Chapter 2 SUPER-RESOLUTIONFROMMULTIPLEIMAGES HAVING ... · 3. Blind estimation of the PSF from the...

14
Chapter 2 SUPER-RESOLUTIONFROM MULTIPLEIMAGES HAVING ARBITRARY MUTUAL MOTION Assaf Zomet and Shmuel Peleg School of Computer Science and Engineering The Hebrew University of Jerusalem 91904 Jerusalem, Israel 1. INTRODUCTION Video sequences usually contain a large overlap between successive frames, and regions in the scene are sampled in several images. This multiple sampling can sometime be used to achieve images with a higher spatial resolution. The process of reconstructing a high resolution image from several images covering the same region in the world is called Super Resolution. Additional tasks may include the reconstruction of a high resolution video sequence [Elad and Feuer, 1996], or a high resolution 3D model of the scene [Smelyanskiy et al., 2000]. A common model for super resolution presents it in the following way: The low resolution input images are the result of projection of a high resolution image onto the image plane, followed by sampling. The goal is to find the high resolution image which fits this model. Formulating it in mathematical language: Given images of size , find the image of size , which minimizes the Error function: where: 1. - Can be any norm, usually . 2. is the projection of onto the coordinate system and sampling grid of image . 3

Transcript of Chapter 2 SUPER-RESOLUTIONFROMMULTIPLEIMAGES HAVING ... · 3. Blind estimation of the PSF from the...

Page 1: Chapter 2 SUPER-RESOLUTIONFROMMULTIPLEIMAGES HAVING ... · 3. Blind estimation of the PSF from the images [Shekarforoush and Chel-lappa, 1999]. Some algorithms can handle space-variant

Chapter2

SUPER-RESOLUTIONFROM MULTIPLE IMA GESHAVING ARBITRAR Y MUTUAL MOTION

AssafZometandShmuelPelegSchoolof ComputerScienceandEngineeringTheHebrew Universityof Jerusalem91904Jerusalem,Israel

1. INTR ODUCTION

Videosequencesusuallycontaina largeoverlapbetweensuccessive frames,andregionsin thescenearesampledin severalimages.Thismultiplesamplingcansometimebeusedto achieve imageswith a higherspatialresolution.Theprocessof reconstructingahighresolutionimagefromseveralimagescoveringthesameregion in theworld is calledSuperResolution. Additional tasksmayincludethereconstructionof ahighresolutionvideosequence[EladandFeuer,1996],or ahigh resolution3D modelof thescene[Smelyanskiyetal., 2000].

A commonmodelfor superresolutionpresentsit in thefollowing way: Thelow resolutioninput imagesare the resultof projectionof a high resolutionimageonto the imageplane,followed by sampling. The goal is to find thehigh resolutionimagewhich fits this model. Formulatingit in mathematicallanguage:Given

�images ����������� ���� of size � ��� ��� , find the image ��� of size� � � � � , whichminimizestheError function:

��� � ��� � !����

"$# � � � �%�'& � �(�)� " �where:

1."+*,"

- Canbeany norm,usually - � .2.# � � � �.� is theprojectionof � � ontothecoordinatesystemandsampling

grid of image� �(�)� .

3

Page 2: Chapter 2 SUPER-RESOLUTIONFROMMULTIPLEIMAGES HAVING ... · 3. Blind estimation of the PSF from the images [Shekarforoush and Chel-lappa, 1999]. Some algorithms can handle space-variant

4

Whenthisoptimizationproblemdoesnothaveasinglesolution,additionalcon-straintsmaybeadded,expressingprior assumptionson ��� , suchassmooth-ness.Theprojection

# � � � �/� is usuallymodeledby four stages:

1. GeometricTransformation

2. Blurring

3. Subsampling

4. AdditiveNoise

Themajordifferencesbetweenmostmodernalgorithmsarein theoptimiza-tion techniqueusedfor solving this setof equations,the constraintson ���whichareaddedto thesystem,andthemodelingof thegeometrictransforma-tion, blur andnoise.

1.1 MODELING THE IMA GING PROCESS

GeometricTransformation. In orderto haveauniquesuperresolvedimage� � , the coordinatessystemof � � shouldbe determined.A naturalchoicewouldbethecoordinatessystemof oneof theinput images,enlargedby factor0 , usuallyby two. Thegeometrictransformationof � � to thecoordinatesoftheinput imagesis computedby finding themotionbetweentheinput images.Motioncomputationandimageregistrationarebeyondthescopeof thispaper. Itis importanttomentionthathighaccuracy of registrationiscrucial tothesuccessof superresolution. This accuracy canbe obtainedwhenandassumptiononthemotionmodelholds,suchasanaffineor aplanar-projective transformation.For highly accuratemodel-basedmethods,see[Bergenet al., 1992,SawhneyandKumar, 1999,Zelnik-ManorandIrani, 2000].

Blur. Imageblur canusuallybe modeledby a convolution with somelow-passkernel.Thisspace-invariantfunctionshouldapproximateboththeblur oftheoptics,andtheblur causedby thesensor. Thespectralcharacteristicsof thekerneldeterminewhetherthesuperresolutionproblemis uniquelysolvable: Ifsome(high) frequenciesof thekernelvanish,thenthereis no singlesolution[Papoulis,1977]. In thiscase,constraintsonthesolutionmaybeadded[CapelandZisserman,2000].Thedigitizedresultof thecamerablur is called"ThePSF- Point SpreadFunc-tion". Severalwaysto estimateit are:

1. Usecameramanufacturerinformation(Which is hardto get).

2. Analyzea pictureof a known object[Irani andPeleg, 1991,MannandPicard,1994].

Page 3: Chapter 2 SUPER-RESOLUTIONFROMMULTIPLEIMAGES HAVING ... · 3. Blind estimation of the PSF from the images [Shekarforoush and Chel-lappa, 1999]. Some algorithms can handle space-variant

Super-Resolutionfrommultipleimageshavingarbitrary mutualmotion 5

3. Blind estimationof thePSFfrom the images[ShekarforoushandChel-lappa,1999].

Somealgorithmscanhandlespace-variantblur, suchasspace-variant-motionblur, air turbulence,etc.

Subsampling. Subsamplingis the main differencebetweenthe modelsofsuperresolutionandimagerestoration.Sometimesthesamplesfrom differentimagescanbeorderedin acompleteregulargrid, for examplewhenthemotionof the imagingdevice is preciselycontrolled. In this caseimagerestorationtechniquessuchasinverse-filteringandDe-convolution canbeusedto restorea high resolutionimage. In the generalcaseof a moving camera,the superresolutionimageis reconstructedfrom sampleswhicharenotonaregulargrid.Still, imagerestorationtechniquesinspiresomeof the superresolutionalgo-rithms[EladandFeuer, 1999].

Additi veNoise. In superresolution,asin similarimageprocessingtasks,it isusuallyassumedthatthenoiseisadditive,normallydistributedwith zero-mean.Underthisassumption,themaximumlikelihoodsolutionis foundby minimiz-ingtheerrorunder MahalanobisNorm(usingestimatedautocorrelationmatrix),or - � norm(assuminguncorrelated"white noise"). Theminimumis foundbyusingtoolsdevelopedfor largeoptimizationproblemsunderthesenorms,suchasapproximatedkalman-filter[EladandFeuer, 1996],linear-equationssolvers[Elad andFeuer, 1999,Patti et al., 1997],etc. Theassumptionof normaldis-tribution of thenoiseis not accuratein mostof thecases,asmostof thenoisein the imagingprocessis non-gaussian(quantization,cameranoise,etc.),butmodelingit in a more realisticway would end in a very large andcomplexoptimizationproblemwhich is usuallyhardto solve.

1.2 HISTORICAL OVERVIEW

The theoreticalbasisfor superresolutionwas laid by papoulis[Papoulis,1977],with TheGeneralizedSamplingTheorem. It wasshown thatacontinu-ousband-limitedsignal1 canbereconstructedfromsamplesof convolutionsof1 with differentfilters,assumingsomepropertiesof thesefilters(see1.1-blur).This ideais simpleto generalizeto 2D signals(images).

A pioneeringalgorithmfor superresolutionfor imageswaspresentedbyHuang& Tsai [HuangandTsai,1984],who madeexplicit useof thealiasingeffect,assumingtheimageis bandlimited, andtheimagesarenoise-free.Kimet. al. generalizedthis work to noisy andblurredimages,usingleastsquareminimization[Kim etal., 1990].

Page 4: Chapter 2 SUPER-RESOLUTIONFROMMULTIPLEIMAGES HAVING ... · 3. Blind estimation of the PSF from the images [Shekarforoush and Chel-lappa, 1999]. Some algorithms can handle space-variant

6

Spatialdomainalgorithmwaspresentedby Ur & Gross[Ur andGross,1992].Assuminga known 2D translation,a fine samplegrid imagewascreatedfromtheinput images,usinginterpolation,andthecamerablur wascanceledusingdeblurringtechnique.Theabovemethodsassumedblur functionwhich is uni-form over all the images,andidenticalon different images. They werealsorestrictedto global2D translation.

A Different Approachwas suggestedby Irani & Peleg [Irani and Peleg,1991,Irani andPeleg, 1993],basedon previous work by Peleg et al. [Kerenetal.,1988]. Thebasicidea,IterativeBackward Projecting- IBP, wasadoptedfrom computer-aidedTomography(CAT). Thealgorithmstartswith aninitialguess� � �32 � , and iteratively simulatethe imagingprocess,reprojectingtheerror backto the superresolutionimage. This algorithmcanhandlegeneralmotionandnon-uniformblur function,assumingthey canbeapproximatedac-curately.

To reducenoiseand solve singularcases,several algorithmsincorporateprior knowledgeinto the computationby constrainingthe solution. Stark&Oskoui [StarkandOskoui, 1989]andlaterPati et. al. [Patti et al., 1997]basetheir algorithmon a set theoreticoptimizationtool calledPOCS(ProjectionOnto Convex Sets). It is assumedthat convex constraintson thesolutionareknown,sothattheirintersectionisalsoaconvex set.Theimplementationof thealgorithmis similar to theIBP algorithmof Irani & Peleg, with amodificationin thebackprojectionstage:Theerrorsin the imagingareprojectedonto thesolution image,while keepingthe solution in the convex set definedby theconstraints.Pati et. al. alsoaddedmotionblur to theimagingprocessmodel.

Markov RandomFieldwasalsousedto regularizesuperresolution.Shekar-foroushet. al. [Berthodet al., 1994] formulatedthesuperresolutionproblemin probabilisticbayesianframework,andusedMRF for modelingtheprior, andfinding thesolution. Similar formulationwaspresentedby Schultz& Steven-son[SchultzandStevenson,1996],whouseprior ontheedgesandsmoothnessof theimagetocompensatefor badmotionestimation,basedonHuber-MarkovRandomField formulation.

Thereis a greatsimilarity betweensuperresolutionandimagerestoration,andindeedmany of the superresolutiontechniquesareadoptedfrom imagerestoration.A unifying framework for superresolutionasa generalizationofimagerestorationwaspresentedbyElad& Feuer[EladandFeuer, 1999].Superresolutionwasformulatedusingmatrix-vectornotations,andit wasshown thatexistingsuperresolutiontechniquesareactually variationsof standardquadraticminimizationtechniquesfor solvinglinearequationssets.Basedon this anal-

Page 5: Chapter 2 SUPER-RESOLUTIONFROMMULTIPLEIMAGES HAVING ... · 3. Blind estimation of the PSF from the images [Shekarforoush and Chel-lappa, 1999]. Some algorithms can handle space-variant

Super-Resolutionfrommultipleimageshavingarbitrary mutualmotion 7

ysis,they proposedothersparsematrixoptimizationmethodsfor theproblem.

Finally, ananalyticalprobabilisticmethodwasrecently developedbyShekar-foroush& Chellapa[ShekarforoushandChellappa,1999]. They proved thatsuperresolutionimagecanbedirectlyconstructedby a linearcombinationof abasiswhich is biorthogonalto thePSFfunction. Thecombinationcoefficientsaretheinput imagesintensityvalues.They alsopresentedanalgorithmfor theestimationof thecameraPSFfrom theimages.

2. EFFICIENT GRADIENT-BASED ALGORITHMS

2.1 MATHEMA TICAL FORMULA TION

Superresolutioncanbepresentedasalargesparselinearoptimizationprob-lem,andsolvedusingexplicit iterative methods[Elad andFeuer, 1999,CapelandZisserman,1998,CapelandZisserman,2000]. In thepresentedframeworkamatrix-vectorformulationis usedin theanalysis[Elad andFeuer, 1999],butthe implementationis by standardoperationson imagessuchasconvolution,warping,sampling,etc. Altering betweenthetwo formulations,aconsiderablespeedupin thesuperresolutioncomputationis achieved,by takingadvantageof thetwo worlds: Implementingadvancedgradientbasedoptimizationtech-niques(suchasconjugategradient),whilecomputingthegradientin anefficientmanner, usingbasicimageoperations,insteadof sparsematricesmultiplica-tions.

In the analysispart imagesarerepresentedascolumnvectors. (with anyarbitraryorderof thepixels). Basicimageoperationssuchasconvolution,sub-sampling,upsamplingandwarpingarelinear, andthuscanberepresentedasmatricesoperatingon thesevectorimages.

Theimageformationprocesscanbeformulatedin thefollowing way [EladandFeuer, 1999]: 4 �(�)� �6587 �:9;� 4 ��<>= �where:4 � is thehigh resolutionimage � � of size ? � � � � �A@ , reorderedin a

vector.4 ���� is the B -th imageof size ?C� � � � �D@ , reorderedin avector.= � is thenormallydistributedadditivenoisein the B -th image,reorderedin a vector.

9 � is thegeometricwarpmatrix,of size ? � � � � � � � � �A@

Page 6: Chapter 2 SUPER-RESOLUTIONFROMMULTIPLEIMAGES HAVING ... · 3. Blind estimation of the PSF from the images [Shekarforoush and Chel-lappa, 1999]. Some algorithms can handle space-variant

8

7 � is theblurringmatrix,of size ? � � � � � � � � �D@5 is thedecimationmatrix,of size ?C� � � � � � � � �D@Stackingthevectorequationsfrom thedifferent imagesinto a singlematrix-vector:E

FFG4 �H�I�

...4 � �JLKKM �

EFG 5�7 � 9 �...5�7 9

JLKM 4 � <

EFG = �...= N

JLKMPORQ 4 �6S 4 � <>=

For practicalreasonsit is assumedthe noiseis uncorrelatedandhasuniformvariance.In thiscase,themaximumlikelihoodsolutionis foundbyminimizingthefunctional: �8� 4 � � �UTV " 4 &�S 4 � " �takingthederive of

�with respectto

4 � , andsettingthegradientto zero:

WX� � 2 � Q S+Y � S 4 � & 4 �Z� 2 ORQ !�)��� 9 Y� 7[Y� 5RY � 5�7 � 9 �

4 � & 4 ���� �Z� 2Gradient-basediterative methodscanbeusedwithout explicit constructionoftheselarge matrices. Instead,the multiplication with S and S Y S is imple-mentedusingonly imageoperationssuchaswarp,blur andsampling.

Thematrix S Y S operateson vectors4 �]\ correspondingto animageof the

sizeof thesuperresolutionsolution � � ,

S+Y^S 4 � � !�)��� 9 Y� 7_Y� 5�Y^5 9 �)`,�

4 �Thematrix S Y operatesonvectors

4 , stackingof theinputimages � �a�I� bcbcb � � �reorderedin columnvectors

4 �d�I�ebcbcb 4 � �S Y 4 � !

���� 9 Y� 7 Y� 5 Y4 �(�)�

Thematrices9 � \ 7 � \ 5 modeltheimageformationprocess,andtheir imple-mentationis simplytheimagewarping,blurringandsubsamplingrespectively.Theimplementationof thetransposematricesis alsovery simple:

5 Y is implementedby upsamplingtheimagewithout interpolation,i.e.by zeropadding.

Page 7: Chapter 2 SUPER-RESOLUTIONFROMMULTIPLEIMAGES HAVING ... · 3. Blind estimation of the PSF from the images [Shekarforoush and Chel-lappa, 1999]. Some algorithms can handle space-variant

Super-Resolutionfrommultipleimageshavingarbitrary mutualmotion 9

7 Y� - Foraconvolutionblur, thisoperationisimplementedbyconvolutionwith theflippedkernel,i.e.if f �ag \ih � is the imagingblur kernel,thentheflipped kernel jf satisfiesk g \ih)\ jf �ag \ih �l� f � & g \ & h � . For space-variantblur 7 Y� is implementedby forward projectionof the intensityvalues,usingtheweightsof theoriginal blur filter.

9 Y� - If 9;� is implementedby backwardwarping,then 9 Y� shouldbetheforwardwarpingof theinversemotion.

The simplestimplementationof this framework is usingRichardsonitera-tions[Kelley, 1995],a from of steepest-descentwith iterationstep:4 � ��m < T � � 4 � ��m � < !

�)��� 9 Y� 7 Y� 5 Y �4 ���� &�587 � 9 � 4 � ��m � �

This is aversionof theIteratedBackProjection[Irani andPeleg, 1991],usingaspecificblur kernelandforwardwarpingin thebackprojectionstage.

The ability to computethe gradientof the superresolutionfunctional byimageoperationsopenspossibilitiesto efficiently useadvancedgradient-basedoptimizationtechniques:

Fastnon-constrainedoptimization. An exampleistheConjugate-Gradientmethod,which is elaboratedin thefollowing section.

Constrainedminimization,boundingthe solutionto a specificset. Anexamplefor thisisthePOCSsolution[Pattietal.,1997,StarkandOskoui,1989].

Constrainedminimization,usinglinearregularizationterm. Theregular-izationoperatorshouldbealsoeasilyimplementedusingimageopera-tions. An exampleis givenin thefollowing section.

2.2 SUPERRESOLUTION BY THE CG METHOD

The Conjugate Gradient method. To demonstratethe practicalbenefitofcomputingthegradientby imageoperations,asuperresolutionalgorithmusingtheconjugate-gradient(CG) methodwasimplemented.TheCG methodis anefficientmethodto solve linearsystemsdefinedby symmetricpositivedefinitematrices.

Definition 1 Let Q be a symmetricand positivedefinitematrix. A vectorset�onqp � �p ��� is Q-conjugateif n Y p�r n s � 2 \ k g%t� h.

Page 8: Chapter 2 SUPER-RESOLUTIONFROMMULTIPLEIMAGES HAVING ... · 3. Blind estimation of the PSF from the images [Shekarforoush and Chel-lappa, 1999]. Some algorithms can handle space-variant

10

A Q-conjugatesetof vectorsis linearly independent,andthus form a basis.The solutionto the linear equationis thereforea linear combinationof thesevectors.Thecoefficients uvp arevery easilyfound:

r � �6w � Q r � �!p � N u N n N � �6w � Q u N�� n Y N wn Y N r n NTheCGalgorithmiteratively createsaconjugatebasis,by convertingthegradi-entscomputedin eachiterationto vectorswhich areQ-conjugateto theprevi-ousones(e.g.Graham-Shmidtprocedure).Its convergenceto thesolutionin Bstepsis guaranteed,but this is irrelevant to thesuperresolutionproblem,sinceB , thematrixsizein superresolution,is huge.Still, theconvergencerateof theCGissuperiortosteepestdescentmethods.Below isanimplementationof CG.

CG(� \ w \ r \yx�\ m[�{z 4 )solves r � �6w , x and m[�{z 4 limit thenumberof iterations

1. | �6w}& r � \�~�� � " | " � \ m � T2. Do While � ~��+� �+� x " w " � and m����:m_z 4

(a) if m = 1 then� � |else� ���A�^�:�� �^��� and� � | < �q�

(b) � � r �(c) u � ~��+� �D� � Y �(d)

4 � 4 < u�� \ | � | & u^� \�~�� � " | " � \ m � m < TCG superresolution. In theCGimplementationtosuper resolution, theinputincludesthelow resolutionimages,xc\ m[��z 4 andtheestimatedblur function.Firstthemotionbetweentheinputimagesiscomputed,andaninitial estimatetothesolution � � �32 � is set,for exampletheaverageof thebilinearlyupsampledandalignedinput images.

Then,in orderto usetheCG code,two functionsareimplemented,projectand backProject. The simple vector operations,suchas inner productandmultiplicationwith a scalarareeasilytranslatedto operationson images(cor-relationandmultiplicationby scalar).Thematrixoperationsarehandledin thefollowing way:

Step1 - In thesuperresolutioncase� �6S Y w and r �6S Y S . Thecodeto computetheresidual| is therefore:| = 0for B =1 to

�do | � | + backProject(� �(�)� -project(� � �32 � \ B � \ B )

Page 9: Chapter 2 SUPER-RESOLUTIONFROMMULTIPLEIMAGES HAVING ... · 3. Blind estimation of the PSF from the images [Shekarforoush and Chel-lappa, 1999]. Some algorithms can handle space-variant

Super-Resolutionfrommultipleimageshavingarbitrary mutualmotion 11

steps2-b is replacedby thefollowing code:� =0for B =1 to

�do � � � + backProject(project(� \ B � \ B )

andThefunctionsbackProject,projectaresimply:

�c�=project(� \ B )

–� � = blur(� \ B ) � Q blur image � by the blur operator 7 � (e.g.convolution filter f �ag \ih � )

–� � = backwardWrp(

� � \ B ) � Q Warp� � usingbackward warping,

i.e. for eachpixel in� � , find its sub-pixel locationin

� � , basedonthemotionto the B -th image,anduseinterpolationto setits value.

– returnsubsample(� � ) � Q decimatethe image,to getan imageof

thesizeof theinput image������ .� � =backProject(� \ B )

–� � = upsample(� ) enlarge � to thesizeof thesuperresolvedimage,by zeropadding.

–� � = forwrdWrp(

� � \ B ) � Q Warp� � using forward warping, i.e.

for eachpixel in� � , find its sub-pixel locationin

� � , basedon themotionto the B -th image.Spreadtheintensityvalueof thepixel onthepixelsof

� � , proportionallyto theinterpolationcoefficients.

– return blur(� � \ B ) � Q blur image � by the transposeof the blur

operator7 � (e.g. in thecase7 is definedby a convolution filterf �ag \ih � , its transposeis implementedbyconvolutionwith theflippedfilter jf �ag \ih �$� f � & g \ & h � )

Adding regularization. In many casesthesuperresolutiondoesnot have auniquesolution,andthematrix S Y S is not invertible. This canbesolvedbyintroducingconstraintson thesolution,e.g. smoothness.If theconstraints�aredifferentiable,andtheir derivative canbe approximatedfrom the images,thenthey canbeeasilycombinedwith ourproposedframework,byminimizing:�8� 4 � �Z��TV � " 4 &�S 4 � " � <�� � � 4 � ���

Where � is the regularizationcoefficient. Taking the derivative of E withrespectto

4 � , resultsin asetof equations:WX� � 2 � Q S+Y � S 4 & 4 � � < � W � � 4 � �Z� 2

Page 10: Chapter 2 SUPER-RESOLUTIONFROMMULTIPLEIMAGES HAVING ... · 3. Blind estimation of the PSF from the images [Shekarforoush and Chel-lappa, 1999]. Some algorithms can handle space-variant

12

In eachiteration the imagecorrespondingto � W � � 4 � ��m � � is addedto theimagecorrespondingto S Y S 4 � ��m � � , For example,whenf canbeexpressedby a linearoperator� :

W � � 4 � �Z� �¡Y�� 4 �This imagecanbecomputedfrom theimagecorrespondingto

4 � , by applyingthe operator� andits transpose.(The implementationof � Y in the imagedomainisderivedsimilarly to thetransposeof thebluroperators).Theselectionof theoptimal � and � is beyondthescopeof thispaper[CapelandZisserman,2000].

3. COMPUTATION AL ANALYSIS AND RESULTS

To demonstratethe computationalbenefitof the proposedframework, therunningtime of theCG superresolutionis comparedto anotherimage-basednon-constrainedalgorithm,theIBP of Irani & Peleg. Imagesof aplanarscenewerecapturedbyahandheldcamera,andtheprojective-planarmotionbetweenthemwascomputed.Thenbothmethodsof superresolutionwereapplied,andthecomputationtimeandresultswerecompared.

Thegraphin Figure2.1presentstheprojectionerror�

asa functionof therunningtime. Thefirst iterationin theCG methodis slower, sinceit requiresadditionalmultiplication with the matrix S Y S . The next iterationsof bothof themethodsrequirea singlemultiplicationwith A and S Y , so therunningtime is similar (with small advantageto the CG method). This meansthatthecomparisonof therunningtime of thesealgorithmdependsmainly on theconvergencerate. It is notablein the graphthat the convergenceof the CGmethodin the first crucial iterationsis muchfaster, yielding betterresultsina very short time. This can be further acceleratedby using efficient imageoperationsin thecomputationof thegradient.

Theresultsof thesuperresolutionalgorithmarepresentedin Fig. 2.2. A setof imageswerecapturedby ahand-heldcamera.First themotionbetweentheimageswascomputed[Bergenetal., 1992]. Then,theproposedsuperresolutionalgorithmwasapplied(Fig. 2.2:E).For comparison,theimageswereenlargedandwarpedto a commoncoordinatesystem,andtheir medianwascomputed(Fig. 2.2:C).BoththemedianandtheSRimprovedthereadabilitydramatically.TheSRresultis sharperthanthemedian.After applyinghigh-passfilter to themedianresults(Fig. 2.2:D),thereadabilityis improved,but theresultis notasgoodastheSRresult.

Page 11: Chapter 2 SUPER-RESOLUTIONFROMMULTIPLEIMAGES HAVING ... · 3. Blind estimation of the PSF from the images [Shekarforoush and Chel-lappa, 1999]. Some algorithms can handle space-variant

Super-Resolutionfrommultipleimageshavingarbitrary mutualmotion 13

10 20 30 40 50 60 70 80 90 1003

3.5

4

4.5

5

5.5x 10

6

Err

or (

SS

D)

Run time

IBPCG

Figure2.1 Thesumof squarederrorin theimagesas a function of the running time(measuredin seconds).The circles marktheiterationtimesof theCGalgorithm,andcrossesmarktheiterationtimesof theIBPalgorithm.

4. SUMMARY

Superresolutioncanbepresentedasa largesparselinearsystem.Thepre-sentedframeworkallowsfor solvingthissystemefficiently usingimage-domainoperations.With therapidadvancein computingspeed,applyingsuperreso-lution algorithmson largevideosequencesbecomesmoreandmorepractical.Thereis still work to be donein improving the noisemodel and the noisesensitivity of superresolutionalgorithms.

References

[Bergenetal., 1992] Bergen,J., Anandan,P., Hanna,K., and Hingorani,R.(1992).Hierarchicalmodel-basedmotionestimation.In EuropeanConf. onComputerVision, pages237–252.

[Berthodetal., 1994] Berthod,M., Shekarforoush,H.,Werman,M., andZeru-bia,J.(1994).Reconstructionof highresolution3Dvisualinformationusingsub-pixel cameradisplacements.In IEEEConf. onComputerVisionandPat-ternRecognition, pages654–657.

[CapelandZisserman,1998] Capel,D. andZisserman,A. (1998).Automatedmosaicingwith super-resolutionzoom. In IEEE Conf. on ComputerVisionandPatternRecognition, pages885–891.

Page 12: Chapter 2 SUPER-RESOLUTIONFROMMULTIPLEIMAGES HAVING ... · 3. Blind estimation of the PSF from the images [Shekarforoush and Chel-lappa, 1999]. Some algorithms can handle space-variant

14

A)

B) C) D) E)

Figure 2.2 Superresolutionresults.A) An original frame.B) A smallregion from theoriginal frame.Theregion is markedin Fig. A.C) Themedianof thealigned+enlargedimagesD) Theresultsof applyinghigh-passfilter to Fig. C.E) Superresolution.

Page 13: Chapter 2 SUPER-RESOLUTIONFROMMULTIPLEIMAGES HAVING ... · 3. Blind estimation of the PSF from the images [Shekarforoush and Chel-lappa, 1999]. Some algorithms can handle space-variant

Super-Resolutionfrommultipleimageshavingarbitrary mutualmotion 15

[CapelandZisserman,2000] Capel,D. and Zisserman,A. (2000). Super-resolutionenhancement of text imagesequences.In Int.Conf.PatternRecog-nition, pagesVol I: 600–605.

[EladandFeuer, 1996] Elad,M. andFeuer, A. (1996).Super-resolutionrecon-structionof continuousimagesequence.IEEE Trans.on PatternAnalysisandMachineIntelligence.

[EladandFeuer, 1999] Elad,M. andFeuer, A. (1999).Super-resolutionrecon-structionof imagesequences.IEEETrans.onPatternAnalysisandMachineIntelligence, 21(9):817–834.

[HuangandTsai,1984] Huang,T. and Tsai, R. (1984). Multi-frame imagerestorationand registration. In Huang,T., editor, Advancesin ComputerVisionandImage Processing, volume1, pages317–339.JAI PressInc.

[Irani andPeleg, 1991] Irani,M. andPeleg,S.(1991).Improvingresolutionbyimageregistration.GraphicalModelsandImage Processing, 53:231–239.

[Irani andPeleg, 1993] Irani, M. and Peleg, S. (1993). Motion analysisforimageenhancement:Resolution,occlusion,and transparency. Journal ofVisualCommunicationandImage Representation, 4:324–335.

[Kelley, 1995] Kelley,C.T. (1995).IterativeMethodsfor Linear andNonlinearEquations. SIAM, Philadelphia,PA.

[Kerenetal., 1988] Keren,D.,Peleg,S.,andBrada,R.(1988).Imagesequenceenhancementusingsub-pixel displacements.In IEEE Conf. on ComputerVisionandPatternRecognition, pages742–746.

[Kim et al., 1990] Kim, S.P., Bose,N. K., andValenzuela,H. M. (1990).Re-cursive reconstractionof high-resolutionimagefrom noisy undersampledframes.IEEETrans.Acoust.,Speech andSign.Proc., 38:1013–1027.

[MannandPicard,1994] Mann, S. and Picard,R. (1994). Virtual bellows:Constructinghighqualitystills from video. In Int. Conf. on ImageProcess-ing.

[Papoulis,1977] Papoulis,A. (1977).Generalizedsamplingexpansion.IEEETrans.CircuitsSystems, CAS-24:652–654.

[Patti etal., 1997] Patti,A., Sezan,M., andTekalp,A. (1997).Superresolutionvideo reconstructionwith arbitrarysamplinglatticesandnonzeroaperturetime. IEEETrans.Image Processing, 6(8):1064–1076.

[Sawhney andKumar, 1999] Sawhney, H. andKumar, R. (1999).Truemulti-imagealignmentandits applicationto mosaicingandlensdistortioncorrec-tion. IEEETrans.onPatternAnalysisandMachineIntelligence, 21(3):245–243.

[SchultzandStevenson,1996] Schultz,R. andStevenson,R. (1996). Extrac-tion of high-resolutionframesfrom video sequences.IEEE Trans.ImageProcessing, 5(6):996–1011.

Page 14: Chapter 2 SUPER-RESOLUTIONFROMMULTIPLEIMAGES HAVING ... · 3. Blind estimation of the PSF from the images [Shekarforoush and Chel-lappa, 1999]. Some algorithms can handle space-variant

16

[ShekarforoushandChellappa,1999] Shekarforoush,H. and Chellappa,R.(1999).Data-drivenmultichannelsuperresolutionwith applicationto videosequences.Journalof theOptical Societyof America, 16(3):481–492.

[Smelyanskiyetal., 2000] Smelyanskiy, V., Cheeseman,P., Maluf, D., andMorris, R. (2000). Bayesiansuper-resolved surfacereconstructionfromimages.In IEEEConf. onComputerVisionandPatternRecognition, pagesI:375–382.

[StarkandOskoui, 1989] Stark,H. and Oskoui, P. (1989). High resolutionimagerecovery from image-planearrays,usingconvex projections.J. Opt.Soc.Am.A, 6(11):1715–1726.

[Ur andGross,1992] Ur, H. and Gross, D. (1992). Improved resolutionfrom subpixel shiftedpictures. Graphical Modelsand Image Processing,54(2):181–186.

[Zelnik-ManorandIrani, 2000] Zelnik-Manor, L. andIrani,M. (2000).Multi-frameestimationof planarmotion. IEEE Trans.on Pattern AnalysisandMachineIntelligence, 22(10):1105–1116.