Chapter 3 webpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/... · 3.1 Conformational analysis...

21
1 Carey Chapter 3 – Conformations of Alkanes and Cycloalkanes YSU YSU Figure 3.5 – Energy distribution vs. Temp. G = H - TS YSU YSU Conformational Analysis – Towards Structural Biology Cytosine (C) (from TGCA alphabet in DNA

Transcript of Chapter 3 webpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/... · 3.1 Conformational analysis...

Page 1: Chapter 3 webpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/... · 3.1 Conformational analysis of Ethane Since single bonds can rotate around the bond axis, different conformations

1

Carey Chapter 3 – Conformations of Alkanes and Cycloalkanes

YSUYSU

Figure 3.5 – Energy distribution vs. Temp.

G = H - TS

YSUYSU

Conformational Analysis – Towards Structural Biology

Cytosine (C) (from TGCA alphabet in DNA

Page 2: Chapter 3 webpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/... · 3.1 Conformational analysis of Ethane Since single bonds can rotate around the bond axis, different conformations

2

YSUYSU

Conformational Analysis – Towards Structural Biology

« Chem3D Embed »

Cytosine (C) (from TGCA alphabet in DNA

YSUYSU

Conformational Analysis – Towards Structural Biology

« Chem3D Embed »

Page 3: Chapter 3 webpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/... · 3.1 Conformational analysis of Ethane Since single bonds can rotate around the bond axis, different conformations

3

YSUYSU

Conformational Analysis – Medicinal Chemistry

Thymidine – incorporated into DNA as “T”

Zidovudine (AZT) – incorporated into DNA instead of T – stops chain growth

YSUYSU

« Chem3D Embed »

Conformational Analysis – Medicinal Chemistry

Page 4: Chapter 3 webpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/... · 3.1 Conformational analysis of Ethane Since single bonds can rotate around the bond axis, different conformations

4

YSUYSU

3.1 Conformational analysis of Ethane

Since single bonds can rotate around the bond axis, different conformations are possible ‐ conformational analysis

Figure 3.1 – Different representations of ethane ‐ ChemDraw

YSUYSU

Different 3‐D depictions of Ethane

Rotation around the central C‐C bond will cause the hydrogens to interact ‐rotamers or conformers

“Wedge/dash”“Sawhorse”

“Newman”

3.1 Conformational Depictions of Acyclic Molecules

Page 5: Chapter 3 webpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/... · 3.1 Conformational analysis of Ethane Since single bonds can rotate around the bond axis, different conformations

5

YSUYSU

3.1 Definitions for Using Newman Projections

Gauche

torsion angle 60oEclipsed

torsion angle 0oAnti

torsion angle 180o

Both gauche and anti conformers are staggered

Eclipsed conformers are destabilized by torsional strain

YSUYSU

3.1 – Conformational Analysis of Ethane

Figure 3.4 – Rotation around the C‐C bond of Ethane

Page 6: Chapter 3 webpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/... · 3.1 Conformational analysis of Ethane Since single bonds can rotate around the bond axis, different conformations

6

YSUYSU

3.2 Conformational Analysis of Butane

Figure 3.4 – Rotation around the C‐C bond of Ethane

YSUYSU

3.3 Conformations of higher alkanes

Anti(staggered)

eclipsed eclipsed

Applicable for any 

acyclic molecule

Gauche(staggered)

Page 7: Chapter 3 webpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/... · 3.1 Conformational analysis of Ethane Since single bonds can rotate around the bond axis, different conformations

7

YSUYSU

3.4 Cycloalkanes – most are not planar

YSUYSU

3.5 Cyclopropane and Cyclobutane

Figure 3.10 – Depictions of Cyclopropane and Cyclobutane

Page 8: Chapter 3 webpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/... · 3.1 Conformational analysis of Ethane Since single bonds can rotate around the bond axis, different conformations

8

YSUYSU

3.6 Conformations of Cyclopentane

Figure 3.12 – Important conformations of Cyclopentane

YSUYSU

3.7 Conformations of Cyclohexane

Conformationally flexible (without breaking bonds)

Chair Boat Chair

Page 9: Chapter 3 webpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/... · 3.1 Conformational analysis of Ethane Since single bonds can rotate around the bond axis, different conformations

9

YSUYSU

3.7-3.8 Cyclohexane – axial and equatorial positions

Figures 3.13 & 3.14 – Axial and Equatorial positions in cyclohexane chair and boat conformations

YSUYSU

« Chem3D Embed »

3.7-3.8 Cyclohexane – axial and equatorial positions

Page 10: Chapter 3 webpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/... · 3.1 Conformational analysis of Ethane Since single bonds can rotate around the bond axis, different conformations

10

YSUYSU

3.9 Conformational inversion – ring flipping

Figure 3.18 – Energeticsof the ring‐flip

YSUYSU

3.10 Equilibrium constants for ring-flips

G = H – TS

G = ‐ RTlnK

Reactants Products

Equilibrium Constant (K) =  [Products][Reactants]

Page 11: Chapter 3 webpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/... · 3.1 Conformational analysis of Ethane Since single bonds can rotate around the bond axis, different conformations

11

YSUYSU

3.10 Equilibrium constants for ring-flips

G = ‐ RTlnK

Equilibrium Constant (K) =  [Right‐Side][Left‐Side]

Left-Side Right-Side

K > 1, RHS favoured; K ~ 1, equal; K < 1, LHS favoured

YSUYSU

3.10 Analysis of monosubstituted cyclohexanes

G = ‐0.24 Kcal/mol

K = 1.5

Page 12: Chapter 3 webpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/... · 3.1 Conformational analysis of Ethane Since single bonds can rotate around the bond axis, different conformations

12

YSUYSU

3.10 Analysis of monosubstituted cyclohexanes

G = ‐7.3 Kcal/mol

K = 19

YSUYSU

3.10 Analysis of monosubstituted cyclohexanes

G = ‐8.6 Kcal/mol

K = 32.3

Page 13: Chapter 3 webpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/... · 3.1 Conformational analysis of Ethane Since single bonds can rotate around the bond axis, different conformations

13

YSUYSU

3.10 Analysis of monosubstituted cyclohexanes

G = ‐8.6 Kcal/mol

K = 32.3

YSUYSU

3.10 Analysis of monosubstituted cyclohexanes

G = ‐22.8 Kcal/mol

K = >9999

Page 14: Chapter 3 webpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/... · 3.1 Conformational analysis of Ethane Since single bonds can rotate around the bond axis, different conformations

14

YSUYSU

3.10 Analysis of monosubstituted cyclohexanes

G = ‐22.8 Kcal/mol

K = >9999

YSUYSUFigure 3.19

3.10 Analysis of monosubstituted cyclohexanes

Page 15: Chapter 3 webpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/... · 3.1 Conformational analysis of Ethane Since single bonds can rotate around the bond axis, different conformations

15

YSUYSU

3.11 Disubstituted Cyclopropanes – Stereoisomers

Figure 3.20

YSUYSU

3.12 Disubstituted Cycloalkanes - Stereoisomers

Cis‐1,2‐dimethylcyclopropane is less stable than the trans isomer

Cis‐1,2‐dimethylcyclohexane is less stable than the trans isomer

Cis‐1,3‐dimethylcyclohexane is more stable than the trans isomer

Cis‐1,4‐dimethylcyclohexane is less stable than the trans isomer

All based on interactions between substituents and other groups on the ring

Page 16: Chapter 3 webpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/... · 3.1 Conformational analysis of Ethane Since single bonds can rotate around the bond axis, different conformations

16

YSUYSU

3.12 Disubstituted Cyclohexanes – Energy Differences

YSUYSU

Page 17: Chapter 3 webpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/... · 3.1 Conformational analysis of Ethane Since single bonds can rotate around the bond axis, different conformations

17

YSUYSU

3.13 Medium and large rings - Cyclodecane

« Chem3D Embed »

YSUYSU

3.13 Medium and large rings - Erythromycin

« Chem3D Embed »

Page 18: Chapter 3 webpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/... · 3.1 Conformational analysis of Ethane Since single bonds can rotate around the bond axis, different conformations

18

YSUYSU

3.13 Medium and Large Rings – YSU Chemistry

O

O O

O

O

Ph

N

O

OO

O

O

Ph

N

O

O O

O

O

N2

NNN

Rh2+

YSUYSU

3.14 Polycyclic Ring Systems

adamantane

Page 19: Chapter 3 webpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/... · 3.1 Conformational analysis of Ethane Since single bonds can rotate around the bond axis, different conformations

19

YSUYSU

3.14 Polycyclic Ring Systems - Cholesterol

cholesterol

YSUYSU

3.14 Polycyclic Ring Systems - Bicyclics

Bicyclobutane

Bicyclo[3.2.0]heptane

Bicyclo[2.2.2]octane

Bicyclo[2.1.0]pentane

Bicyclo[4.1.0]heptane

Bicyclo[4.2.2]decane

Page 20: Chapter 3 webpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/... · 3.1 Conformational analysis of Ethane Since single bonds can rotate around the bond axis, different conformations

20

YSUYSU

3.15 Heterocyclic Compounds

tetrahydrofuran pyrrolidine piperidine indole

YSUYSU

morphine ritilin librium

3.15 Heterocyclic Compounds

Page 21: Chapter 3 webpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/... · 3.1 Conformational analysis of Ethane Since single bonds can rotate around the bond axis, different conformations

21

YSUYSU

3.15 Heterocyclic Compounds - Carbohydrates

O

OH

HOHO

OHOH

D‐Glucose (dextrose, blood sugar)