Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

72
Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation

Transcript of Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

Page 1: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

Chapter 26

Geometrical OpticsSnell’s Law

Thin Lens Equation

Page 2: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

1) Index of Refraction, n

Speed of light is reduced in a medium

n =Speed of light in a vacuum

Speed of light in medium=

c

v

Air 1.000293

Water 4/3

Glass 1.5

Diamond 2.4

Page 3: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

2) Snell’s Law

a) Reflection and Transmission

Transmittedray

light splits at an interface

Page 4: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

Transmittedray

Page 5: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

(b) Refraction: Transmitted ray is bent at interface

θ1 ≠ θ2

toward normal if n increases

Page 6: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

θ1 ≠ θ2

away from normalif n decreases

Page 7: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

toward normalif n increases

θ1 ≠ θ2

c) Derivation of Snell’s Law

Page 8: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

sinθ2 =λ 2

h

sinθ1

v1

=sinθ2

v2

n1 sinθ1 = n2 sinθ2

sinθ1 =λ1

h

=v1 f

h

=v1

hf

=v2 f

h

=v2

hf

but v = c /n

Page 9: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

Example: Rear-view mirror

Page 10: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

Example: Apparent Depth

Page 11: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

θ

x

d

tanθ1 =x

d

d tanθ1 = ′ d tanθ2

For small angles,

sinθ ≅ tanθ

→ ′ d = dsinθ1

sinθ2

′ d = dn1

n2

d’

θ

tanθ2 =x

′ d

so d sinθ1 = ′ d sinθ2

Page 12: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

3) Total internal reflection

a) The conceptFor small values of θ1, light splits at an interface

Page 13: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

For larger values of θ1, θ2 > 90º and refraction is not possible

Then all light is reflected internally

Note: this is only possible if n1 > n2

θ

Page 14: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

b) Critical incident angle

If θ1 = θc, then θ2 = 90º

n1 sinθc = n2 sinπ

2Snell’s law:

sinθc =n2

n1

(n1 > n2)

Page 15: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

Some critical angles

Water-air: 49º

Glass - air: 42º

Diamond - water: 33º

Diamond - air: 24º

Why diamonds sparkle

Page 16: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

c) Prisms (glass-air critical angle = 45º)

Page 17: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

Prisms in binoculars– Longer light path– Image erect

Page 18: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

d) Fibre optics

Low loss transmission of light, encoded signals.

Page 19: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

Fibre optic bundles, coherent bundles

Imaging applications: endoscopy

Page 20: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.
Page 21: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

4) Dispersion

• Index of refraction depends on wavelength

Page 22: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

Rainbow

Page 23: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

Sun Dogs (parhelia)

Page 24: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

5) Image Formation

a) Seeing an object

Diffuse reflection

Page 25: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

b) Image formation with a pinhole

Diffuse reflection

Diffuse reflection screen

Page 26: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

Characteristics of pinhole imaging– Infinite depth of field (everything in focus)

– Arbitrary magnification

– Low light (increasing size produces blurring)

Diffusereflectionscreen

Diffuse reflection

Page 27: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

c) Ideal lens

Page 28: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

Characteristics of the ideal lens– All rays leaving a point on object meet at one point on image

– Only one perfect object distance for selected image distance

(limited depth of field -- better for smaller lens)

Page 29: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

6) Thin lenses

a) Converging - thicker in the middle

Page 30: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

(i) Parallel coaxial rays converge at focus

Reversible

Page 31: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

(ii) Symmetric - rays leaving focal point emerge parallel (f’ = f)

Page 32: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

(iii) Ray through centre undeviated

Page 33: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

Summary of ray tracing rules for converging lens

Page 34: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

b) Diverging - thinner in the middle

Page 35: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

(i) parallel, coaxial rays diverge as if from focus

Reversible

Page 36: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

(ii) symmetric - rays converging toward focus emerge parallel

Page 37: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

(iii) ray through centre undeviated

Page 38: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

Summary of ray-tracing rules for diverging lens

Page 39: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

c) Real lenses:- usually spherical surfaces- approximate ideal lens for small angles (paraxial approximation)

Page 40: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

7) Image Formation with thin lenses (ray tracing)

(a) Converging lens - real imageUse 2 of 3 rays:

Page 41: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

camera

/CCD sensor

Page 42: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

(b) Converging lens - virtual image

Page 43: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

(c) Diverging lens - virtual image

Page 44: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

8) Thin Lens Equation

a) The equation

1

f=

1

di

+1

do

Page 45: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

b) Sign Convention (left to right)(i) Focal Length:

f > 0 convergingf < 0 diverging

(ii) Object distancedo > 0 left of lens (real; same side as incident light)do < 0 right of lens (virtual; opposite incident light)

(iii) Image distancedi > 0 right of lens (real; opposite incident light)di < 0 left of lens (virtual; same side as incident light)

(iv) Image sizehi > 0 erecthi < 0 inverted

Page 46: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

c) Lateral magnification

Definition:

m =hi

ho

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

From geometry (and sign convention):

m =−di

do

Page 47: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

9) Compound Lenses

Image of first lens is object for the second lens.

Apply thin lens equation in sequentially.

Page 48: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.
Page 49: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

m =hi2

ho1

Overall magnification is the product:

=hi2

ho2

ho2

ho1

=hi2

ho2

hi1

ho1

=m1m2

m = m1m2

Page 50: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

Example: Problem 26.66

f1 = 9.0 cm

f2 = 6.0 cm

d = 18.0 cm

Find final image and magnification.

Page 51: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

10) Vision and corrective lenses

a) Anatomy of the eye

Page 52: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

120 x 106 rods - detect intensity: slow, mono, sensitive

6 x 106 cones - detect frequency: R - 610 nm, G - 560 nm, B - 430 nm

Page 53: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

b) Optics

- Accomodation: focal length changes with object distance

- near point: nearest point that can be accomodated- normally < 25 cm

- far point: furthest point that can be accomodated- normally ∞

Page 54: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

c) Myopia- far point < ∞- near-sighted (far-blind)- correction: object at ∞ --> image at far point

Page 55: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

Correction: object at ∞ --> image at far point

1

f=

1

do

+1

di

1

f=

1

∞+

1

−FP

f = −FP

(ignoring the eye-lens distance)

Page 56: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

d) Refractive Power

Refractive power in diopters =1

f (in meters)

For a far point of 50 cm, f = -50 cm,

Lens prescription: -2

Page 57: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

e) hyperopia (hypermetropia)

- near point > 25 cm- far-sighted (near-blind)- correction: object at 25 cm --> image at near point

Page 58: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

Correction: object at 25 cm --> image at near point

1

f=

1

do

+1

di

1

f=

1

25 cm+

1

−NP

f =(25cm)NP

NP − 25cm> 0

(ignoring the eye-lens distance)

For near point of 40 cm, f = 66 cmPower = + 1.5 (reading glasses)

Page 59: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

Examples:

Problem 26.73Age 40: f = 65.0 cm --> NP’ = 25.0cmAge 45: NP’ --> 29.0 cm(a) How much has NP (without glasses) changed?(b) What new f is needed?

Problem 26.75FP = 6.0 m corrected by contact lenses. (Find f)An object (h = 2.0 m) is d = 18.0 m away. • Find image distance with lenses.• Find image height with lenses.

Page 60: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

11) Angular Magnification

a) Angular size

θ =h

d

Page 61: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

b) Angular magnification

M =′ θ

θ=

Angular size with optical device

Angular size without optical device

Page 62: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

12) Magnifier

′ θ =ho

do

With magnifier:

where 1

f=

1

do

+1

di

so ′ θ = ho

1

f−

1

di

⎝ ⎜ ⎞

⎠ ⎟

(Magnifier allows object to be close to the eye)

Page 63: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

Without magnifier:

θ =ho

N

so M =′ θ

θ= N

1

f−

1

di

⎝ ⎜ ⎞

⎠ ⎟

We had ′ θ = ho

1

f−

1

di

⎝ ⎜ ⎞

⎠ ⎟

Highest magnification (di = -N):

M =N

f+1

Lowest magnification (di = -∞):

M =N

f

(tense eye)

(relaxed eye)

(Magnification quoted with N = 25 cm, for relaxed eye)

Page 64: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

Example:

Problem 26.82Farsighted person has corrective lenses with f = 45.4 cm.

Maximum magnification of a magnifier is 7.50 (normal vision).

What is the maximum magnification of the magnifier for the farsighted person without lenses?

Page 65: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

13) Compound Microscope

• Simple magnifier: M = N/f– to increase M, decrease f– practical limits to decreasing f (and therefore size):

• small lens difficult to manufacture and use• increases aberrations

• Microscope introduces an additional lens to form a larger intermediate image, which can be viewed with a magnifier

Page 66: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

L

M =hi1 fe

ho N

Magnification:

M =′ θ

θ

=moMe

M =−di1

do1

⎝ ⎜ ⎞

⎠ ⎟N

fe

⎝ ⎜ ⎞

⎠ ⎟

For image at ∞, di2 = fe

=hi1 di2

ho N

=hi1

ho

⎝ ⎜ ⎞

⎠ ⎟N

fe

⎝ ⎜ ⎞

⎠ ⎟

For max M, do1 fo

For di2 = ∞, di1 + fe = L

M =−N

fe

⎝ ⎜ ⎞

⎠ ⎟L − fe

fo

⎝ ⎜ ⎞

⎠ ⎟

do1 ≅ fo

Page 67: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

Example:Problem 26.88Microscope with fo = 3.50 cm, fe = 6.50 cm, and L = 26.0 cm.

(a) Find M for N = 35.0 cm.

(b) Find do1 (if first image at Fe)

(c) Find lateral magnification of the objective.

Page 68: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

14) The Astronomical Telescope

• Magnifier requires do < f, but do -> ∞ for stars

• Introduce objective to form nearby image, then use magnifier on the image

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Page 69: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

For do ≈ ∞, di ≈ fo

Magnification:

M =′ θ

θ

=hi fe

ho do

=hi fe

−hi fo

M =− fo

fe

Long telescope, small eyepiece

Page 70: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

Example:Problem 26.94Yerkes Observatory: fo = 19.4 m, fe = 10.0 cm.

(a) Find angular magnification.

(b) If ho = 1500 m (crater), find hi, given do = 3.77 x 108 m

(c) How close does the crater appear to be.

Page 71: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

Galilean Telescope (Opera glasses)

Page 72: Chapter 26 Geometrical Optics Snell’s Law Thin Lens Equation.

Reflecting Telescope