brain injury. Int J Radiat Oncol Biol Phys 1980;6:1215-1228.

   17.   Sheline GE. Irradiation injury of the human brain: a review of clinical experience.  In Gilbert HA, Kagen AR (eds): Radiation Damage to the Nervous System. New York: Raven Press, 1980, pp 39-58.

   18.   Young DF, Posner JB, Chu F, et al. Rapid-course radiation ther-apy  of  cerebral  metastases:  results  and  complications.  Cancer 1974;34:1069-1076.

   19.   Jones  A.  Transient  radiation  myelopathy  (with  reference  to Lhermitte’s sign of electrical paresthesia). Br J Radiol 1964;37: 727-744.

   20.   Freeman JE, Johnston PGB, Voke JM. Somnolence after prophy-lactic  cranial  irradiation  in  children  with  acute  lymphoblastic leukaemia. Br Med J 1973;4:523-525.

   21.   Boldrey E, Sheline G. Delayed transitory clinical manifestations after  radiation  treatment  of  intracranial  tumors.  Acta  Radiol Ther Phys Biol 1966;5:5-10.

   22.   Steen RG, Koury M, Granja CI, et al. Effect of  ionizing radia-tion on the human brain: white matter and gray matter T1  in pediatric brain tumor patients treated with conformal radiation therapy. Int J Radiat Oncol Biol Phys 2001;49:79-91.

   23.   Hoffman WF, Levin VA, Wilson CB. Evaluation of malignant glioma patients during the postirradiation period. J Neurosurg 1979;30:624-628.

   24.   Longee DC, Fiedman HS, Djang NW, et al. Transient late mag-netic resonance imaging changes suggesting progression of brain stem  glioma:  implications  for  entry  criteria  for  phase  II  trials. Neurosurgery 1988;23:248-253.

   25.   Duffner PK, Cohen ME, Myers MH, et al. Survival of children with  brain  tumors:  SEER  program,  1973-1980.  Neurology 1986;36:597-601.

   26.   Childhood Brain Tumor Consortium. A study of childhood brain tumors  based  on  surgical  biopsies  from  10  North  American  institutions: sample description. J Neurooncol 1988;6:9-23.

   27.   Groothuis  DR,  Wright  DC,  Ostertag  CB.  The  effect  of  125I  interstitial  radiotherapy  on  blood-brain  barrier  function  in  normal canine brain. J Neurosurg 1987;67:895-902.

   28.   Schultheiss  TE,  Stephens  LC.  The  pathogenesis  of  radiation myelopathy: widening the circle.  Int J Radiat Oncol Biol Phys 1992;23:1089-1091.

   29.   Schultheiss TE, Stephens LC. Invited review: permanent radia-tion myelopathy. Br J Radiol 1992;65:737-753.

   30.   Marks JE, Baglan RJ, Prassad SC, et al. Cerebral radionecrosis: incidence  and  risk  in  relation  to  dose,  time,  fractionation  and volume. Int J Radiat Oncol Biol Phys 1981;7:242-252.

   31.   Mikhael  MA.  Dosimetric  considerations  in  the  diagnosis  of  radiation necrosis of the brain. In Gilbert HA, Kagen AR (eds): Radiation  Damage  to  the  Nervous  System.  New York:  Raven Press, 1980, pp 59-92.

   32.   Kramer  S,  Southard  ME,  Mansfield  CM.  Radiation  effect  and tolerance of the central nervous system. Front Radiat Ther On-col 1972;6:332-345.

   33.   Aristizabal S, Caldwell WL, Avila  J. The  relationship of  time-dose fractionation factors to complications in the treatment of pituitary  tumors  by  irradiation.  Int  J  Radiat  Oncol  Biol  Phys 1977;2:667-673.

   34.   Leibel SA, Sheline GE. Tolerance of the brain and spinal cord to conventional  irradiation.  In Gutin PH, Leibel SA, Sheline GE (eds): Radiation Injury to the Nervous System. New York: Raven Press, 1991, pp 239-256.

   35.   Clemente CD, Yamazaki JN, Bennett LR, et al. Brain radiation in newborn rats and differential effects of increased age. Neurology 1960;10:669-675.

   36.   Bloom HJG, Wallace ENK, Henk JM. The treatment and prog-nosis  of  medulloblastoma  in  children. AJR Am  J  Roentgenol 1969;105:43-62.

   37.   Boden  G.  Radiation  myelitis  of  the  brain  stem.  J  Fac  Radiol (Great Britain) 1950;2:79-94.

   38.   Pallis  CA,  Louis  S,  Morgan  RL.  Radiation  myelopathy.  Brain 1961;84:460-479.

   39.   Schultheiss TE,  Higgins  EM,  el-Mahdi AM. The  latent  period in  clinical  radiation myelopathy.  Int  J Radiat Oncol Biol Phys 1984;10:1109-1115.

   40.   Myers R, Rogers MA, Hornsey S. A  reappraisal  of  the  role of glial and vascular elements  in  the development of white mat-ter  necrosis  in  irradiated  rat  spinal  cord.  Br  J  Cancer  1986;7: 221-223.

   41.   Phillips TL, Buschke F. Radiation tolerance of the thoracic spinal cord. Am J Roentgenol Rad Ther Nucl Med 1969;105:659-664.

   42.   Abbatucci JS, Delozier T, Quint R, et al. Radiation myelopathy of the cervical spinal cord: time, dose and volume factors. Int J Radiat Oncol Biol Phys 1978;4:239-248.

   43.   Hatievoll R, Host H, Kaalhus O. Myelopathy  following radio-therapy of bronchial carcinoma with large single fractions: a ret-rospective study. Int J Radiat Oncol Biol Phys 1983;9:41-44.

   44.   Wara WM, Phillips TL, Sheline GE, et al. Radiation tolerance of the spinal cord. Cancer 1975;35:1558-1562.

   45.   Cohen L, Creditor M. An isoeffect table for radiation tolerance of the human spinal cord. Int J Radiat Oncol Biol Phys 1981;7: 961-966.

   46.   Van  der  Kogel AJ.  Radiation  tolerance  of  the  rat  spinal  cord: time-dose relationships. Radiology 1977;122:505-509.

Page 28: Chapter 33 - The Brain and Spinal Cord · changes (particularly in the spinal cord with end-arterial blood supply to portions of the thoracic cord) and direct effects of the radiation

PART 10  Central Nervous System862

   47.   Ang KK, van der Kogel AJ, van der Schueren E. Lack of evidence for increased tolerance of rat spinal cord with decreasing fraction doses below 2 Gy. Int J Radiat Oncol Biol Phys 1985;11:105-110.

   48.   Dische S, Saunders MI. Continuous, hyperfractionated, acceler-ated radiotherapy (CHART): an interim report upon late mor-bidity. Radiother Oncol 1989;16:67-74.

   49.   Dische  S. Accelerated  treatment  and  radiation  myelitis.  Radi-other Oncol 1991;20:1-2.

   50.   Norrell H, Wilson CB, Slagel DE, et al. Leukoencephalopathy following the administration of methotrexate into the cerebro-spinal fluid  in  the  treatment of primary brain  tumors. Cancer 1974;33:923-932.

   51.   Lee JS, Umsawasdi T, Lee Y-Y, et al. Neurotoxicity in long-term survivors of small cell lung cancer. Int J Radiat Oncol Biol Phys 1986;12:313-321.

   52.   Bleyer  WA.  Neurologic  sequelae  of  methotrexate  and  ioniz-ing  radiation:  a  new  classification.  Cancer  Treatment  Reports 1981;65:89-98.

   53.   Mulhern RK, Ochs  J, Kun LE. Changes  in  intellect associated with cranial radiation therapy. In Gutin PH, Leibel SA, Sheline GE (eds): Radiation Injury to the Nervous System. New York: Raven Press, 1991, pp 325-340.

   54.   Mulhern RK, Kovnar E, Langston J, et al. Long-term survivors of leukemia  treated  in  infancy:  factors associated with neuropsy-chologic status. J Clin Oncol 1992;10:1095-1102.

   55.   Jannoun L, Bloom HJG. Long-term psychological effects in chil-dren treated for intracranial tumors. Int J Radiat Oncol Biol Phys 1990;18:747-753.

   56.   Hochberg  FH,  Slotnick  B.  Neuropsychologic  impairment  in  astrocytoma survivors. Neurology 1980;30:172-177.

   57.   Maire J, Coudin B, Guerin J, et al. Neuropsychologic impairment in  adults  with  brain  tumors.  Am  J  Clin  Oncol  1987;10: 156-162.

   58.   Kun LE, Mulhern RK, Crisco JJ. Quality of life in children treated  for brain tumors: intellectual, emotional, and academic function. J Neurosurg 1983;58:1-6.

   59.   Radcliffe J, Packer RJ, Atkins TE, et al. Three- and four-year cog-nitive outcome in children with noncortical brain tumors treated with whole-brain radiotherapy. Ann Neurol 1992;32:551-554.

   60.   Mulhern  RK,  Kepner  JL,  Thomas  PRM,  et  al.  Neuropsycho-logical  functioning of  survivors of childhood medulloblastoma randomized to receive conventional (3,600 cGy/20) or reduced (2,340/13) dose  craniospinal  irradiation:  a Pediatric Oncology Group study. J Clin Oncol 1998;16:1723-1728.

   61.   Mulhern RK, Reddick WE, Palmer SL, et al. Neurocognitive defi-cits  in  medulloblastoma  survivors  and  white  matter  loss. Ann Neurol 1999;46:834-841.

   62.   Craig JB, Jackson DV, Moody D, et al. Prospective evaluation of changes in computed cranial tomography in patients with small cell lung carcinoma treated with chemotherapy and prophylac-tic cranial irradiation. J Clin Oncol 1984;2:1151-1156.

   63.   Urie MM, Fullerton B, Tatsuzaki H, et al. A dose response analysis of injury to cranial nerves and/or nuclei following proton beam radiation therapy. Int J Radiat Oncol Biol Phys 1992;23:27-29.

   64.   Parsons JT, Bova FJ, Fitzgerald CR, et al. Radiation optic neu-ropathy  after  megavoltage  external-beam  irradiation:  analysis of  time-dose  factors.  Int  J  Radiat  Oncol  Biol  Phys  1994;30: 755-763.

   65.   Harris  JR, Levene MB. Visual complications  following  irradia-tion for pituitary adenomas and craniopharyngiomas. Radiology 1976;120:167-171.

   66.   Svensson H, Westling P, Larsson LG. Radiation-induced lesions of  the  bronchial  plexus  correlated  to  the  dose-time-fraction schedule. Acta Radiol 1975;14:228-238.

   67.   Jemal A, Siegel R, Ward E,  et  al. Cancer  statistics,   2007. CA Cancer J Clin 2007;57:43-66.

   68.   Linabery AM, Ross JA. Trends in cancer incidence among chil-dren in the U.S. (1992-2004). Cancer 2008;112:416-432.

   69.   Kleihues P, Cavenee WK (eds). Tumours of the Nervous System. Lyon, France: IARC Press, 2000.

   70.   Rorke L. The cerebellar medulloblastoma and its relationship to primitive neuroectodermal tumors. J Neuropathol Exp Neurol 1983;42:1-15.

   71.   Hart MN, Earle KM. Primitive neuroectodermal tumors of the brain in children. Cancer 1973;32:890-898.

   72.   Grotzer MA, Janss AJ, Fung JA, et al. TrkC expression predicts good  clinical  outcome  in  primitive  neuroectodermal  brain  tumors. J Clin Oncol 2000;18:1027-1035.

   73.   McLendon RE, Friedman HS, Fuchs HE, et al. Diagnostic mark-ers in paediatric medulloblastoma: a Pediatric Oncology Group study. Histopathology 1999;34:154-162.

   74.   Mendrzyk F, Radlwimmer B, Joos S, et al. Genomic and protein expression  profiling  identifies  CDK6  as  novel  independent prognostic marker in medulloblastoma. J Clin Oncol 2005;34: 8853-8862.

   75.   Aldosari  N,  Bigner  SH,  Burger  PC,  et  al.  MYCC  and  MYCN oncogene amplification  in medulloblastoma. A fluorescence  in situ hybridization study on paraffin sections from the Children’s Oncology Group. Arch Pathol Lab Med 2002;126:540-544.

   76.   Bobola MS, Finn LS, Ellenbogen RG, et al. Apurinic/apyrimidinic  endonuclease  activity  is  associated  with  response  to  radiation and chemotherapy in medulloblastoma and primitive neuroec-todermal tumors. Clin Cancer Res 2005;11:7405-7414.

   77.   Clifford SC, Lusher ME, Lindsey JC, et al. Wnt/Wingless path-way  activation  and  chromosome  6  loss  characterize  a  distinct molecular  sub-group  of  medulloblastomas  associated  with  a  favorable prognosis. Cell Cycle 2006;5:2666-2670.

   78.   Lamont JM, McManamy CS, Pearson AD, et al. Combined his-topathological and molecular cytogenetic stratification of medul-loblastoma patients. Clin Cancer Res 2004;10:5482-5493.

   79.   Gajjar A, Hernan R, Kocak M, et al. Clinical, histopathologic and molecular markers of prognosis: toward a new disease risk strati-fication  system  for  medulloblastoma.  J  Clin  Oncol  2004;22: 971-974.

   80.   Gajjar A, Fouladi M, Walter AW, et al. Comparison of lumbar and shunt cerebrospinal fluid specimens for cytologic detection of  leptomeningeal  disease  in  pediatric  patients  with  brain  tumors. J Clin Oncol 1999;17:1825-1828.

   81.   Kleinman  GM,  Hockberg  FH,  Richardson  EP  Jr.  Systemic  metastases  from  medulloblastoma:  report  of  two  cases  and  review of the literature. Cancer 1981;48:2296-2309.

   82.   Albright AL, Wisoff JH, Zeltzer PM, et al. Effects of medullob-lastoma  resections  on outcome  in  children:  a  report  from  the Children’s Cancer Group. Neurosurgery 1996;38:265-271.

   83.   Cochrane DD, Gustavsson B, Poskitt KP, et al. The surgical and natural  morbidity  of  aggressive  resection  for  posterior  fossa  tumors in childhood. Pediatr Neurosurg 1994;20:19-29.

   84.   Aguiar PH, Plese JP, Ciquini O, et al. Transient mutism follow-ing a posterior fossa approach to cerebellar tumors in children: a  critical  review  of  the  literature.  Childs  Nerv  Syst  1995;11: 306-310.

   85.   Chang CH, Housepian EM, Herbert C Jr. An operative staging system and a megavoltage radiotherapeutic technic for cerebel-lar medulloblastoma. Radiology 1969;93:1351-1359.

   86.   Kun LE, Constine LS. Medulloblastoma: caution regarding new treatment  approaches.  Int  J  Radiat  Oncol  Biol  Phys  1991;20: 897-899.

   87.   Packer RJ, Sutton LN, Elterman R, et al. Outcome for children with  medulloblastoma  treated  with  radiation  and  cisplatin, CCNU,  and  vincristine  chemotherapy.  J  Neurosurg  1994;81: 690-698.

   88.   Heideman RL, Kovnar EH, Kellie SJ, et al. Preirradiation chemo-therapy  with  carboplatin  and  etoposide  in  newly  diagnosed embryonal  pediatric  CNS  tumors.  J  Clin  Oncol  1995;13: 2247-2254.

   89.   Kovnar EH, Kellie SJ, Horowitz ME, et al. Pre-irradiation cispla-tin and etoposide in the treatment of high-risk medulloblastoma and other malignant embryonal tumors of the central nervous system: a phase II study. J Clin Oncol 1990;8:330-336.

   90.   Bailey CC, Gnekow A, Wellek S, et al. Prospective randomized trial  of  chemotherapy  given  before  radiotherapy  in  childhood medulloblastoma.  International  Society  of  Paediatric  Oncol-ogy (SIOP) and the (German) Society of Paediatric Oncology (GPO): SIOP II. Med Pediatr Oncol 1995;25:166-178.

Page 29: Chapter 33 - The Brain and Spinal Cord · changes (particularly in the spinal cord with end-arterial blood supply to portions of the thoracic cord) and direct effects of the radiation

33  The Brain and Spinal Cord 863

   91.   Hartsell WF, Gajjar A, Heideman RL, et al. Patterns of failure in children with medulloblastoma: effects of pre-irradiation chem-otherapy. Int J Radiat Oncol Biol Phys 1997;39:15-24.

   92.   Thomas  PR,  Deutsch  M,  Kepner  JL,  et  al.  Low-stage  medul-loblastoma:  final  analysis  of  trial  comparing  standard-dose with reduced-dose neuraxis  irradiation. J Clin Oncol 2000;18: 3004-3011.

   93.   Berry  MP,  Jenkin  RDT,  Keen  CW,  et  al.  Radiation  treatment for  medulloblastoma:  a  21-year  review.  J  Neurosurg  1981;55: 43-51.

   94.   Hughes  EN, Winston  K,  Cassady  JR,  et  al.  Medulloblastoma:  results  of  surgery  and  radical  radiation  therapy  at  the  JCRT 1968-1984. Int J Radiat Oncol Biol Phys 1986;12:179.

   95.   Bloom HJG, Glees J, Bell J. The treatment and long-term prog-nosis of children with intracranial tumors: a study of 610 cases, 1950-1981. Int J Radiat Oncol Biol Phys 1990;18:723-745.

   96.   Jenkin D, Goddard K, Armstrong D, et al. Posterior fossa medul-loblastoma  in  childhood:  treatment  results  and  a proposal  for a  new  staging  system.  Int  J  Radiat  Oncol  Biol  Phys  1990;19: 265-274.

   97.   Packer RJ, Goldwein J, Nicholson HS, et al. Treatment of chil-dren with medulloblastomas with reduced-dose craniospinal ra-diation therapy and adjuvant chemotherapy: a Children’s Can-cer Group study. J Clin Oncol 1999;17:2127-2136.

   98.   Miralbell R, Lomax A, Cella L, et al. Potential reduction of the incidence of radiation-induced second cancers by using proton beams in the treatment of pediatric tumors. Int J Radiat Oncol Biol Phys 2002;54:824-829.

   99.   Fukunaga-Johnson N, Sandler HM, Marsh R, et al. The use of 3D conformal radiotherapy (3D CRT) to spare the cochlea  in patients  with  medulloblastoma.  Int  J  Radiat  Oncol  Biol  Phys 1998;41:77-82.

 100.   Merchant TE, Happersett L, Finlay J, et al. Preliminary results of conformal radiation therapy for medulloblastoma. Neurooncol-ogy 1999;1:177-187.

 101.   Fukunaga-Johnson N, Lee JH, Sandler HM, et al. Patterns of fail-ure following treatment for medulloblastoma: is it necessary to treat  the  entire  posterior  fossa?  Int  J  Radiat  Oncol  Biol  Phys 1998;42:143-146.

 102.   Strother D, Ashley D, Kellie SJ, et al. Feasibility of four consecu-tive  high-dose  chemotherapy  cycles  with  stem-cell  rescue  for  patients with newly diagnosed medulloblastoma or supratentorial primitive  neuroectodermal  tumor  after  craniospinal  radio-therapy: results of a collaborative study. J Clin Oncol 2001;19: 2696-2704.

 103.   Gajjar  A,  Chintagumpala  M,  Ashley  D,  et  al.  Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medul-loblastoma  (St  Jude  Medulloblastoma-96):  long-term  results from  a  prospective,  multicentre  trial.  Lancet  Oncol  2006;7: 813-820.

 104.   Gajjar A, Sanford RA, Heideman R, et  al. Low-grade astrocy-toma:  a decade of  experience  at St.  Jude Children’s Research Hospital. J Clin Oncol 1997;15:2792-2799.

 105.   Leibel SA, Sheline GE, Wara WM, et al. The role of radiation therapy  in  the  treatment  of  astrocytomas.  Cancer  1975;35: 1551-1557.

 106.   Morantz  RA.  Radiation  therapy  in  the  treatment  of  cerebral  astrocytoma. Neurosurgery 1987;20:975-982.

 107.   Wallner  KE,  Gonzales  MF,  Edwards  MSB,  et  al.  Treatment  results of juvenile pilocytic astrocytoma. J Neurosurg 1988;69: 171-176.

 108.   Laws ER, Taylor WF, Clifton MB, et al. Neurosurgical manage-ment  of  low-grade  astrocytoma  of  the  cerebral  hemispheres.  J Neurosurg 1984;61:665-673.

 109.   Krieger  MD,  Gonzalez-Gomez  I,  Levy  ML,  et  al.  Recurrence patterns and anaplastic change in a long-term study of pilocytic astrocytomas. Pediatr Neurosurg 1997;27:1-11.

 110.   Roessler K, Bertalanffy A,  Jezan H, et  al. Proliferative  activity as measured by MIB-1  labeling  index and  long-term outcome of  cerebellar  juvenile  pilocytic  astrocytomas.  J  Neurooncol 2002;58:141-146.

 111.   Ilgren EB, Stiller CA. Cerebellar  astrocytomas. Clinical  char-acteristics  and  prognostic  indices.  J  Neurooncol  1987;4: 293-308.

 112.   Smoots DW, Geyer JR, Lieberman DM, et al. Predicting disease progression  in  childhood  cerebellar  astrocytoma.  Childs  Nerv Syst 1998;14:636-648.

 113.   Tomita T, Chou P, Reyes-Mugica M. IV ventricle astrocytomas in  childhood:  clinicopathological  features  in  21  cases.  Childs Nerv Syst 1998;14:537-546.

 114.   Pencalet P, Maixner W, Sainte-Rose C, et al. Benign cerebellar astrocytomas in children. J Neurosurg 1999;90:265-273.

 115.   Sgouros  S,  Fineron  PW,  Hockley AD.  Cerebellar  astrocytoma of childhood:  long-term  follow-up. Childs Nerv Syst 1995;11: 89-96.

 116.   Burger PC, Scheithauer BW, Vogel FS (eds). Surgical Pathology of  the  Nervous  System  and  its  Coverings,  3rd  ed.  New York: Churchill Livingstone, 1991.

 117.   Garcia  DM,  Marks  JE,  Latifi  HR,  et  al.  Childhood  cerebellar  astrocytomas: is there a role for postoperative irradiation? Int J Radiat Oncol Biol Phys 1990;18:815-818.

 118.   Schneider JH, Raffel C, McComb JG. Benign cerebellar astrocy-tomas of childhood. Neurosurgery 1992;30:58-63.

 119.   Ilgren EB, Stiller CA. Cerebellar astrocytomas: therapeutic man-agement. Acta Neurochir 1986;81:11-26.

 120.   Larson  DA, Wara WM,  Edwards  MSB.  Management  of  child-hood  cerebellar  astrocytoma.  Int  J  Radiat  Oncol  Biol  Phys 1980;18:971-973.

 121.   Hirsch J-F, Rose CS, Pierre-Kahn A, et al. Benign astrocytic and oligodendrocytic  tumors  of  the  cerebral  hemispheres  in  chil-dren. J Neurosurg 1989;70:568-572.

 122.   Hoffman HJ, Soloniuk DS, Humphreys RP, et al. Management and outcome of low-grade astrocytomas of the midline in chil-dren: a retrospective review. Neurosurgery 1993;33:964-971.

 123.   Reardon D, Gajjar A, Walter AW, et al. Bithalamic involvement predicts  poor  outcome  among  children  with  thalamic  glial  tumors. Pediatr Neurosurg 1998;29:29-35.

 124.   Krouwer HGJ, Prados MD. Infiltrative astrocytomas of the tha-lamus. J Neurosurg 1995;82:548-557.

 125.   Albright AL, Price RA, Guthkelch AN. Diencephalic gliomas of children: a clinicopathologic study. Cancer 1985;55:2789-2793.

 126.   Cairncross JG, Laperriere NJ. Low-grade glioma: to treat or not to treat? Arch Neurol 1989;46:1238-1239.

 127.   Bernstein M, Hoffman HJ, Halliday WC, et al. Thalamic tumors in  children:  long-term  follow-up  and  treatment  guidelines.  J Neurosurg 1984;61:649-656.

 128.   Kelly PJ. Stereotactic biopsy and resection of thalamic astrocyto-mas. Neurosurgery 1989;25:185-194.

 129.   Leibel SA, Sheline GE. Review article: radiation therapy for neo-plasms of the brain. J Neurosurg 1987;66:1-22.

 130.   Boydston WR, Sanford RA, Muhlbauer MS,  et  al. Gliomas of the  tectum  and  periaqueductal  region  of  the  mesencephalon. Pediatr Neurosurg 1991;17:234-238.

 131.   Medbery CA, Straus KL, Steinberg SM, et al. Low-grade astro-cytomas: treatment results and prognostic variables. Int J Radiat Oncol Biol Phys 1988;15:837-841.

 132.   Whitton  AC,  Bloom  HJG.  Low-grade  glioma  of  the  cerebral hemispheres in adults: a retrospective analysis of 88 cases. Int J Radiat Oncol Biol Phys 1990;18:783-786.

 133.   Leighton C, Fisher B, Bauman G, et al. Supratentorial low-grade glioma in adults: an analysis of prognostic factors and timing of radiation. J Clin Oncol 1997;15:1294-1301.

 134.   Shaw EG, Daumas-Duport C, Scheithauer BW, et al. Radiation therapy in the management of low-grade supratentorial astrocy-tomas. J Neurosurg 1989;70:853-861.

 135.   Karim AB,  Maat  B,  Hatlevoll  R,  et  al. A  randomized  trial  of dose-response in radiation therapy of low-grade cerebral glioma: EORTC  study  22844.  Int  J  Radiat  Oncol  Biol  Phys  1996;36: 549-556.

 136.   Dunbar SF, Tarbell NJ, Kooy HM, et al. Stereotactic radiotherapy  for pediatric and adult brain  tumors: preliminary  report.  Int  J Radiat Oncol Biol Phys 1994;30:531-539.

Page 30: Chapter 33 - The Brain and Spinal Cord · changes (particularly in the spinal cord with end-arterial blood supply to portions of the thoracic cord) and direct effects of the radiation

PART 10  Central Nervous System864

 137.   Listernick R, Louis DN, Packer RJ, et  al. Optic pathway glio-mas in children with neurofibromatosis 1: consensus statement from the NF1 Optic Pathway Gliomas Task Force. Ann Neurol 1997;41:143-149.

 138.   Horwich A, Bloom HJG. Optic gliomas: radiation therapy and prognosis. Int J Radiat Oncol Biol Phys 1985;11:1067-1079.

 139.   Alvord EC, Lofton S. Gliomas of the optic nerve or chiasm: out-come by patient’s age, tumor site, and treatment. J Neurosurg 1988;68:85-98.

 140.   Hoyt WF, Baghdassarian SA. Optic glioma of childhood: natural history and rationale for conservative management. Br J Oph-thalmol 1969;53:793-798.

 141.   Imes RK, Hoyt WF. Childhood chiasmal gliomas: update on the fate of patients in the 1969 San Francisco study. Br J Ophthal-mol 1986;70:179-182.

 142.   Wong JYC, Wara W, Sheline GE. Optic gliomas: a reanalysis of the University of California, San Francisco, experience. Cancer 1987;60:1847-1855.

 143.   Jenkin D, Angyalfi S, Becker L, et al. Optic glioma in children: surveillance, resection, or irradiation? Int Radiat Oncol Biol Phys 1993;25:215-225.

 144.   Bataini JP, Delanian S, Ponvert D. Chiasmal gliomas: results of irradiation management in 57 patients and review of literature. Int J Radiat Oncol Biol Phys 1991;21:615-623.

 145.   Tao ML, Barnes PD, Billett AL, et al. Childhood optic chiasm gliomas: radiographic response following radiotherapy and long-term clinical  outcome.  Int  J Radiat Oncol Biol Phys 1997;39: 579-587.

 146.   Fletcher WA, Imes RK, Hoyt WF. Chiasmal gliomas: appearance and long-term changes demonstrated by computerized tomog-raphy. J Neurosurg 1986;65:154-159.

 147.   Wisoff  JH, Abbott R, Epstein F. Surgical management of exo-phytic chiasmatic-hypothalamic tumors of childhood. J Neuro-surg 1990;73:661-667.

 148.   Packer RJ, Lange B, Ater J, et al. Carboplatin and vincristine for recurrent and newly diagnosed low-grade gliomas of childhood. J Clin Oncol 1993;11:850-856.

 149.   Packer  RJ,  Ater  J,  Allen  J,  et  al.  Carboplatin  and  vincristine chemotherapy  for  children  with  newly  diagnosed  progressive low-grade gliomas. J Neurosurg 1997;86:747-754.

 150.   Mahoney DH, Cohen ME, Friedman HS, et al. Carboplatin is ef-fective therapy for young children with progressive optic path-way tumors: a Pediatric Oncology Group phase II study. Neu-rooncology 2000;2:213-220.

 151.   Somaza SC, Kondziolka D, Lunsford LD, et al. Early outcomes after  stereotactic  radiosurgery  for  growing pilocytic  astrocyto-mas in children. Pediatr Neurosurg 1996;25:109-115.

 152.   Grabb  PA,  Lunsford  LD,  Albright  AL,  et  al.  Stereotactic  radiosurgery  for  glial  neoplasms  of  childhood.  Neurosurgery 1996;38:696-702.

 153.   Pollack IF, Hurtt M, Pang D, et al. Dissemination of low grade astrocytomas in children. Cancer 1994;73:2869-2878.

 154.   Prados M, Mamelak AN. Metastasizing low grade gliomas in chil-dren. Redefining an old disease. Cancer 1994;73:2671-2673.

 155.   Gajjar  A,  Bhargava  R,  Jenkins  JJ,  et  al.  Low-grade  astrocy-toma  with  neuraxis  dissemination  at  diagnosis.  J  Neurosurg 1995;83:67-71.

 156.   Kepes  JJ,  Rubinstein  LJ,  Eng  LF.  Pleomorphic  xanthoastrocy-toma:  a  distinctive  meningocerebral  glioma  of  young  subjects with relatively favorable prognosis: a study of 12 cases. Cancer 1979;44:1839-1852.

 157.   Taratuto AL, Monges J, Lylyk P, et al. Superficial cerebral astro-cytoma attached to dura. Cancer 1984;54:2505-2512.

 158.   Fouladi M, Jenkins J, Burger P, et al. Pleomorphic xanthoastro-cytoma (PXA): favorable outcome following complete surgical resection. Neuro Oncol 2001;3:184-192.

 159.   Merchant  TE,  Zhu  Y,  Thompson  SJ,  et  al.  Preliminary  results  from  a  phase  II  trial  of  conformal  radiation  therapy for pediatric patients with  localized  low-grade astrocytomas and  ependymoma.  Int  J  Radiat  Oncol  Biol  Phys  2002;52: 325-332.

 160.   Shaw E, Arusell R, Scheithauer B, et al. Prospective randomized trial of  low- versus high-dose  radiation  therapy  in adults with supratentorial low-grade glioma: initial report of a North Cen-tral  Cancer  Treatment  Group/Radiation  Therapy  Oncology Group/Eastern Cooperative Oncology Group Study. J Clin On-col 2002;20:2367-2376.

 161.   Pollack IF, Claassen D, Al-Shboul Q, et al. Low grade gliomas of the cerebral hemispheres in children: an analysis of 71 cases.  J Neurosurg 1995;82:536-547.

 162.   McLaurin RL, Breneman J, Aron B. Hypothalamic gliomas: re-view of 18 cases. Concepts Pediatr Neurosurg 1987;7:19.

 163.   Albright AL,  Price  RA,  Guthkelch AN.  Brainstem  gliomas  of children: a clinicopathologic study. Cancer 1983;52:2313-2319.

 164.   Albright AL, Guthkelch AN, Packer RJ, et al. Prognostic factors in pediatric brainstem gliomas. J Neurosurg 1986;65:751-755.

 165.   Barkovich AJ, Krischer J, Kun LE, et al. Brain stem gliomas: a classification system based on magnetic resonance imaging. Pedi-atr Neurosurg 1990;16:73-83.

 166.   Hoffman HJ, Becker I, Craven MA. A clinically and pathologi-cally distinct group of benign brainstem gliomas. Neurosurgery 1980;7:243-248.

 167.   Stroink  AR,  Hoffman  HJ,  Hendrick  EB,  et  al.  Diagnosis  and management  of  pediatric  brainstem  gliomas.  J  Neurosurg 1986;65:745-750.

 168.   Khatib  ZA,  Heideman  RL,  Kovnar  EH,  et  al.  Predominance of pilocytic histology in dorsally exophytic brain stem tumors. Pediatr Neurosurg 1994;20:2-10.

 169.   Fisher  PG,  Breiter  SN,  Carson  BS,  et  al.  A  clinicopathologic reappraisal of brain stem tumor classification.  Identification of pilocytic astrocytoma and fibrillary astrocytoma as distinct enti-ties. Cancer 2000;89:1569-1576.

 170.   Mantravadi RVP, Phatak R, Bellur S, et al. Brainstem gliomas: an autopsy study of 25 cases. Cancer 1982;49:1294-1296.

 171.   Schulz-Ertner D, Debus J, Lohr F, et al. Fractionated stereotactic conformal radiation therapy of brain stem gliomas: outcome and prognostic factors. Radiother Oncol 2000;57:215-223.

 172.   Shrieve DC, Wara WM, Edwards MSB, et al. Hyperfractionated radiation therapy for gliomas of the brainstem in children and in adults. Int J Radiat Oncol Biol Phys 1992;24:599-610.

 173.   Freeman CR, Krischer JP, Sanford RA, et al. Final  results of a study of  escalating doses  of  hyperfractionated  radiotherapy  in brain  stem  tumors  in  children:  a  Pediatric  Oncology  Group study. Int J Radiat Oncol Biol Phys 1993;27:197-206.

 174.   Freeman CR, Bourgouin PM, Sanford RA, et al. Long term sur-vivors of childhood brain stem gliomas treated with hyperfrac-tionated radiotherapy, clinical characteristics and treatment re-lated toxicities. Cancer 1996;77:555-562.

 175.   Mandell LR, Kadota R, Freeman C, et al. There  is no  role  for hyperfractionated radiotherapy in the management of children with newly diagnosed diffuse intrinsic brainstem tumors: results of a Pediatric Oncology Group phase III trial comparing conven-tional vs. hyperfractionated radiotherapy. Int J Radiat Oncol Biol Phys 1999;43:959-964.

 176.   Freeman CR, Kepner J, Kun LE, et al. A detrimental effect of a  combined  chemotherapy-radiotherapy  approach  in  children with  diffuse  intrinsic  brain  stem  gliomas?  Int  J  Radiat  Oncol Biol Phys 2000;47:561-564.

 177.   Tait DM, Thornton-Jones H, Bloom HJG, et al. Adjuvant chem-otherapy for medulloblastoma: the first multicenter control trial of  the  International  Society  of  Paediatric  Oncology  (SIOP  I). Eur J Cancer Clin Oncol 1990;26:464-469.

 178.   Duffner  PK,  Horowitz  ME,  Krischer  JP,  et  al.  Postoperative chemotherapy  and  delayed  radiation  in  children  less  than three years of age with malignant brain tumors. N Engl J Med 1993;328:1725-1731.

 179.   Ilgren EB, Stiller CA, Hughes JT, et al. Ependymomas: a clinical and pathologic study, part 1: biologic features. Clin Neuropathol 1984;3:113-121.

 180.   Sanford RA, Kun LE, Heideman RL, et al. Cerebellar pontine angle  ependymoma  in  infants.  Pediatr  Neurosurg  1997;27: 84-91.

Page 31: Chapter 33 - The Brain and Spinal Cord · changes (particularly in the spinal cord with end-arterial blood supply to portions of the thoracic cord) and direct effects of the radiation

33  The Brain and Spinal Cord 865

 181.   Bloom  HJG.  Intracranial  tumors:  response  and  resistance  to therapeutic endeavors. 1970-1980. Int J Radiat Oncol Biol Phys 1982;8:1083-1113.

 182.   Vanuystel LJ, Bessell EM, Ashley SE, et al. Intracranial ependy-moma: long-term results of a policy of surgery and radiotherapy. Int J Radiat Oncol Biol Phys 1982;23:313-319.

 183.   Goldwein JW, Glauser TA, Packet RJ, et al. Recurrent intracra-nial ependymomas in children: survival, patterns of failure, and prognostic factors. Cancer 1990;66:557-563.

 184.   Rezai  AR,  Woo  HH,  Lee  M,  et  al.  Disseminated  ependymo-mas  of  the  central  nervous  system.  J  Neurosurg  1996;85: 618-624.

 185.   Centeno RS, Lee AA, Winter J, et al. Supratentorial ependymo-mas. Neuroimaging and clinicopathological correlation. J Neu-rosurg 1986;64:209-215.

 186.   Rawlings CE III, Giangaspero F, Burger PC, et al. Ependymomas: a clinicopathologic study. Surg Neurol 1988;29:271-281.

 187.   Rorke LB. Relationship of morphology of ependymoma in chil-dren to prognosis. Prog Exp Tumor Res 1987;30:170-174.

 188.   Ross GW, Rubinstein LJ. Lack of histopathological correlation of malignant ependymomas with postoperative survival. J Neu-rosurg 1989;70:31-36.

 189.   Rousseau P, Habrand JL, Sarrazin D, et al. Treatment of intracra-nial ependymomas of children: review of a 15-year experience. Int J Radiat Oncol Biol Phys 1994;28:381-386.

 190.   Pollack IF, Gerszten PC, Martinez AJ, et al. Intracranial ependy-momas of childhood: long-term outcome and prognostic factors. Neurosurgery 1995;37:655-667.

 191.   Healey EA, Braners PD, Kupsky WJ, et al. The prognostic signifi-cance of postoperative residual tumor in ependymoma. Neuro-surgery 1991;28:666-672.

 192.   Nazar GB, Hoffman HJ, Becker LE, et al. Infratentorial ependy-momas in childhood: prognostic factors and treatment. J Neuro-surg 1990;72:408-417.

 193.   Hukin  J,  Epstein  F,  Lefton  D,  et  al. Treatment  of  intracranial ependymoma  by  surgery  alone.  Pediatr  Neurosurg  1998;29: 40-45.

 194.   Duffner PK, Krischer JP, Sanford RA, et al. Prognostic factors in infants and very young children with intracranial ependymomas. Pediatr Neurosurg 1998;28:215-222.

 195.   Lefkowitz I, Evans A, Sposto R, et al. Adjuvant chemotherapy of childhood posterior fossa (PF) ependymoma: craniospinal ir-radiation with or without CCNU, vincristine (VCR) and pred-nisone (P) [abstract]. Proc Am Soc Clin Oncol 1989;8:87a.

 196.   Strother D, Kepner J, Aronin P, et al. Dose-intensive (DI) chem-otherapy (CT) prolongs event-free survival (EFS) for very young children with ependymoma (EP). Results of Pediatric Oncology Group (POG) Study 9233 [abstract]. Proc Am Soc Clin Oncol 2000;19. 585a, 2302.

 197.   Goldwein JW, Corn BW, Finlay JL, et al. Is craniospinal irradia-tion  required  to  cure  children with malignant  (anaplastic)  in-tracranial ependymomas? Cancer 1991;67:2766-2771.

 198.   Merchant TE, Haida T, Wang M-H., et al. Anaplastic ependymo-ma: treatment of pediatric patients with or without craniospinal radiation therapy. J Neurosurg 1997;86:943-949.

 199.   Kovnar  EH,  Curran  W,  Tomita  T,  et  al.  Hyperfractionated  irradiation for childhood ependymoma: improved local control in subtotally resected tumors [abstract]. Paper presented at the Eighth International Symposium on Pediatric Neuro-Oncology, May 6-9, 1998, Rome, Italy. 

 200.   Aggarwal R, Yeung D, Muhlbauer M, et al. Efficacy and feasibil-ity of  stereotactic  radiosurgery  in  the primary management of unfavorable pediatric ependymoma. Radiother Oncol 1997;43: 269-273.

 201.   Herrick MK. Pathology of pineal tumors. In Neuwelt EA (ed): Diagnosis  and Treatment  of  Pineal  Region Tumors.  Baltimore: Williams & Wilkins, 1984, pp 31-60.

 202.   Glenn OA, Barkovich AJ. Intracranial germ cell tumors: a com-prehensive review of proposed embryonic deprivation. Pediatr Neurosurg 1996;24:242-251.

 203.   Rich TA, Cassady  JR, Strand RD, et  al. Radiation  therapy  for pineal  and  suprasellar  germ  cell  tumors.  Cancer  1985;55: 932-940.

 204.   Ho DM, Lieu H-C. Primary intracranial germ cell tumor. Patho-logic study of 51 patients. Cancer 1992;70:1577-1584.

 205.   Dernaley DP, A’Hern RP, Whittaker S, et al. Pineal and CNS germ  cell  tumors:  Royal  Marsden  Hospital  experience  1962-1987. Int J Radiat Oncol Biol Phys 1990;18:773-781.

 206.   Wolden SL, Wara WM, Larson DA, et al. Radiation therapy for primary  intracranial germ-cell  tumors.  Int J Radiat Oncol Biol Phys 1995;32:943-949.

 207.   Borit A, Blackwood W, Mair WGP. The separation of pineocy-toma from pineoblastoma. Cancer 1980;45:1408-1418.

 208.   DiSclafani A, Hudgins RJ, Edwards MSB, et al. Pineocytomas. Cancer 1989;63:302-304.

 209.   Schild SE, Scheithauer BW, Schomberg PJ, et al. Pineal paren-chymal  tumors.  Clinical,  pathologic,  and  therapeutic  aspects. Cancer 1993;72:870-880.

 210.   Schild SE, Haddock MG, Scheithauer BW, et al. Nongermino-matous germ cell tumors of the brain. Int J Radiat Oncol Biol Phys 1996;36:557-563.

 211.   Shibamoto Y, Takahashi M, Sasai K. Prognosis of intracranial ger-minoma with syncytiotrophoblastic giant cells treated by radia-tion therapy. Int J Radiat Oncol Biol Phys 1997;37:505-510.

 212.   Jennings  MT,  Gelman  R,  Hochberg  F.  Intracranial  germ-cell  tumors: natural history and pathogenesis. J Neurosurg 1985;63: 155-167.

 213.   Jenkin  D,  Berry  M,  Chan  H,  et  al.  Pineal  region  germinomas in childhood: treatment considerations. Int J Radiat Oncol Biol Phys 1990;18:541-545.

 214.   Sung  D,  Harisiadis  L,  Chang  CG.  Midline  pineal  tumors  and suprasellar germinomas: highly curable by irradiation. Radiology 1978;128:745-751.

 215.   Haddock MG, Schild SE, Scheithauer BE, et al. Radiation ther-apy for histologically confirmed primary central nervous system germinoma. Int J Radiat Oncol Biol Phys 1997;38:915-923.

 216.   Shibamoto Y, Takahashi M, Abe M. Reduction of the radiation dose for intracranial germinoma: a prospective study. Br J Can-cer 1994;70:984-989.

 217.   Shirato H, Nishio M, Sawamura Y, et al. Analysis of long-term treatment  of  intracranial  germinoma.  Int  J  Radiat  Oncol  Biol Phys 1997;37:511-515.

 218.   Merchant TE, Sherwood SH, Mulhern RK,  et  al. CNS germi-noma:  disease  control  and  long-term  functional  outcome  for  12  children  treated  with  craniospinal  irradiation.  Int  J  Radiat Oncol Biol Phys 2000;46:1171-1176.

 219.   Hardenbergh PH, Golden J, Billet A, et al.  Intracranial germi-noma:  the  case  for  lower  dose  radiation  therapy.  Int  J  Radiat Oncol Biol Phys 1997;39:419-426.

 220.   Calaminus  G,  Bamberg  M,  Baranzelli  MC,  et  al.  Intracranial germ  cell  tumors:  a  comprehensive  update  of  the  European data. Neuropediatrics 1994;25:26-32.

 221.   Shibamoto Y, Abe  M, Yamashita  J,  et  al. Treatment  results  of intracranial germinoma as a function of the irradiation volume. Int J Radiat Oncol Biol Phys 1988;15:285-290.

 222.   Bamberg  M,  Kortmann  R-D,  Calaminus  G,  et  al.  Radiation therapy for intracranial germinoma: results of the German Co-operative  Prospective  Trials  MAKEI  83/86/89.  J  Clin  Oncol 1999;17:2585-2592.

 223.   Allen  JC,  Kim  JH,  Packer  RJ.  Neoadjuvant  chemotherapy  for newly diagnosed germ cell tumors of the central nervous system. J Neurosurg 1987;67:65-70.

 224.   Bouffet E, Baranzelli MC, Patte C, et al. Combined treatment modality  for  intracranial  germinomas:  results  of  a multicentre SFOP experience. Br J Cancer 1999;79:1199-1204.

 225.   Balmaceda  C,  Heller  G,  Rosenblum  M,  et  al.  Chemotherapy without irradiation. A novel approach for newly diagnosed CNS germ cell  tumors:  results  of  an  international  cooperative  trial.  J Clin Oncol 1996;14:2908-2915.

 226.   Linstadt D, Wara WM, Edwards MSB, et al. Radiotherapy of pri-mary intracranial germinomas: the case against routine craniospi-nal irradiation. Int J Radiat Oncol Biol Phys 1988;15:291-297.

 227.   Maity A, Shu HK, Janss A, et al. Craniospinal radiation  in the treatment  of  biopsy-proven  intracranial  germinomas:  twenty-five years’ experience in a single center. Int J Radiat Oncol Biol Phys 2004;58:1165-1170.

Page 32: Chapter 33 - The Brain and Spinal Cord · changes (particularly in the spinal cord with end-arterial blood supply to portions of the thoracic cord) and direct effects of the radiation

PART 10  Central Nervous System866

 228.   Buckner  JC, Peethambaram PP,  Smithson WA,  et  al.  Phase  II trial of primary chemotherapy followed by reduced-dose radia-tion for CNS germ cell tumors. J Clin Oncol 1999;17:933-940.

 229.   Allen JC, DaRosso RC, Donahue B, et al. A phase II trial of preir-radiation carboplatin in newly diagnosed germinoma of the cen-tral nervous system. Cancer 1994;74:940-944.

 230.   Robertson  PL,  DaRosso  RC, Allen  JC.  Improved  prognosis  of intracranial non-germinoma germ cell tumors with multimodal-ity therapy. J Neurooncol 1997;32:71-80.

 231.   Aoyama  H,  Shirato  H, Yoshida  H,  et  al.  Retrospective  multi- institutional study of radiotherapy for intracranial non-germino-matous germ cell tumors. Radiother Oncol 1998;49:55-59.

 232.   Jakacki RI, Zeltzer PM, Boyett JM, et al. Survival and prognostic factors  following  radiation and/or  chemotherapy  for primitive neuroectodermal tumors of the pineal region in infants and chil-dren:  a  report  of  the  Children’s  Cancer  Group.  J  Clin  Oncol 1995;13:1377-1383.

 233.   Adamson TE, Wiestler OD, Kleihues P, et al. Correlation of clin-ical and pathological features in surgically treated craniopharyn-giomas. J Neurosurg 1990;73:12-17.

 234.   Hoffman HJ, De Silva M, Humphreys RP, et al. Aggressive surgi-cal management of craniopharyngiomas in children. J Neurosurg 1992;76:47-52.

 235.   Hoffman HJ. Surgical management of craniopharyngioma. Pedi-atr Neurosurg 1994;21:44-49.

 236.   Yarsargil MG, Curcic M, Kis S, et al. Total removal of craniophar-yngiomas:  approaches  and  long-term  results  in  144  patients.  J Neurosurg 1990;73:3-11.

 237.   Sanford  RA.  Craniopharyngioma:  results  of  survey  of  the American Society of Pediatric Neurosurgery. Pediatr Neurosurg 1994;21:39-43.

 238.   Scott RM, Hetelekidis S, Barnes PD, et al. Surgery, radiation, and combination therapy in the treatment of childhood craniophar-yngioma—a  20-year  experience.  Pediatr  Neurosurg  1994;21: 75-81.

 239.   Wen B-C., Hussey DH, Staples J, et al. A comparison of the roles of  surgery  and  radiation  therapy  in  the management of  crani-opharyngiomas. Int J Radiat Oncol Biol Phys 1989;16:17-24.

 240.   Sweet WH. History of surgery for craniopharyngiomas. Pediatr Neurosurg 1994;21:28-38.

 241.   Tomita T, McLone DG. Radical resections of childhood crani-opharyngiomas. Pediatr Neurosurg 1993;19:6-14.

 242.   Yasargil MC, Curcic M, Kis S, et al. Total removal of craniophar-yngiomas:  approaches  and  long-term  results  in  144  patients.  J Neurosurg 1990;73:3-11.

 243.   Tomita T, McLone DG. Radical resections of childhood crani-opharyngiomas. Pediatr Neurosurg 1993;19:6-14.

 244.   Fischer EG, Welch K, Shillito J Jr, et al. Craniopharyngiomas in children:  long-term effects of conservative  surgical procedures combined  with  radiation  therapy.  J  Neurosurg  1990;73: 534-540.

 245.   Fischer  EG, Welch  K,  Shilito  J  Jr,  et  al.  Craniopharyngiomas in  children.  Long-term  effects  of  conservative  surgical  proce-dures  combined with  radiation  therapy.  J Neurosurg 1990;73: 534-540.

 246.   Sklar CA. Craniopharyngioma: endocrine sequelae of treatment. Pediatr Neurosurg 1994;21:120-123.

 247.   Curtis J, Daneman D, Hoffman HJ, et al. The endocrine outcome after surgical removal of craniopharyngiomas. Pediatr Neurosurg 1994;21:24-27.

 248.   Kramer  S,  Southard  M,  Mansfield  CM.  Radiotherapy  in  the management  of  craniopharyngiomas.  AJR  Am  J  Roentgenol 1968;103:44-52.

 249.   Kramer S, McKissock W, Concannon JP. Craniopharyngiomas: treatment by combined surgery and radiation therapy. J Neuro-surg 1961;18:217-226.

 250.   Kramer  S,  Southard  M,  Mansfield  CM.  Radiotherapy  in  the management  of  craniopharyngiomas:  further  experience  and late results. Am J Roentgenol Radium Ther Nucl Med 1968;103: 44-52.

 251.   Regine WF, Kramer S. Pediatric craniopharyngiomas: long-term results of combined treatment with surgery and radiation. Int J Radiat Oncol Biol Phys 1992;24:611-617.

 252.   Brada  M,  Thomas  DGT.  Craniopharyngioma  revisited.  Int  J  Radiat Oncol Biol Phys 1993;27:471-475.

 253.   Hetelididis S, Barnes PD, Tao ML, et al. Twenty year experience in childhood craniopharyngioma. Int J Radiat Oncol Biol Phys 1993;27:189-195.

 254.   Rajan B, Ashley S, Gorman C, et al. Craniopharyngioma—long term  results  following  limited  surgery  and  radiotherapy. Radi-other Oncol 1993;26:1-10.

 255.   Flickinger JC, Lunsford LD, Singer J, et al. Megavoltage external beam  irradiation  of  craniopharyngiomas:  analysis  of  tumor control  and morbidity.  Int  J Radiat Oncol Biol Phys 1990;19: 117-122.

 256.   Lunsford LD, Pollack BE, Kondziolka DS, et al. Stereotactic op-tions in the management of craniopharyngioma. Pediatr Neuro-surg 1994;21:90-97.

 257.   Backlund EO, Axelsson B, Bergstrand CG, et al. Treatment of craniopharyngiomas—the  stereotactic  approach  in  a  ten  to twenty-three years’ perspective. Surgical, radiological and oph-thalmological aspects. Acta Neurochir 1989;99(Pt 1):11-19.

 258.   Baskin DS, Wilson CB. Surgical management of craniopharyngi-omas: a review of 74 cases. J Neurosurg 1986;65:22-27.

 259.   Merchant TE, Kiehna EN, Sanford RA, et al. Craniopharyngi-oma: the St. Jude Children’s Research Hospital experience. Int J Radiat Oncol Biol Phys 2002;53:533-542.

 260.   Hoogenhout J, Otten BJ, Kazem I, et al. Surgery and radiation therapy in the management of craniopharyngiomas. Int J Radiat Oncol Biol Phys 1984;10:2293-2297.

 261.   Sung  DI,  Chang  CH,  Harisiadis  L,  et  al. Treatment  results  in craniopharyngiomas. Cancer 1981;47:847-852.

 262.   Hart MN, Earle KM. Primitive neuroectodermal tumors of the brain in children. Cancer 1973;32:890-897.

 263.   Kosnik EJ, Boesel CP, Bau  J,  et  al. Primitive neuroectodermal tumors of the central nervous system in children. J Neurosurg 1978;48:741-746.

 264.   Bennett  JP, Rubinstein LJ. The biological behavior of primary cerebral neuroblastoma: a reappraisal of the clinical course in a series of 70 cases. Ann Neurol 1984;16:21-27.

 265.   Cruz-Sanchez FF, Rossi ML, Hughes  JT, et  al. Differentiation in embryonal neuroepithelial tumors of the central nervous sys-tem. Cancer 1991;67:965-976.

 266.   Berger  MS,  Edwards  MSB, Wara WM,  et  al.  Primary  cerebral neuroblastoma:  long-term  follow-up  review  and  therapeutic guidelines. J Neurosurg 1983;59:418-423.

 267.   Gaffney  CC,  Sloane  JP,  Bradley  NJ,  et  al.  Primitive  neuroec-todermal  tumors  of  the  cerebrum:  pathology  and  treatment.  J Neurooncol 1985;3:23-33.

 268.   Berger MS, Edwards MSB, LaMasters D, et al. Pediatric brain-stem  tumors:  radiographic,  pathological,  and  clinical  correla-tions. Neurosurgery 1983;12:298-302.

 269.   Horten BC, Rubinstein LJ. Primary  cerebral  neuroblastoma:  a clinicopathological study of 35 cases. Brain 1976;99:735-756.

 270.   Ashwal S, Hinshaw DB Jr, Bedros A. CNS primitive neuroec-todermal  tumors  of  childhood.  Med  Pediatr  Oncol  1984;12: 180-188.

 271.   Zeltzer PM, Boyett  JM, Finlaye  JL, et  al. Metastasis  stage,  ad-juvant treatment, and residual tumor are prognostic factors for medulloblastoma  in  children:  conclusions  from  the Children’s Cancer  Group  921  randomized  phase  III  study.  J  Clin  Oncol 1999;17:832-845.

 272.   Stiller CA, Bunch KJ. Brain and spinal tumors in children aged under two years: incidence and survival in Britain, 1971-1985. Br J Cancer 1992;66:S50-S53.

 273.   Cohen BH, Packer RJ, Siegel KR, et al. Brain tumors in children under 2 years: treatment, survival and long-term prognosis. Pedi-atr Neurosurg 1993;19:171-179.

 274.   Brown K, Mapstone TB, Oakes WJ. A modern analysis of intrac-ranial tumors of infancy. Pediatr Neurosurg 1997;26:25-32.

 275.   Gilles  FH,  Sobel  EL, Tavare  CJ,  et  al. Age-related  changes  in  diagnoses,  histological  features,  and  survival  in  children  with brain tumors: 1930-1979. Neurosurgery 1995;37:1056-1068.

Page 33: Chapter 33 - The Brain and Spinal Cord · changes (particularly in the spinal cord with end-arterial blood supply to portions of the thoracic cord) and direct effects of the radiation

33  The Brain and Spinal Cord 867

 276.   Rorke LB, Packer RJ, Biegel  JA, et al. Central nervous  system atypical  teratoid/rhabdoid  tumors  of  infancy  and  childhood: definition of an entity. J Neurosurg 1996;85:56-65.

 277.   Burger PC, Yu I-T, Tihan T, et al. Atypical teratoid/rhabdoid tu-mor  of  the  central  nervous  system:  a  highly  malignant  tumor of  infancy  and  childhood  frequently  mistaken  for  medullob-lastoma. A Pediatric Oncology Group study. Am J Surg Pathol 1998;22:1083-1092.

 278.   Pancelet P, Sainte-Rose C, Lellough-Tubiana A, et al. Papillomas and carcinomas of the choroid plexus in children. J Neurosurg 1998;88:521-528.

 279.   Weiss E, Behring B, Behnke J, et al. Treatment of primary malig-nant rhabdoid tumor of the brain: report of three cases and re-view  of  the  literature.  Int  J  Radiat  Oncol  Biol  Phys  1998;41: 1013-1019.

 280.   Taratuto AL, Monges J, Lylyk P, et al. Superficial cerebral astro-cytoma attached to dura: report of six cases in infants. Cancer 1984;54:2505-2512.

 281.   Mulhern RK, Hancock J, Fairclough D, et al. Neuropsychologi-cal status of children treated for brain tumors: a critical review and integrative analysis. Med Pediatr Oncol 1992;20:181-191.

 282.   Evans AE, Jenkin RDT, Sposto R, et al. The treatment of medul-loblastoma. Results of a prospective randomized trial of radiation therapy with and without CCNU, vincristine, and prednisone.  J Neurosurg 1990;72:572-582.

 283.   Deutsch  M.  Radiotherapy  for  primary  brain  tumors  in  very young children. Cancer 1982;50:2785-2789.

 284.   Jenkin D, Greenberg M, Hoffman H, et al. Brain tumors in chil-dren:  long-term  survival  after  radiation  therapy.  Int  J  Radiat  Oncol Biol Phys 1995;31:445-451.

 285.   Allen JC, Helson L, Jereb B. Preradiation chemotherapy for just this minute diagnosed childhood brain tumors: a modified phase II  trial. Cancer 1983;52:2001-2006.

 286.   Baram TZ, van Eys J, Dowell RE, et al. Survival and neurologic outcome  in  infants  with  medulloblastoma  treated  with  sur-gery  and  MOPP  chemotherapy:  a  preliminary  report.  Cancer 1987;60:173-177.

 287.   Horowitz ME, Mulhern RK, Kun LE, et al. Brain tumors in the very  young  child:  postoperative  chemotherapy  in  combined- modality treatment. Cancer 1988;61:428-434.

 288.   Duffner PK, Horowitz ME, Krischer JP, et al. The treatment of malignant brain tumors in infants and very young children: an update of the Pediatric Oncology Group experience. Neuroon-cology 1999;1:152-161.

 289.   Geyer JR, Zeltzer PM, Boyett JM, et al. Survival of infants with primitive neuroectodermal tumors or malignant ependymomas of the CNS treated with eight drugs in 1 day: a report from the Children’s Cancer Group. J Clin Oncol 1994;12:1607-1615.

 290.   Kuhl  J, Beck J, Bode U, et al. Delayed radiation  therapy (RT) after postoperative chemotherapy (PCH) in children  less than 3 years of age with medulloblastoma. Results of the trial HIT-SKK’87, and preliminary results of the pilot trial HIT-SKK’92 [abstract]. Med Pediatr Oncol 1995;25:250.

 291.   Walter  AW,  Mulhern  RK,  Gajjar  A,  et  al.  Survival  and  neu-rodevelopmental  outcome  of  young  children  with  medullob-lastoma at St. Jude Children’s Research Hospital. J Clin Oncol 1999;17:3720-3728.

 292.   Dupuis-Girod  S,  Hartmann  O,  Benhamou  E,  et  al. Will  high dose chemotherapy followed by autologous bone marrow trans-plantation  supplant  craniospinal  irradiation  in  young  children treated for medulloblastoma? J Neurooncol 1996;27:87-98.

 293.   Gajjar A, Mulhern RK, Heideman RL, et al. Medulloblastoma in very young children: outcome of definitive craniospinal irra-diation following incomplete response to chemotherapy. J Clin Oncol 1994;12:1212-1216.

 294.   Rutkowski S, Bode U, Deinlein F, et al. Treatment of early child-hood  medulloblastoma  by  postoperative  chemotherapy  alone.  N Engl J Med 2005;352:978-986.

 295.   Grill J, Le Deley M-C., Gambarelli D, et al. Postoperative chem-otherapy without irradiation for ependymoma in children under 5 years of age: a multicenter trial of the French Society of Pedi-atric Oncology. J Clin Oncol 2001;19:1288-1296.

 296.   Hilden  JM,  Watterson  J,  Longee  DC,  et  al.  Central  nervous system  atypical  teratoid  tumor/rhabdoid  tumor:  response  to intensive  therapy  and  review  of  the  literature.  J  Neurooncol 1998;40:265-275.

 297.   Kernohan JW, Sayre GP. Tumors of  the Central Nervous Sys-tem. Washington, DC: American Registry of Pathology, Armed Forces Institute of Pathology, 1952.

 298.   Nelson JS, Taukada Y, Schoenfeld D, et al. Necrosis as a prog-nostic criterion  in malignant supratentorial, astrocytic gliomas. Cancer 1983;52:550-554.

 299.   Werner-Wasik  M,  Scott  CB,  Nelson  DF,  et  al.  Final  report  of a  phase  I/II  trial  of  hyperfractionated  and  accelerated  hyper-fractionated radiation therapy with carmustine for adults with supratentorial malignant gliomas. Radiation Therapy Oncology Group study 83-02. Cancer 1996;77:1535-1543.

 300.   Burger  PC,  Heinz  ER,  Shibata T,  et  al. Topographic  anatomy and CT correlations in the untreated glioblastoma multiforme.  J Neurosurg 1988;68:698-704.

 301.   Halperin EC, Bentel G, Heinz ER, et al. Radiation therapy treat-ment  planning  in  supratentorial  glioblastoma  multiforme:  an analysis  based  on  postmortem  topographic  anatomy  with  CT correlations. Int J Radiat Oncol Biol Phys 1989;17:1347-1350.

 302.   Kelly PJ, Daumas-Duport C, Kispert DB, et al.  Imaging-based stereotaxic  serial  biopsies  in  untreated  intracranial  glial  neo-plasms. J Neurosurg 1987;66:865-874.

 303.   Choucair AK, Levin VA, Gutin PH, et al. Development of mul-tiple lesions during radiation therapy and chemotherapy in pa-tients with gliomas. J Neurosurg 1986;65:654-658.

 304.   Kopelson  G,  Linggood  R.  Infratentorial  glioblastoma:  the  role of  neuraxis  irradiation.  Int  J  Radiat  Oncol  Biol  Phys  1982;8: 999-1003.

 305.   Nelson DF, Nelson JS, Davis DR, et al. Survival and prognosis of patients with astrocytoma with atypical or anaplastic  features.  J Neurooncol 1985;3:99-103.

 306.   Walker MD, Green SB, Byar DP, et al. Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. N Engl J Med 1980;303:1323-1329.

 307.   Prados  MD,  Gutin  PH,  Phillips  TL,  et  al.  Highly  anaplastic  astrocytoma: a review of 357 patients treated between 1977 and 1989. Int J Radiat Oncol Biol Phys 1992;23:3-8.

 308.   Wood JR, Green SB, Shapiro WR. The prognostic importance of tumor size in malignant gliomas: a CT scan study by the Brain Tumor Cooperative Group. J Clin Oncol 1988;6:338-343.

 309.   Wisoff  JH,  Boyett  JM,  Berger  MS,  et  al.  Current  neurosurgi-cal management  and  the  impact of  the  extent of  resection  in the  treatment  of  malignant  gliomas  of  childhood:  a  report  of the Children’s Cancer Group Trial no. CCG-945. J Neurosurg 1998;89:52-59.

 310.   Garden AS, Maor MH, Yung WKA, et al. Outcome and patterns of failure following limited-volume irradiation for malignant as-trocytomas. Radiother Oncol 1991;20:99-110.

 311.   Fine HA, Dear KB, Loeffler JS, et al. Meta-analysis of radiation therapy with and without adjuvant chemotherapy for malignant gliomas in adults. Cancer 1993;71:2585-2597.

 312.   Murray KJ, Nelson DF, Scott C, et al. Quality-adjusted survival analysis of malignant glioma. Patients  treated with  twice-daily radiation  (RT)  and  carmustine:  a  report  of Radiation Therapy Oncology  Group  study  83-02.  Int  J  Radiat  Oncol  Biol  Phys 1995;31:453-459.

 313.   Sneed PK, Gutin PH, Larson DA, et al. Patterns of recurrence of  glioblastoma  multiforme  after  external  irradiation  fol-lowed by implant boost. Int J Radiat Oncol Biol Phys 1994;29: 719-727.

 314.   Hochberg  FH,  Pruitt  A.  Assumptions  in  the  radiotherapy  of glioblastoma. Neurology 1980;30:907-911.

 315.   Wallner KE, Galicich JH, Krol G, et al. Patterns of failure fol-lowing  treatment  for  glioblastoma  multiforme  and  anaplastic astrocytoma. Int J Radiat Oncol Biol Phys 1989;16:1405-1409.

 316.   Loeffler JS, Alexander E  III, Hochberg FH, et al. Clinical pat-terns  of  failure  following  stereotactic  interstitial  irradiation for  malignant  gliomas.  Int  J  Radiat  Oncol  Biol  Phys  1990;19: 1455-1462.

Page 34: Chapter 33 - The Brain and Spinal Cord · changes (particularly in the spinal cord with end-arterial blood supply to portions of the thoracic cord) and direct effects of the radiation

PART 10  Central Nervous System868

 317.   Agbi  CB,  Bernstein  M,  Laperriere  N,  et  al.  Patterns  of  recur-rence of malignant astrocytoma following stereotactic  intersti-tial  brachytherapy with  125I  implants.  Int  J Radiat Oncol Biol Phys 1992;23:321-326.

 318.   Laramore GE, Diener-West M, Griffin TW, et al. Randomized neutron  dose  searching  study  for  malignant  gliomas  of  the brain: results of an RTOG study. Int J Radiat Oncol Biol Phys 1988;14:1093-1102.

 319.   Loeffler JS, Alexander E III, Wen PY, et al. Results of stereotactic brachytherapy used in the initial management of patients with glioblastoma. J Natl Cancer Inst 1990;82:1918-1921.

 320.   Scharfen CO, Sneed PK, Wara WM, et al. High activity iodine-125 interstitial implant for gliomas. Int J Radiat Oncol Biol Phys 1992;24:583-591.

 321.   Prados MD, Gutin PH, Phillips TL, et al. Interstitial brachytherapy for newly diagnosed patients with malignant gliomas: the UCSF experience. Int J Radiat Oncol Biol Phys 1992;24:593-597.

 322.   Stelzer KJ, Laramore GE, Griffin TW, et al. Fast neutron radio-therapy: the University of Washington experience. Acta Oncol 1994;33. 275-280.

 323.   Larson DA, Gutin PH, McDermott M, et al. Gamma knife for glioma:  selection  factors  and  survival.  Int  J Radiat Oncol Biol Phys 1996;36:1045-1053.

 324.   Pickles T, Goodman GB, Rheaume DE, et al. Pion radiation for high grade astrocytoma: results of a randomized study. Int J Ra-diat Oncol Biol Phys 1997;37:491-497.

 325.   Sneed PK, Prados MD, McDermott MW, et al. Large effect of age on survival of patients with glioblastoma treated with radiothera-py and brachytherapy boost. Neurosurgery 1995;36:898-904.

 326.   Wen PY, Alexander E III, Black PM, et al. Long-term results of stereotactic brachytherapy used  in  the  initial  treatment of pa-tients with glioblastomas. Cancer 1994;73:3029-3036.

 327.   Shrieve DC, Alexander E III, Wen PY, et al. Comparison of stere-otactic radiosurgery and brachytherapy in the treatment of recur-rent glioblastoma multiforme. Neurosurgery 1995;36:275-284.

 328.   Mehta MP, Masciopinto J, Rozental J, et al. Stereotactic radio-surgery  for  glioblastoma  multiforme:  report  of  a  prospective study evaluating prognostic factors and analyzing long-term sur-vival advantage. Int J Radiat Oncol Biol Phys 1994;30:541-549.

 329.   Buatti JM, Friedman WA, Bova FJ, et al. Linac radiosurgery for high grade gliomas:  the University of Florida experience.  Int J Radiat Oncol Biol Phys 1995;32:205-210.

 330.   Nelson DF, Diener-West M, Weinstein AS, et al. A randomized comparison of misonidazole sensitized radiotherapy plus BCNU and radiotherapy plus BCNU for treatment of malignant glioma after surgery: final report of an RTOG study. Int J Radiat Oncol Biol Phys 1986;12:1793-1800.

 331.   Urtusan R, Band P, Chapman JD, et al. Radiation and high-dose metronidazole  in  supratentorial  glioblastomas.  N  Engl  J  Med 1976;294:1364-1367.

 332.   Miralbell R, Mornex F, Greiner R, et al. Accelerated radiother-apy,  carbogen,  and  nicotinamide  in  glioblastoma  multiforme:  report of European Organization for Research and Treatment of Cancer Trial 22933. J Clin Oncol 1999;17:3143-3149.

 333.   Hegarty TJ, Thornton AF, Diaz RF, et al. Intraarterial bromode-oxyuridine radiosensitization of malignant gliomas. Int J Radiat Oncol Biol Phys 1990;19:421-428.

 334.   Sullivan FJ, Herscher LL, Cook JA, et al. National Cancer  In-stitute  (phase  II)  study  of  high-grade  glioma  treated  with  ac-celerated  hyperfractionated  radiation  and  iododeoxyuridine: results in anaplastic astrocytoma. Int J Radiat Oncol Biol Phys 1994;30:583-590.

 335.   Groves  MD,  Maor  MH,  Meyers  C,  et  al.  A  phase  II  trial  of high-dose  bromodeoxyuridine  with  accelerated  fractionation radiotherapy followed by procarbazine, lomustine, and vincris-tine for glioblastoma multiforme. Int J Radiat Oncol Biol Phys 1999;45:127-135.

 336.   Prados MD, Scott C, Sandler H,  et  al. A phase 3  randomized study  of  radiotherapy  plus  procarbazine,  CCNU,  vincristine (PCV)  with  or  without  BrdU  for  the  treatment  of  anaplastic astrocytoma:  a  preliminary  report  of  the  Radiation  Therapy Oncology  Group  study  9404.  Int  J  Radiat  Oncol  Biol  Phys 1999;45:1109-1115.

 337.   Saroja KR, Mansell J, Hendrickson FR, et al. Failure of acceler-ated neutron therapy to control high grade astrocytomas. Int J Radiat Oncol Biol Phys 1989;17:1295-1297.

 338.   Fitzek MM, Thornton AF, Rabinov JD, et al. Accelerated proton/photon irradiation to 90 cobalt gray equivalent for glioblastoma multiforme: results of a phase II prospective trial. J Neurosurg 1999;91:251-260.

 339.   Leibel SA, Gutin PH, Wara WM, et al. Survival and quality of life after interstitial implantation of removable high-activity iodine 125 sources for treatment of patients with recurrent malignant gliomas. Int J Radiat Oncol Biol Phys 1989;17:1129-1139.

 340.   Selker RG, Shapiro WR, Green S, et al. A randomized trial of interstitial radiotherapy (IRT) boost for the treatment of newly diagnosed  malignant  glioma  (glioblastoma  multiforme,  ana-plastic  astrocytoma,  anaplastic  oligodendroglioma,  malignant mixed  glioma).  Brain Tumor  Cooperative  Group  study  87-01 [abstract]. Paper presented at the 45th Meeting of the Congress of  Neurological  Surgeons.  San  Francisco:  CA,  October  14-18, 1995.

 341.   Florell RC, MacDonald DR,  Irish W, et al. Selection bias,  sur-vival,  and  brachytherapy  for  glioma.  J  Neurosurg  1992;76: 179-183.

 342.   Loeffler JSI, Alexander E III, Shea WM, et al. Radiosurgery as part of the initial management of patients with malignant glio-mas. J Clin Oncol 1992;10:1379-1385.

 343.   Sankaria JN, Mehta MP, Loeffler JS, et al. Radiosurgery in the initial management of malignant  gliomas:  survival  comparison with  the  Radiation Therapy  Oncology  Group  recursive  parti-tioning analysis. Int J Radiat Oncol Biol Phys 1995;32:931-942.

 344.   Nelson  DF,  Curran  WJ  Jr,  Scott  C,  et  al.  Hyperfractionated  radiation  therapy  and  BIS-chlorethyl  nitrosourea  in  the  treat-ment  of  malignant  glioma:  possible  advantage  observed  at  72 Gy in 1.2 Gy bid fractions: report of the Radiation Therapy Oncology Group protocol 8302.  Int J Radiat Oncol Biol Phys 1993;25:193-207.

 345.   Fallia  C,  Olmi  P.  Hyperfractionated  and  accelerated  radiation therapy  in  central  nervous  system  tumors  (malignant  glio-mas, pediatric tumors, and brain metastases). Radiother Oncol 1997;43:235-246.

 346.   Brada M, Sharpe G, Rajan B, et al. Modifying radical radiothera-py in high grade gliomas: shortening the treatment through ac-celeration. Int J Radiat Oncol Biol Phys 1999;43:287-292.

 347.   Levin VA, Maor MH, Thall PF, et al. Phase II study of acceler-ated  fractionation radiation  therapy with carboplatin  followed by vincristine chemotherapy for the treatment of glioblastoma multiforme. Int J Radiat Oncol Biol Phys 1995;33:357-364.

 348.   Halperin  EC.  Multiple-fraction-per-day  external  beam  radio-therapy for adults with supratentorial malignant gliomas. J Neu-rooncol 1992;14:255-262.

 349.   Fulton DS, Urtasun RC, Scott-Brown I, et al. Increasing radia-tion  dose  intensity  using  hyperfractionation  on  patients  with malignant glioma: final  report of a prospective phase  I-II dose response study. J Neurooncol 1992;14:63-72.

 350.   Shapiro WR, Green SB, Burger PC, et al. Randomized trial of three  chemotherapy  regimens  and  two  radiotherapy  regimens in  postoperative  treatment  of  malignant  glioma:  Brain Tumor  Cooperative Group Trial no. 8001. J Neurosurg 1989;71:1-9.

 351.   Levin  VA,  Silver  P,  Hannigan  J,  et  al.  Superiority  of  post- radiotherapy  adjuvant  chemotherapy  with  CCNU,  procar-bazine, and vincristine (PCV) over BCNU for anaplastic gliomas: NCOG 6G61 final report. Int J Radiat Oncol Biol Phys 1990;18: 321-324.

 352.   Medical  Research  Council  Brain Tumour Working  Party.  Ran-domized  trial  of  procarbazine,  lomustine,  and  vincristine  in the  adjuvant  treatment  of  high-grade  astrocytoma:  a  Medical  Research Council Trial. J Clin Oncol 2001;19:509-518.

 353.   Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant  and  adjuvant  temozolomide  for  glioblastoma.  N Engl J Med 2005;352:987-996.

 354.   Athanassiou  H,  Synodinou  M,  Maragoudakis  E,  et  al.  Rand-omized phase II study of temozolomide and radiotherapy com-pared with radiotherapy alone in newly diagnosed glioblastoma multiforme. J Clin Oncol 2005;23:2372-2377.

Page 35: Chapter 33 - The Brain and Spinal Cord · changes (particularly in the spinal cord with end-arterial blood supply to portions of the thoracic cord) and direct effects of the radiation

33  The Brain and Spinal Cord 869

 355.   Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005;352:997-1003.

 356.   del Rowe J, Scott C, Werner-Wasik M, et al. Single-arm, open-label phase II study of intravenously administered tirapazamine and radiation therapy for glioblastoma multiforme. J Clin Oncol 2000;18:1254-1259.

 357.   Valtonen  S, Timonen  U, Toivanan  P,  et  al.  Interstitial  chem-otherapy  with  carmustine-loaded  polymers  for  high-grade gliomas:  a  randomized  double-blind  study.  Neurosurgery 1997;41:44-49.

 358.   Nakagawa K, Aoki Y, Fujimaki T, et al. High-dose conformal ra-diotherapy influenced the pattern of failure but did not improve survival  in  glioblastoma  multiforme.  Int  J  Radiat  Oncol  Biol Phys 1998;40:1141-1149.

 359.   Sheline GE. Radiotherapy for high grade gliomas.  Int J Radiat Oncol Biol Phys 1990;18:793-803.

 360.   Yung WKA,  Janus TJ, Maor M,  et  al. Adjuvant  chemotherapy with carmustine and cisplatin for patients with malignant glio-mas. J Neurooncol 1992;12:131-135.

 361.   Heideman RL, Kuttesch J, Gajjar AJ, et al. Supratentorial malig-nant gliomas in childhood: a single institution perspective. Can-cer 1997;80:497-504.

 362.   Finlay JL, Boyett JM, Yates AJ, et al. Randomized phase III trial in  childhood  high-grade  astrocytoma  comparing  vincristine, lomustine,  and  prednisone  with  the  eight-drugs-in-1  regimen.  J Clin Oncol 1995;13:112-123.

 363.   Mork  SJ,  Lindegaard  K-F.,  Halvorsen TB,  et  al.  Oligodendro-glioma: incidence and biological behavior in a defined popula-tion. J Neurosurg 1985;63:881-889.

 364.   Jenkins RB, Blair H, Ballman KV, et al. A t(1;19)(q10;p10) me-diates the combined deletions of 1p and 19q and predicts a bet-ter  prognosis  of  patients  with  oligodendroglioma.  Cancer  Res 2006;66:9852-9861.

 365.   Brandes AA, Tosoni A, Cavallo G, et al. Correlations between O6-methylguanine DNA methyltransferase promoter methyla-tion status, 1p and 19q deletions, and response to temozolomide in  anaplastic  and  recurrent  oligodendroglioma:  a  prospective GICNO study. J Clin Oncol 2006;24:4746-4753.

 366.   Shaw  EG,  Scheithauer  BW,  O’Fallon  JR,  et  al.  Oligodendro-gliomas:  the  Mayo  Clinic  experience.  J  Neurosurg  1992;76: 428-434.

 367.   Shaw  EG,  Scheithauer  BW,  O’Fallon  JR.  Management  of  supratentorial low-grade gliomas. Oncology 1993;7:97-107.

 368.   Sheline GE, Boldney E, Karisburg P, et al. Therapeutic consider-ations in tumors affecting the central nervous system: oligoden-drogliomas. Radiology 1964;82:44-49.

 369.   Chin HW, Hazel  JJ, Kim TH,  et  al. Oligodendrogliomas.  I. A clinical study of cerebral oligodendrogliomas. Cancer 1980;45: 1458-1466.

 370.   Lindegaard K-F., Mork SJ, Eide GE, et al. Statistical analysis of clinicopathological  features,  radiotherapy,  and  survival  in  270 cases of oligodendroglioma. J Neurosurg 1987;67:224-230.

 371.   Reedy PD, Bay JW, Hahn JF. Role of radiation therapy in the treatment of cerebral oligodendroglioma: an analysis of 57 cases and a literature review. Neurosurgery 1983;67:224-230.

 372.   Allison  RR,  Schulsinger A, Vongtama V,  et  al.  Radiation  and chemotherapy  improve  outcome  in  oligodendroglioma.  Int  J  Radiat Oncol Biol Phys 1997;37:399-403.

 373.   Ludwig CL, Smith MT, Godfrey AD, et al. A clinicopathologi-cal study of 323 patients with oligodendrogliomas. Ann Neurol 1986;19:15-21.

 374.   Cairncross  JG,  MacDonald  DR.  Successful  chemotherapy  for  recurrent  malignant  oligodendroglioma. Ann  Neurol  1988;23: 460-464.

 375.   Cushing  H,  Eisenhardt  L.  Meningiomas:  Their  Classification,  Regional  Behavior,  Life  History,  and  Surgical  End  Results. Springfield, IL: Charles C Thomas, 1938.

 376.   Glaholm J, Bloom HJG, Crow JH. The role of radiotherapy in the management  of  intracranial  meningiomas:  the  Royal  Marsden Hospital experience with 186 patients. Int J Radiat Oncol Biol Phys 1990;18:755-761.

 377.   Dziuk  T,  Woo  S,  Butler  B,  et  al.  Malignant  meningioma:  an  indication for initial aggressive surgery and adjuvant radiotherapy.  J Neurooncol 1998;37:177-188.

 378.   Jaaskelainen J, Haltia M, Servo A. Atypical and anaplastic men-ingiomas:  radiology,  surgery,  radiotherapy,  and  outcome.  Surg Neurol 1986;25:233-242.

 379.   Mirimanoff RO, Rosoretz DE, Linggood RM, et al. Meningioma: analysis of  recurrence and progression  following neurosurgical resection. J Neurosurg 1985;62:18-24.

 380.   Goldsmith  BJ,  Wara  WM,  Wilson  CB,  et  al.  Postoperative  irradiation for subtotally resected meningiomas. A retrospective analysis of 140 patients treated from 1967 to 1990. J Neurosurg 1994;80:195-201.

 381.   Petty AM,  Kun  LE,  Meyer  GA.  Radiation  therapy  for  incom-pletely resected meningiomas. J Neurosurg 1985;62:502-507.

 382.   Wara WM, Sheline GE, Newman H, et al. Radiation therapy of meningiomas. AJR Am J Roentgenol 1975;123:453-458.

 383.   Carelia RJ, Ransohoff J, Newall J. Role of radiation therapy in the  management  of  meningioma.  Neurosurgery  1982;10:332-339.

 384.   Forbes AR, Goldberg ID. Radiation therapy in the treatment of meningioma: the Joint Center for Radiation Therapy experience, 1970 to 1982. J Clin Oncol 1984;2:1139-1143.

 385.   Maguire PD, Clough R, Friedman AH, et al. Fractionated exter-nal-beam radiation  therapy  for meningiomas of  the cavernous sinus. Int J Radiat Oncol Biol Phys 1999;44:75-79.

 386.   Lunsford L. Contemporary management of meningiomas: radia-tion therapy as an adjuvant and radiosurgery as an alternative to surgical removal? J Neurosurg 1994;80:187-190.

 387.   Kondziolka D, Flickinger JC, Perez B. Judicious resection and/or radiosurgery for parasagittal meningiomas: outcomes from a multicenter review. Neurosurgery 1998;43:405-413.

 388.   Kondziolka D, Levy EI, Niranjan A, et al. Long-term outcomes after meningioma radiosurgery: physician and patient perspec-tives. J Neurosurg 1999;91:44-50.

 389.   Shafron  DH,  Friedman WA,  Buatti  JM,  et  al.  Linac  radiosur-gery  for  benign  meningiomas.  Int  J  Radiat  Oncol  Biol  Phys 1999;43:321-327.

 390.   Smith JL, Vuksanovic MM, Yates BM, et al. Radiation therapy for primary optic nerve meningiomas. J Clin Neuroophthalmol 1981;1:85-89.

 391.   Borovich  B,  Doron Y,  Braun  J,  et  al.  Recurrence  of  intracra-nial  meningiomas:  the  role  played  by  regional  multicentricity. Clinical  and  radiological  aspects.  J  Neurosurg  1986;65(Pt  2): 168-171.

 392.   Roche P-H, Regis J, Dufour H, et al. Gamma knife radiosurgery in the management of cavernous sinus meningiomas. J Neuro-surg 2000;93:68-73.

 393.   Ojemann  SG,  Sneed  PK,  Larson  DA,  et  al.  Radiosurgery  for malignant  meningioma:  results  in  22  patients.  J  Neurosurg 2000;93:62-67.

 394.   Deen HC Jr, Scheithauer BW, Ebersold MJ. Clinical and path-ologic  study  of  meningiomas  of  the  first  two  decades  of  life.  J Neurosurg 1982;56:317-322.

 395.   Drake JM, Hendrick EB, Becker LE, et al. Intracranial meningi-omas in children. Pediatr Neurosci 1986;12:134-139.

 396.   Snow RB, Lavyne MH. Intracranial  space-occupying  lesions  in AIDS patients. Neurosurgery 1985;16:148-153.

 397.   So YT, Beckstead JH, Davis RL. Primary central nervous system lymphoma in AIDS: a clinical and pathologic study. Ann Neurol 1986;20: 566-S72.

 398.   Reni M, Ferreri AJ, Garancini MP, et al. Therapeutic manage-ment of primary central nervous system lymphoma in immuno-competent patients: results of a critical review of the literature. Ann Oncol 1997;8:227-234.

 399.   Jack CR, Reese DF, Scheithauer BW. Radiographic findings  in 32  cases  of  primary  CNS  lymphoma. AJR Am  J  Roentgenol 1986;146:271-276.

 400.   Hochberg FH, Miller DC. Primary central nervous system lym-phoma. J Neurosurg 1988;68:835-853.

 401.   Murray K, Kun L, Cox J. Primary malignant lymphoma of the central nervous system. J Neurosurg 1986;65:600-607.

Page 36: Chapter 33 - The Brain and Spinal Cord · changes (particularly in the spinal cord with end-arterial blood supply to portions of the thoracic cord) and direct effects of the radiation

PART 10  Central Nervous System870

 402.   Socie G, Piprot-Chauffat C, Schlienger M, et al. Primary lym-phoma of the central nervous system: an unresolved therapeutic problem. Cancer 1990;65:322-326.

 403.   Nelson DF, Martz KL, Bonner H, et al. Non-Hodgkin’s lympho-ma of the brain: can high-dose, large-volume radiation therapy improve survival? Report on a prospective trial by the Radiation Therapy Oncology Group: RTOG 8315. Int J Radiat Oncol Biol Phys 1992;23:9-17.

 404.   Loeffler JS, Ervin TJ, Mauch P, et al. Primary lymphomas of the central nervous system: patterns of failure and factors that influ-ence survival. J Clin Oncol 1985;3:490-494.

 405.   Laperriere NJ, Cerezo L, Milosevic MF, et al. Primary lympho-ma of brain:  results  of management of  a modern  cohort with radiation therapy. Radiother Oncol 1997;43:247-252.

 406.   Glass J, Gruber ML, Cher L, et al. Preirradiation methotrexate chemotherapy  of  primary  central  nervous  system  lymphoma: long-term outcome. J Neurosurg 1994;81:188-195.

 407.   Abrey LE, DeAngelis LM, Yahalom J. Long-term survival in pri-mary CNS lymphoma. J Clin Oncol 1998;16:859-863.

 408.   Abrey  LE,  Yahalom  J,  DeAngelis  LM.  Treatment  for  pri-mary  CNS  lymphoma:  the  next  step.  J  Clin  Oncol  2000;18: 3144-3150.

 409.   Schultz  C,  Scott  C,  Sherman W,  et  al.  Preirradiation  chemo-therapy  with  cyclophosphamide,  doxorubicin,  vincristine,  and dexamethasone for primary CNS lymphomas:  initial  report of Radiation Therapy Oncology Group Protocol 88-06. J Clin On-col 1996;14:556-564.

 410.   O’Neill BP, Wang C-H., O’Fallon JR, et al. Primary central nerv-ous  system  non-Hodgkin’s  lymphoma  (PCNSL):  Survival  ad-vantages  with  combined  initial  therapy? A  final  report  of  the North Central Cancer Treatment Group study 86-72-52. Int J Radiat Oncol Biol Phys 1999;43:559-563.

 411.   Ferreri AJM, Reni M, Villa E. Therapeutic management of pri-mary central nervous system lymphoma: lessons from prospec-tive trials. Ann Oncol 2000;11:927-937.

 412.   DeAngelis  LM,  Seiferheld W,  Schold  SC,  et  al.  Combination chemotherapy  and  radiotherapy  for  primary  central  nervous system lymphoma: Radiation Therapy Oncology Group Study 93-10. J Clin Oncol 2002;20:4643-4648.

 413.   Posner  JB. Management  of  central  nervous  system metastases. Semin Oncol 1977;4:81-91.

 414.   Pickren JW, Lopez G, Tsukada Y, et al. Brain metastases: an autopsy  study. Cancer Treatment Symposia 1983;2:295-313.

 415.   Gaspar  L,  Scott  C,  Rotman  M,  et  al.  Recursive  partitioning analysis (RPA) of prognostic factors in three Radiation Therapy Oncology Group brain metastases trials. Int J Radiat Oncol Biol Phys 1997;37:745-751.

 416.   Swift PS, Phillips T, Martz K, et al. CT characteristics of patients with brain metastases  treated  in Radiation Therapy Oncology Group  study  79-16.  Int  J  Radiat  Oncol  Biol  Phys  1993;25: 209-214.

 417.   Smalley SR, Laws ER Jr, O’Fallon JR, et al. Resection for solitary brain metastasis: role of adjuvant radiation and prognostic vari-ables in 229 patients. J Neurosurg 1992;77:531-540.

 417a.   Borgelt G, Gelber R, Kramer S,  et  al. The palliation of  brain metastases: final  results of  the first  two studies by the Radia-tion theraphy Oncology Group. Int J Radiat Oncol Biol Phys.  1980;6:11-9.

 418.   Shaw EG. Radiotherapeutic management of multiple brain me-tastases: “3000 in 10” whole brain radiation is no longer a “no brainer.” Int J Radiat Oncol Biol Phys 1999;45:253-254.

 419.   Auchter  RM,  Lamond  JP,  Alexander  E  III,  et  al.  A  multi- institutional outcome and prognostic factor analysis of radiosur-gery  for  resectable  single  brain  metastasis.  Int  J  Radiat  Oncol Biol Phys 1996;35:27-35.

 420.   Patchell RA, Tibbs PA, Walsh JW, et al. A randomized trial of surgery in the treatment of single metastases to the brain. N Engl J Med 1990;322:494-500.

 421.   Alexander E III, Moriarty TM, Davis RB, et al. Stereotactic radio-surgery for the definitive, noninvasive treatment of brain metas-tases. J Natl Cancer Inst 1995;87:34-40.

 422.   Flickinger  JC,  Kondziolka  D,  Lunsford  LD,  et  al.  A  multi- institutional  experience  with  stereotactic  radiosurgery  for  resectable single brain metastasis. Int J Radiat Oncol Biol Phys 1994;28:797-802.

 423.   Smalley SR, Laws ER Jr, O’Fallon JR, et al. Resection for solitary brain metastasis: role of adjuvant radiation and prognostic vari-ables in 229 patients. J Neurosurg 1992;77:531-540.

 424.   Aoyama H, Shirato H, Tago M, et al. Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial. JAMA 2006;295:2483-2491.

 425.   Choi KN, Withers HR, Rotman M. Intracranial metastases from melanoma: clinical features and treatment by accelerated frac-tionation. Cancer 1985;56:1-9.

 426.   Weltman E, Salvajoli JV, Brandt RA, et al. Radiosurgery for brain metastases: a score index for predicting prognosis. Int J Radiat Oncol Biol Phys 2000;46:1155-1161.

 427.   Mork SJ, Loken AC. Ependymoma:  a  follow-up  study of 101 cases. Cancer 1977;40:907-915.

 428.   McCormick PC, Torres R, Post KD, et al. Intramedullary epend-ymoma of the spinal cord. J Neurosurg 1990;72:523-532.

 429.   Reimer R, Onofrio BM. Astrocytomas of the spinal cord in chil-dren and adolescents. J Neurosurg 1985;63:669-675.

 430.   Kopelson G, Linggood RM, Leinman GM, et  al. Management of  intramedullary  spinal  cord  tumors.  Radiology  1980;135: 473-479.

 431.   Chun HC, Schmidt-Ullrich RK, Wolfson A, et al. External beam radiotherapy  for  primary  spinal  cord  tumors.  J  Neurooncol 1990;9:211-217.

 432.   Guidetti B, Mercuri S, Vagnozzi R. Long-term results of the sur-gical treatment of 129 intramedullary spinal gliomas. J Neuro-surg 1981;54:323-330.

 433.   Cooper PR, Epstein F. Radical resection of intramedullary spinal cord tumors in adults: recent experience in 29 patients. J Neuro-surg 1985;63:492-499.

 434.   Epstein  J.  Spinal  cord  astrocytomas  of  childhood.  Prog  Exp  Tumor Res 1987;30:135-153.

 435.   Epstein FJ, Farmer J-P., Freed D. Adult intramedullary astrocyto-mas of the spinal cord. J Neurosurg 1992;77:355-359.

 436.   Epstein F, McCleary EL.  Intrinsic brain-stem tumors of child-hood: surgical indications. J Neurosurg 1986;64:11-15.

 437.   Epstein F. Intraaxial tumors of the cervicomedullary junction in children. Concepts Pediatr Neurosurg 1987;7:117.

 438.   Kopelson G, Linggood RM, Kleinman GM, et al. Management of  intramedullary  spinal  cord  tumors.  Radiology  1980;135: 473-479.

 439.   O’Sullivan C, Jenkin RD, Doherty MA, et al. Spinal cord tumors in children: long-term results of combined surgical and radiation treatment. J Neurosurg 1994;81:507-512.

 440.   Kopelson G. Radiation  tolerance of  the  spinal cord previously damaged  by  tumor  and  operation:  long  term  neurological  improvement and time-dose-volume relationships after irradia-tion of intraspinal gliomas. Int J Radiat Oncol Biol Phys 1982;8: 925-929.

 441.   Shaw EG, Evans RG, Scheithauer BW, et al. Radiotherapeutic management  of  adult  intraspinal  ependymomas.  Int  J  Radiat Oncol Biol Phys 1986;12:323-327.

 442.   Garcia  DM.  Primary  spinal  cord  tumors  treated  with  surgery and  postoperative  irradiation.  Int  J  Radiat  Oncol  Biol  Phys 1985;11:1933-1939.

 443.   Bryne TN. Spinal  cord  compression  from epidural metastases.  N Engl J Med 1992;327:614-619.

 444.   Rodichok LD, Harper GR, Ruckdeschel JC, et al. Early diagnosis of spinal epidural metastases. Am J Med 1981;70:1181-1188.

 445.   Young  RF,  Post  EM,  King  GA.  Treatment  of  spinal  epidural  metastases. J Neurosurg 1980;53:741-748.

 446.   Sorensen PS, Borgesen SE, Rohde K, et al. Metastatic epidural spinal cord compression: results of treatment and survival. Can-cer 1990;65:1502-1508.

 447.   Latini  P, Maranzano E, Ricci  S,  et  al. Role  of  radiotherapy  in metastatic spinal cord compression: preliminary results from a prospective trial. Radiother Oncol 1989;15:227-233.

Page 37: Chapter 33 - The Brain and Spinal Cord · changes (particularly in the spinal cord with end-arterial blood supply to portions of the thoracic cord) and direct effects of the radiation

33  The Brain and Spinal Cord 871

 448.   Sundaresan N, Galicich JH, Lane JM, et al. Treatment of neo-plastic  epidural  cord  compression by  vertebral  body  resection and stabilization. J Neurosurg 1985;63:676-684.

 449.   Siegal T, Seigal T. Surgical decompression of anterior and pos-terior malignant epidural tumors compressing the spinal cord: a prospective study. Neurosurgery 1985;17:424-432.

 450.   Herbert SH, Solin LJ, Rate WR, et  al. The effect of palliative radiation  therapy  on  epidural  compression  due  to  metastatic  malignant melanoma. Cancer 1991;67:2472-2476.

 451.   Olsen ME, Chernik NL, Posner JB. Infiltration of the leptome-ninges by systemic cancer. Arch Neurol 1974;30:122-137.