Chapter 2 基本原理 - atmos.pccu.edu.t · 2-3 2-1-3 輻射強度...

13
2-1 Chapter 2 2-1 基礎 2-1-1 電磁波 ν c λ ~ = (2.1) λ c ν ν 1 ~ = = (2.2) 其中 λ :波長 (wave length) ; ν ~ :頻率 (frequency) ν :波數 (wave number) ; c :光速 (= 2.99793*10 8 m sec -1 ) 單位 m μ 10 -6 m (公尺) (micro-meter) ; nm10 -9 m (nano-meter) Å(埃):10 -10 m UL:紫外線 ; IR:紅外線 表一 α alpha β beta γ gamma δ delta ε epsilon ζ zeta η eta θ theta κ kappa λ lambda μ mu /mju/ ν nu /nu/ or /nju/ ξ xi /ksi/ ρ rho σ sigma τ tau φ ϕ phi χ chi ψ psi ω omega Fig 2.1: The electromagnetic spectrum in terms of wavelength in m μ , frequency in GHz, and wavenumber in cm -1 . [Liou02, Figure1.1]

Transcript of Chapter 2 基本原理 - atmos.pccu.edu.t · 2-3 2-1-3 輻射強度...

  • 2-1

    CChhaapptteerr 22

    2-1 2-1-1

    c ~= (2.1)

    c 1~ == (2.2) (wave length) ; ~ (frequency)

    (wave number) ; c (= 2.99793*108m sec-1) m 10-6 m () (micro-meter) ; nm10-9 m (nano-meter)

    ()10-10 m

    UL ; IR

    alpha beta gamma delta epsilon zeta eta theta kappa lambda mu /mju/ nu /nu/ or /nju/ xi /ksi/ rho sigma tau phi chi psi omega

    Fig 2.1: The electromagnetic spectrum in

    terms of wavelength in m , frequency in GHz, and wavenumber in cm

    -1. [Liou02,

    Figure1.1]

  • 2-2

    2-1-2 solid angle

    2r= (2.3)

    =

    = 24 r

    = 4

    Fig2.3 )sin)(( drdrd = (2.4) ddrdd sin2 == (2.5)

    Fig 2.2: Definition of a solid angle , where denotes the area and r is the distance. [Liou02, Figure1.2]

    Fig 2.3: Illustration of a differential

    solid angle and its representation in

    polar coordinates. Also shown for

    demonstrative purposes is a pencil of

    radiation through an element of area dAin directions confined to an element of

    solid angle d . Other notations defined in the text. [Liou02, Figure1.3]

  • 2-3

    2-1-3

    (dA) d()(dt)

    +d dtddAdIdE = cos (2.6)

    dAdtdddEI

    =

    cos)( (2.7)

    () Defining (F) (() )

    = dIF cos (2.8)

    =

    dAdtddE

    (2.5)

    ( ) =

    ddIF2

    0 0

    2 sincos,

    (2.9)

    ( ) ,I (isotropic radiation)

    =

    ddIF2

    0 0

    2 sincos

    (2.10)

    I = (2.11) Defining (F) (() )

    =

    0dFF (2.12)

    Defining ()(f) (flux) ( = w )

    = AFdAf (2.13)

    Table 2.1 [Liou02, Table1.1]

  • 2-4

    2-1-4 () (Scattering)

    ( ax 2= )

    Rayleigh scattering () 1x (geometric optics)

    Figure 2.5: Multiple scattering process

    involving first(P), second(Q), and third (R) order scattering in the direction denote by d.[Liou02 ,Figure1.5]

    Fig 2.4: Demonstrative angular patterns of

    the scattered intensity from spherical

    aerosols of three sizes illuminated by the

    visible light of 0.5 m ,(a) 10-4 m , (b) 0.1 m , and (c) 1 m . The forward scattering pattern for the 1 m aerosol is extremely large and is scaled for

    presentation purposes. [Liou02, Figure1.4]

  • 2-5

    2-1-5 (extinction cross section) (extinction coefficient)

    (m2)

    0Ff = ( see (2.13) )

    0F

    f

    n = (m-1)

    n 2-2

    (blackbody radiation):

    ()

    (homogeneous)(unpolarized)(isotropic)

    2.6

    2-2-1 Plancks ()

    nhE ~= (2.14)

    )1(2

    5

    2

    = Thce

    hcB (2.15)

    BPlancks ( I)

    h Plancks = 6.626810-34 Jsec

    Boltzmann = 1.3806810-23 Jdeg-1

    ~ n

    depends on T() ()(2.15)

    Figure 2.6: A blackbody radiation cavity to

    illustrate that absorption is

    complete.[Liou02,Figure1.6]

  • 2-6

    Tm

    310*897.2 =

    2-2-2 Stefan-Boltzmann -

    40 )()( bTdTBTB ==

    (2.16)

    3244 15/2 hckb =

    (isotropic) (see (2.11))

    ( ) 4)( TTB == (2.17)

    (Stefan-Boltamann ) = 5.67*10-8 Jm-2

    (T)

    2-2-3 Wiens -

    0)( =

    TB (2.18)

    (2.19)

    2-2-4 Kirchhoffs

    (absorption)(emission) ( ) ( ) tyabsorptiviAemissivity = (2.20)

    =

    Fig 2.7: Blackbody

    intensity (Planck

    function) as a

    function of

    wavelength for a

    number of emitting

    temperatures.

    [Liou02, Figure1.7]

  • 2-7

    =

    1== (2.21)

    1

  • 2-8

    (/ = = )

    dsJkdI =

    Combining (2.23), (2.24) and (2.25)

    dsjdsIkdI += (2.26)

    dsJkdsIk += (2.27)

    JIdsk

    dI+= (2.28)

    NoteWhen radiation passes through a medium, the change of radiation is determined

    by

    I extinction of incident radiation, including absorption and scattering by

    medium

    J radiation sources in medium, including emission and multiple scattering

    (2.28)

    () ds (k)()

    (ds)(I)

    (J)

    Fig 2.8: Depletion of the radiant intensity in traversing an extinction medium.[Liou02, Figure1.13]

  • 2-9

    2-3-2 Beer-Bouguer-Lambert (Beers) Assuming I(0) at s = 0, I(s1) at s = s1

    From (2.23)

    dskI

    dI

    =

    ( )

    ( ) =

    11

    00

    1 s

    sI

    I

    dskdII

    ( )

    ( ) =11

    0 0ln

    s

    I

    IdskI s

    ( )( )

    =

    1

    01 exp

    0s

    dskI

    sI

    ( ) ( )

    =

    1

    01exp0

    s

    dskIsI

    (2.29)

    If the medium is homogeneous, defining (path length)

    =1

    0

    sdsu

    uk

    eIsI = )0()( 1

    the change of the radiation exponentially depends on the path length of the

    medium.

    Defining (optical depth) ()

    ( ) 1

    010,

    s

    dsks

    (2.30)

    (note ( ) dskssd =,1 )

    ( ) ( ) ( )0,1 10 s eIsI = (2.31)

    ( )

    Note s ( 0) dskssd ),( 1 =

    Defining (transmissivity)

    ( )( )0

    I 1

    Is

    =

  • 2-10

    ( )0,1se= (2.32)

    For () ( )0,111 s eA

    == (2.33)

    For

    1=++ RA (2.34)

    R (reflectivity)

    Note

    2-3-3 Schwarzschild (2.38)

    Considering (e.g.) Planck

    ( )( )TB J in(2.28) using(2.30) ( )( ) ( ) ( )( )sTBsIssdsdI

    += ,1

    (2.35)

    (2.35) ( )sse ,1

    ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( )ssdesTBssdesIsdIe ssssss ,, 1,1,, 111 = ( ) ( ) ( )( ) ( ) ( )ssdesTBdesI ssss ,1,, 11 =

    ( ) ( ) ( ) ( ) ( )( ) ( ) ( )ssdesTBdesIsdIe ssssss ,1,,, 111 =+

    ( ) ( )( ) ( )( ) ( ) ( )ssdesTBsIed ssss ,1,, 11 = (2.36)

    (2.36) from 0 to s1

    ( ) ( )( ) ( )( ) ( ) ( ) = 1 1 110 0 1,, ,

    s s

    ss

    ss ssdesTBsIed

    (2.37)

    ( ) ( ) ( )( ) ( ) ( ) =

    11

    11

    0 1,

    0

    , ,s

    ss

    s

    ss ssdesTBsIe

    Fig 2.9: Configuration of the optical thickness defined in Eq. (1.4.15). [Liou02, Figure1.14]

  • 2-11

    ( ) ( ) ( ) ( )( ) ( ) ( ) =+1

    11

    0 1,0,

    1 ,0s

    ss

    s

    ssdesTBeIsI

    ( ) ( ) ( ) ( )( ) ( ) ( ) =1

    11

    0 1,0,

    1 ,0s

    ss

    s

    ssdesTBeIsI

    (2.38)

    (2.28) 2-3-4

    point ( ) ,;z ()

    (2.28) ( ) ( ) ( )zJzIdskzdI ,;,;,; +=

    ( ) ( ) ( )zJzIdzkzdI ,;,;

    sec,;

    +=

    ( ) ( ) ( )zJzIdzkzdI ,;,;,;cos += (2.39)

    Defining (normal optical depth)

    =

    zzdk ( dzkd = )

    ( )0= z

    z

    (2.39) ( ) ( ) ( )JIddI ,;,;,; = (2.40)

    cos=

    Following section 2-3-3 (2.40) e

    ( )0> ( from to * )

    Fig 2.10: Geometry for plane-parallel

    atmospheres where and denote the zenith and azimuthal angles,

    respectively, and s represents the

    position vector. [Liou02, Figure1.15]

    Fig 2.11:

    Upward ( ) and downward ( ) intensities at a given level and at top ( 0= ) and bottom ( = ) levels in a finite,

    plane-parallel atmosphere.

    [Liou02, Figure1.16]

  • 2-12

    ( ) ( ) ( ) ( ) ( )

    += ** ,;,;,; *

    deJeII

    (2.41)

    ( )0> ( from 0 to ) ( ) ( ) ( ) ( )

    +=

    deJeII

    0,;,;0,; (2.42)

    (2.28) 1st term of r.h.s. (outside of to ) 2end term of r.h.s level of

    (homogenous)

    2-4

    Fig 2.12(a) Blackbody radiation curves for temperature characteristic of the Suns surface

    and upper levels on Earths atmosphere from which infrared radiation escape to space.(b)

    Absorption of radiation at each wavelength if the beam passes through the entire atmosphere

    from top to ground level or vice versa. (c) As in b, but for radiation passing from the top

    of the atmosphere to 11 km or vice versa. After Trenberth (1992) and Goody and Yung (1989).

  • 2-13

    2.4-1 () 2.4-2 ()

    Fig 2.13: Solar irradiance curve for a 50 cm

    -1spectral interval at the top of the atmosphere (see

    Fig.2.9) and at the surface for a solar zenith angle of 60oin an atmosphere without aerosols or

    clouds. Absorption and scattering regions are indicated. See also Table 3.3 for the absorption

    of N2O, CH4, CO, and NO2. [Liou02, Figure3.9]

    Fig 2.14: Theoretical Planck radiance curves for a number of the earths atmospheric

    temperatures as a function of wavenumber and wavelength. Also shown is a thermal infrared

    emission spectrum observed from the Nimbus 4 satellite based on an infrared interferometer

    spectrometer. [Liou02, Figure4.1]