Chapter 2 : Fundamental of Mathematical Modeling

91
Chapter_2 : Fundamental of Mathematical Modeling

Transcript of Chapter 2 : Fundamental of Mathematical Modeling

Page 1: Chapter 2 : Fundamental of Mathematical Modeling

Chapter_2 : Fundamental of Mathematical

Modeling

Page 2: Chapter 2 : Fundamental of Mathematical Modeling

Objectives

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Upon completing this topic, students should be able

to find:

โ€“ the Laplace Transform of time functions and the inverse

Laplace Transform.

โ€“ manually and with MatLab, the Transfer Function from

Mathematical Models

โ€“ Signal flow graphs from Block Diagram

โ€“ Transfer Function using Masonโ€™s Rule

11/10/2021 2

Page 3: Chapter 2 : Fundamental of Mathematical Modeling

Contents

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

1. Introduction

2. Laplace Transform

3. Transfer Function;- Numerical

- With MatLab

4. Block Diagram Models- Block Diagram Algebra

- Signal Flow Graphs and Masonโ€™s Rule

11/10/2021 3

Page 4: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

CHAP_2. 1: Introduction

11/10/2021 4

Page 5: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

To understand and control complex systems, one must obtain

quantitative mathematical models of these systems. A mathematical model is a set of equations (usually

differential equations) that represents the dynamics of systems.

differential equations are obtained by using physical laws of

engineering such as Newtonโ€™s laws of motion, Kirchhoff's laws

of electrical network, Ohmโ€™s laws, etc.

The equations of the mathematical model may be solved using

mathematical tools such as the Laplace Transform.

Before solving the equations, we usually need to linearize them.

In practice, the complexity of the system requires some

assumptions in the determination model.

2. 1 Introduction

11/10/2021 5

Page 6: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Obtained by applying the physical laws of the process: Therefore:

i. Mechanical Systems Newtonโ€™s laws

ii. Electrical Systems *Kirchhoff's laws

* Ohmโ€™s laws

* Mesh & Nodal Analysis

Example_1: Springer-mass-damper mechanical system.

Differential Equations

โ€ข Hence for viscous wall: ๐‘“ ๐‘ก = ๐‘๐‘ฃ ๐‘ก

* Assumption: Wall friction force f ๐’• is

linearly proportional to the velocity ๐’— of

the mass ๐‘€ .

โ€ข and for spring: ๐‘“ ๐‘ก = ๐‘˜ 0

๐‘ก๐‘ฃ ๐œ ๐‘‘๐œ

= ๐‘˜๐‘ฆ ๐‘ก

The time function

of ๐’“ ๐’• is called

forcing function

11/10/2021 6

Page 7: Chapter 2 : Fundamental of Mathematical Modeling

Step_1: Free-Body Diagram (FBD): Step_2: Newtonโ€™s 2nd Law.

๐น = ๐‘€๐‘Ž ๐‘ก : for translation motionOr:

โ€ข ๐‘ฃ ๐‘ก = ๐‘ฆ =๐‘‘๐‘ฆ ๐‘ก

๐‘‘๐‘ก

โ€ข ๐‘Ž ๐‘ก = ๐‘ฆ =๐‘‘2๐‘ฆ ๐‘ก

๐‘‘๐‘ก2

Hence:

๐‘€๐‘Ž ๐‘ก = โˆ’๐‘๐‘ฃ ๐‘ก โˆ’ ๐‘˜๐‘ฆ ๐‘ก + ๐‘Ÿ ๐‘ก

๐‘€๐‘‘๐‘ฃ ๐‘ก

๐‘‘๐‘ก+ ๐‘๐‘ฃ ๐‘ก + ๐‘˜๐‘ฆ ๐‘ก = ๐‘Ÿ ๐‘ก

Finally, the differential equation is:

๐‘€๐‘‘2๐‘ฆ ๐‘ก

๐‘‘๐‘ก2 + ๐‘๐‘‘๐‘ฆ ๐‘ก

๐‘‘๐‘ก+ ๐‘˜๐‘ฆ ๐‘ก = ๐‘Ÿ ๐‘ก

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Mechanical System Analysis:

11/10/2021 7

Page 8: Chapter 2 : Fundamental of Mathematical Modeling

โ€ข For the following mechanism, define:

i. The input โ†’ ๐‘ญii.The output โ†’ ๐’š.

Newtonโ€™s 2nd Law:

๐น = ๐‘€๐‘Ž ๐‘ก : for translation motion

Hence:

๐‘€๐‘Ž ๐‘ก = ๐น โˆ’ ๐‘˜๐‘ฆ ๐‘ก โˆ’ ๐‘“๐‘ฃ๐‘ฃ ๐‘ก

๐‘€๐‘‘๐‘ฃ ๐‘ก

๐‘‘๐‘ก+ ๐‘˜๐‘ฆ ๐‘ก + ๐‘“๐‘ฃ๐‘ฃ ๐‘ก = ๐น ๐‘ก

Finally, the differential equation is:

๐‘€๐‘‘2๐‘ฆ ๐‘ก

๐‘‘๐‘ก2 + ๐‘“๐‘ฃ๐‘‘๐‘ฆ ๐‘ก

๐‘‘๐‘ก+ ๐‘˜๐‘ฆ ๐‘ก = ๐น ๐‘ก

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Example_2: A Mechanical Mechanism.

โ€ข for viscous damper: ๐‘“ ๐‘ก = ๐‘“๐‘ฃ๐‘ฃ ๐‘ก

= ๐‘“๐‘ฃ๐‘‘๐‘ฆ ๐‘ก

๐‘‘๐‘ก

y

k

f

F

mM

๐’‡๐’—

11/10/2021 8

Page 9: Chapter 2 : Fundamental of Mathematical Modeling

โ€ข For the following circuit, define:

i. The input โ†’ ๐’–๐’“ii.The output โ†’ ๐’–๐’„.

Kirchhoff voltage law (KVL):

๐‘‰๐‘… + ๐‘‰๐ฟ + ๐‘ข๐‘ ๐‘ก = ๐‘ข๐‘Ÿ ๐‘ก

Hence:

Ohm's laws:

๐ฟ๐‘‘๐‘– ๐‘ก

๐‘‘๐‘ก+ ๐‘…๐‘– ๐‘ก + ๐‘ข๐‘ ๐‘ก = ๐‘ข๐‘Ÿ ๐‘ก

Or:

โ€ข ๐‘– ๐‘ก = ๐ถ๐‘‘๐‘ข๐‘

๐‘‘๐‘ก(capacitor)

โ€ข ๐‘ฃ ๐‘ก = ๐ฟ๐‘‘๐‘–(๐‘ก)

๐‘‘๐‘ก(inductor)

Therefore, the differential equation is:

๐‘‘2๐‘ข๐‘ ๐‘ก

๐‘‘๐‘ก2 +๐‘…

๐ฟ

๐‘‘๐‘ข๐‘ ๐‘ก

๐‘‘๐‘ก+

1

๐ฟ๐ถ๐‘ข๐‘ ๐‘ก =

1

๐ฟ๐ถ๐‘ข๐‘Ÿ ๐‘ก

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Example_3: A Passive Electrical Circuit.

11/10/2021 9

Initial conditions:

โ€ข ๐‘– 0 = ๐ผ0: current through inductor

โ€ข ๐‘ฃ 0 =1

๐ถ โˆ’โˆž

0๐‘– ๐œ ๐‘‘๐œ = ๐‘‰0:

voltage across capacitor

ur

uc

R L

Ci

Page 10: Chapter 2 : Fundamental of Mathematical Modeling

โ€ข Define the differential equation for the following RLC electrical circuit:

Kirchhoff voltage law (KVL):

๐‘‰๐ฟ + ๐‘‰๐‘… + ๐‘‰๐ถ = 0Hence:

Ohmโ€™s lawsOr:

โ€ข ๐‘ฃ ๐‘ก = ๐ฟ๐‘‘๐‘– ๐‘ก

๐‘‘๐‘ก(inductor)

โ€ข ๐‘ฃ ๐‘ก =1

๐ถ 0

๐‘ก๐‘– ๐œ ๐‘‘๐œ(capacitor)

Thus:

๐ฟ๐‘‘๐‘– ๐‘ก

๐‘‘๐‘ก+ ๐‘…๐‘– ๐‘ก +

1

๐ถ 0

๐‘ก๐‘– ๐œ ๐‘‘ ๐‘‘๐œ = 0

Therefore, the differential equation is:

๐‘‘2๐‘– ๐‘ก

๐‘‘๐‘ก2 +๐‘…

๐ฟ

๐‘‘๐‘– ๐‘ก

๐‘‘๐‘ก+

1

๐ฟ๐ถ๐‘– ๐‘ก = 0

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Example_4: Source-Free Series RLC Circuit.

11/10/2021 10

Initial conditions:

โ€ข ๐‘– 0 = ๐ผ0: current through inductor

โ€ข ๐‘ฃ 0 =1

๐ถ โˆ’โˆž

0๐‘– ๐œ ๐‘‘๐œ = ๐‘‰0: voltage

across capacitor

+

โˆ’

Page 11: Chapter 2 : Fundamental of Mathematical Modeling

1. Define the differential equation for the following Mechanical System:

2. Define the differential equation for the following RLC Electrical Network:

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Try โ€ฆ

11/10/2021 11

๐ด๐‘›๐‘ : ๐‘š ๐‘ฅ0 + ๐‘ ๐‘ฅ0 + ๐‘˜๐‘ฅ0 = ๐‘ ๐‘ฅ๐‘– + ๐‘˜๐‘ฅ๐‘–

๐‘˜ ๐‘

๐‘ฅ๐‘–

๐‘ฅ0

๐‘š

Page 12: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

CHAP_2. 2: Laplace Transform

11/10/2021 12

Page 13: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

The differential equations (time-domain) are transformed by

the Laplace Transform into algebraic equations (frequency-

domain), which are easier to solve.

Equations:

1) Laplace Transform:

2) Inverse Laplace Transform:

2. 2 Laplace Transform

Time-domain signals Frequency โ€“domain signals

โ„’ ๐‘“ ๐‘ก = ๐น ๐‘  = 0

โˆž

๐‘“ ๐‘ก ๐‘’โˆ’๐‘ ๐‘ก๐‘‘๐‘ก

โ„’โˆ’1 ๐น ๐‘  =1

2๐œ‹๐‘— ๐œŽโˆ’๐‘—โˆž

๐œŽ+๐‘—โˆž

๐น ๐‘  ๐‘’๐‘ ๐‘ก๐‘‘๐‘† = ๐‘“ ๐‘ก ๐‘ข ๐‘ก

Transfer Function ๐น ๐‘  is a function in Laplace domain ๐‘  where ๐’” is a complex number: ๐’” = ๐œถ + ๐’‹๐Ž

11/10/2021 13

Page 14: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

A. Laplace Transform Table & Theorems

No. f(t) F(s)

1. ฮด ๐‘ก 1

2. u ๐‘ก1

๐‘ 

3. tu ๐‘ก1

๐‘ 2

4. ๐‘ก๐‘›u ๐‘ก๐‘›!

๐‘ ๐‘›+1

5. ๐‘’โˆ’๐‘Ž๐‘กu ๐‘ก1

๐‘  + ๐‘Ž

6. ๐‘ก๐‘’โˆ’๐‘Ž๐‘กu ๐‘ก1

๐‘  + ๐‘Ž 2

7. ๐‘ก๐‘›๐‘’โˆ’๐‘Ž๐‘กu ๐‘ก๐‘›!

๐‘  + ๐‘Ž ๐‘›+1

8. 1 โˆ’ ๐‘Ž๐‘ก ๐‘’โˆ’๐‘Ž๐‘กu ๐‘ก๐‘ 

๐‘  + ๐‘Ž 2

9.1

๐‘Ž1 โˆ’ ๐‘’โˆ’๐‘Ž๐‘กu ๐‘ก

1

๐‘  ๐‘  + ๐‘Ž

โ‡ Impulse function or Unit Impulse Function

โ‡ Step function or Unit Step Function

โ‡ Ramp function

1) Laplace Transform Table

11/10/2021 14

No. f(t) F(s)

10. ๐‘ ๐‘–๐‘› ๐œ”๐‘ก u ๐‘ก๐œ”

๐‘ 2 + ๐œ”2

11. ๐‘๐‘œ๐‘  ๐œ”๐‘ก u ๐‘ก๐‘ 

๐‘ 2 + ๐œ”2

12. ๐‘’โˆ’๐‘Ž๐‘ก ๐‘ ๐‘–๐‘› ๐œ”๐‘ก u ๐‘ก๐œ”

๐‘  + ๐‘Ž 2 + ๐œ”2

13. ๐‘’โˆ’๐‘Ž๐‘ก ๐‘๐‘œ๐‘  ๐œ”๐‘ก u ๐‘ก๐‘  + ๐‘Ž

๐‘  + ๐‘Ž 2 + ๐œ”2

Page 15: Chapter 2 : Fundamental of Mathematical Modeling

2) Laplace Transform TheoremsNo. Theorem Name

1. โ„’ ๐‘“ ๐‘ก = ๐น ๐‘  = 0

โˆž

๐‘“ ๐‘ก ๐‘’โˆ’๐‘ ๐‘ก๐‘‘๐‘ก Laplace definition

2. โ„’ ๐‘˜๐‘“ ๐‘ก = ๐‘˜๐น ๐‘  Linearity Theorem

3. โ„’ ๐‘“1 ๐‘ก + ๐‘“2 ๐‘ก = ๐น1 ๐‘  + ๐น2 ๐‘  Linearity Theorem

4. โ„’ ๐‘’โˆ’๐‘Ž๐‘ก๐‘“ ๐‘ก = ๐น ๐‘  + ๐‘Ž Frequency Shift Theorem

5. โ„’ ๐‘“ ๐‘ก โˆ’ ๐‘‡ = ๐‘’โˆ’๐‘ ๐‘‡๐น ๐‘  Time Shift ๐‘‡ Theorem

6. โ„’ ๐‘“ ๐‘Ž๐‘ก =1

๐‘Ž๐น

๐‘ 

๐‘ŽScaling Theorem

7. โ„’๐‘‘๐‘“ ๐‘ก

๐‘‘๐‘ก= ๐‘ ๐น ๐‘  โˆ’ ๐‘“ 0โˆ’ Differentiation Theorem

8. โ„’๐‘‘2๐‘“ ๐‘ก

๐‘‘๐‘ก2= ๐‘ 2๐น ๐‘  โˆ’ ๐‘ ๐‘“ 0โˆ’ โˆ’ ๐‘“โ€ฒ 0โˆ’ Differentiation Theorem

9. โ„’๐‘‘๐‘›๐‘“ ๐‘ก

๐‘‘๐‘ก๐‘›= ๐‘ ๐‘›๐น ๐‘  โˆ’

๐‘˜=1

๐‘›

๐‘ ๐‘›โˆ’๐‘˜ ๐‘“๐‘˜โˆ’1 0โˆ’ Differentiation Theorem

(in general)

10. โ„’ 0

๐‘ก

๐‘“ ๐œ ๐‘‘๐œ =๐น ๐‘ 

๐‘ Integration Theorem

11. ๐‘“ โˆž = ๐‘™๐‘–๐‘š๐‘ โ†’0

๐‘ ๐น ๐‘  Final Value Theorem

12. ๐‘“ 0+ = ๐‘™๐‘–๐‘š๐‘ โ†’โˆž

๐‘ ๐น ๐‘  Initial Value Theorem11/10/2021 15

Page 16: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

ExampleWith ๐’– ๐’• a unit step, find the Laplace Transform of the following function ๐‘ฆ ๐‘ก , assuming zeros initial conditions:

๐‘‘2๐‘ฆ ๐‘ก

๐‘‘๐‘ก2 + 12๐‘‘๐‘ฆ ๐‘ก

๐‘‘๐‘ก+ 32๐‘ฆ ๐‘ก = 32๐‘ข ๐‘ก

Solution:

โ€ข โ„’๐‘‘2๐‘ฆ ๐‘ก

๐‘‘๐‘ก2 = ๐‘ 2๐‘Œ ๐‘  โˆ’ ๐‘ ๐‘ฆ 0โˆ’ โˆ’ ๐‘ฆโ€ฒ 0โˆ’

โ€ข โ„’ 12๐‘‘๐‘ฆ ๐‘ก

๐‘‘๐‘ก= 12 ๐‘ ๐‘Œ ๐‘  โˆ’ ๐‘ฆ 0โˆ’

โ€ข โ„’ 32๐‘ฆ ๐‘ก = 32๐‘Œ ๐‘ 

โ€ข โ„’ 32๐‘ข ๐‘ก = 32๐‘ˆ ๐‘ 

With zeros initial conditions, we finally obtain the Laplace Transform as:

๐‘ 2๐‘Œ ๐‘  + 12๐‘ ๐‘Œ ๐‘  + 32๐‘Œ ๐‘  = 32๐‘ˆ ๐‘ 

11/10/2021 16

Zeros Initial Conditions:โ€ข ๐‘ฆ 0โˆ’ = 0โ€ข ๐‘ฆโ€ฒ 0โˆ’ = 0

Page 17: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Tryโ€ฆ1) With ๐’‡ ๐’• a unit step, find the Laplace Transform of the

following function:

๐‘‘2๐‘ฆ ๐‘ก

๐‘‘๐‘ก2 + 2๐‘‘๐‘ฆ ๐‘ก

๐‘‘๐‘ก+ 10๐‘ฆ ๐‘ก =

๐‘‘๐‘“ ๐‘ก

๐‘‘๐‘ก

Assume the initial conditions as:

โ€ข ๐‘“ 0โˆ’ = 0, ๐‘ฆ 0โˆ’ = 0 and๐‘‘๐‘ฆ 0โˆ’

๐‘‘๐‘ก= 1

2) Find the Laplace Transform of the following function:

๐‘“ ๐‘ก = ๐‘ก๐‘’โˆ’5๐‘ก

11/10/2021 17

๐ด๐‘›๐‘ : ๐‘ 2๐‘Œ ๐‘  + 2๐‘ ๐‘Œ ๐‘  + 10๐‘Œ ๐‘  โˆ’ 1 = ๐‘ ๐น ๐‘ 

๐ด๐‘›๐‘ : ๐น ๐‘  =1

๐‘  + 5 2

Page 18: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

B. Inverse Laplace Transform

General form:

Three (3) possible cases:

i. Case_1: Roots of ๐ท ๐‘  are real & distinct;

ii.Case_2: Roots of ๐ท ๐‘  are real & repeated;

iii.Case_3: Roots of ๐ท ๐‘  are complex conjugate;

๐น ๐‘  =๐‘ ๐‘ 

๐ท ๐‘ 

Numerator

Denominator

o Hint: Use โ€˜Partial Fraction Expansionโ€™

11/10/2021 18

Page 19: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

โ€ข Example: ๐น ๐‘  =2

๐‘ +1 ๐‘ +2

Solution:

โ€ข ๐น ๐‘  =2

๐‘ +1 ๐‘ +2=

๐ด

๐‘ +1+

๐ต

๐‘ +2(Partial Fraction Expansion)

=2

๐‘ +1โˆ’

2

๐‘ +2

โ€ข The inverse Laplace Transform or Time Response is:

๐‘“ ๐‘ก = 2๐‘’โˆ’๐‘ก๐‘ข ๐‘ก โˆ’ 2๐‘’โˆ’2๐‘ก๐‘ข ๐‘ก

As ๐‘ข ๐‘ก is the unit step function, ๐‘“ ๐‘ก can finally be expressed in another way as:

It is found that: ๐ด = 2 and ๐ต = โˆ’2

11/10/2021 19

i. Case_1: Roots of ๐ท ๐‘  are real & distinct

Item No.5 in the Laplace Transform Table

๐‘“ ๐‘ก = 2๐‘’โˆ’๐‘ก โˆ’ 2๐‘’โˆ’2๐‘ก = 2 ๐‘’โˆ’๐‘ก โˆ’ ๐‘’โˆ’2๐‘ก

Page 20: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

๐น ๐‘  =2

๐‘ +1 ๐‘ +2=

๐ด

๐‘ +1+

๐ต

๐‘ +2

=๐ด ๐‘ +2 +๐ต ๐‘ +1

๐‘ +1 ๐‘ +2

Hence:

๐ด ๐‘  + 2 + ๐ต ๐‘  + 1 = 2

Solving steps:

Case_1: ๐‘  + 1 = 0 โ‡’ ๐‘  = โˆ’1โ‡’ ๐ด โˆ’1 + 2 = 2โ‡’ ๐ด = 2

Case_2: ๐‘  + 2 = 0 โ‡’ ๐‘  = โˆ’2โ‡’ ๐ต โˆ’2 + 1 = 2โ‡’ ๐ต = โˆ’2

11/10/2021 20

Work out Method:

Page 21: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Tryโ€ฆ

- Find the Inverse Laplace Transform of the following function:

a) G ๐‘  =๐‘ +3

๐‘ +1 ๐‘ +2

Solution:

b) G ๐‘  =32

๐‘  ๐‘ 2+12๐‘ +32

Solution:

11/10/2021 21

๐ด๐‘›๐‘ : ๐‘” ๐‘ก = 2๐‘’โˆ’๐‘ก โˆ’ ๐‘’โˆ’2๐‘ก

๐ด๐‘›๐‘ : ๐‘” ๐‘ก = ๐‘’โˆ’๐‘ก โˆ’ 2๐‘’โˆ’4๐‘ก + ๐‘’โˆ’8๐‘ก

Page 22: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

ii. Case_2: Roots of ๐ท ๐‘  are real & repeated

โ€ขExample: ๐น ๐‘  =2

๐‘ +1 ๐‘ +2 2

Solution:

โ€ข ๐น ๐‘  =2

๐‘ +1 ๐‘ +2 2 =๐ด

๐‘ +1+

๐ต

๐‘ +2+

๐ถ

๐‘ +2 2

=2

๐‘ +1โˆ’

2

๐‘ +2โˆ’

2

๐‘ +2 2

โ€ข Finally,

Example:

โ€ข ๐น ๐‘  =2

๐‘ +1 ๐‘ +2 2 =๐ด

๐‘ +1+

๐ต

๐‘ +2+

๐ถ

๐‘ +2 2

=๐ด ๐‘ +2 2+๐ต ๐‘ +1 ๐‘ +2 +๐ถ ๐‘ +1

๐‘ +1 ๐‘ +2 2

It is found that: ๐ด = 2, ๐ต = โˆ’2 and ๐ถ = โˆ’2

๐‘“ ๐‘ก = 2๐‘’โˆ’๐‘ก โˆ’ 2๐‘’โˆ’2๐‘ก โˆ’ 2๐‘ก๐‘’โˆ’2๐‘ก

11/10/2021 22

Work out Method:

Page 23: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Thus:

โ€ข ๐น ๐‘  =2

๐‘ +1 ๐‘ +2 2 =๐ด ๐‘ +2 2+๐ต ๐‘ +1 ๐‘ +2 +๐ถ ๐‘ +1

๐‘ +1 ๐‘ +2 2

=๐ด ๐‘ 2+4๐‘ +4 +๐ต ๐‘ 2+3๐‘ +2 +๐ถ ๐‘ +1

๐‘ +1 ๐‘ +2 2 =๐ด๐‘ 2+4๐ด๐‘ +4๐ด+๐ต๐‘ 2+3๐ต๐‘ +2๐ต+๐ถ๐‘ +๐ถ

๐‘ +1 ๐‘ +2 2

โ‡” ๐น ๐‘  =2

๐‘ +1 ๐‘ +2 2 =๐‘ 2 ๐ด+๐ต +๐‘  4๐ด+3๐ต+๐ถ + 4๐ด+2๐ต+๐ถ

๐‘ +1 ๐‘ +2 2

Equating like powers of "๐’”" gives us a system of equations as:

11/10/2021 23

Powers of "๐’”" Equation

๐‘ 2 ๐ด + ๐ต = 0

๐‘ 1 4๐ด + 3๐ต + ๐ถ = 0

๐‘ 0 4๐ด + 2๐ต + ๐ถ = 2

Solving the system of equations yields:

๐ด = 2

B= โˆ’2

C= โˆ’2

Work out Method (Contโ€ฒd):

Page 24: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Tryโ€ฆ

- Find the Inverse Laplace Transform of the following functions:

a) ๐น ๐‘  =๐‘ +3

๐‘ +1 3 ๐‘ +2

Solution:

b) G ๐‘  =๐‘ 2+1

๐‘ 2 ๐‘ +2

Solution:

11/10/2021 24

๐ด๐‘›๐‘ : ๐‘“ ๐‘ก = ๐‘ก2๐‘’โˆ’๐‘ก โˆ’ ๐‘ก๐‘’โˆ’๐‘ก + ๐‘’โˆ’๐‘ก โˆ’ ๐‘’โˆ’2๐‘ก

= ๐‘’โˆ’๐‘ก ๐‘ก2 โˆ’ ๐‘ก + 1 โˆ’ ๐‘’โˆ’2๐‘ก

๐ด๐‘›๐‘ : ๐‘” ๐‘ก =5

4๐‘’โˆ’2๐‘ก +

1

2๐‘ก โˆ’

1

4

Page 25: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

iii.Case_3: Roots of ๐ท ๐‘  are complex conjugate

โ€ขExample: ๐น ๐‘  =3

๐‘  ๐‘ 2+2๐‘ +5

Solution:

โ€ข ๐น ๐‘  =3

๐‘  ๐‘ 2+2๐‘ +5=

๐ด

๐‘ +

๐ต๐‘ +๐ถ

๐‘ 2+2๐‘ +5

= 35

๐‘ โˆ’

3

5

๐‘ +2

๐‘ 2+2๐‘ +5

= 35

๐‘ โˆ’

3

5

๐‘ +1+1

๐‘ 2+2๐‘ +5=

35

๐‘ โˆ’

3

5

๐‘ +1 + 1 2 2

๐‘ +1 2+22

= 35

๐‘ โˆ’

3

5

๐‘ +1

๐‘ +1 2+22 + 1 2 2

๐‘ +1 2+22

โ€ข Finally,

It is found that: ๐ด = 3 5, ๐ต = โˆ’3 5 and ๐ถ = โˆ’6 5

๐‘“ ๐‘ก =3

5โˆ’

3

5๐‘’โˆ’๐‘ก ๐‘๐‘œ๐‘  2๐‘ก +

1

2๐‘’โˆ’๐‘ก๐‘ ๐‘–๐‘›2๐‘ก =

3

5โˆ’

3

5๐‘’โˆ’๐‘ก ๐‘๐‘œ๐‘  2๐‘ก +

1

2๐‘ ๐‘–๐‘› 2๐‘ก

11/10/2021 25

Page 26: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

โ€ขExample:

๐น ๐‘  =3

๐‘  ๐‘ 2+2๐‘ +5=

๐ด

๐‘ +

๐ต๐‘ +๐ถ

๐‘ 2+2๐‘ +5=

๐ด ๐‘ 2+2๐‘ +5 + ๐ต๐‘ +๐ถ ๐‘ 

๐‘  ๐‘ 2+2๐‘ +5

=๐ด๐‘ 2+2๐ด๐‘ +5๐ด+๐ต๐‘ 2+๐ถ๐‘ 

๐‘  ๐‘ 2+2๐‘ +5=

๐‘ 2 ๐ด+๐ต +๐‘  2๐ด+๐ถ +5๐ด

๐‘  ๐‘ 2+2๐‘ +5

โ‡” ๐น ๐‘  =3

๐‘  ๐‘ 2+2๐‘ +5=

๐‘ 2 ๐ด+๐ต +๐‘  2๐ด+๐ถ +5๐ด

๐‘  ๐‘ 2+2๐‘ +5

Equating like powers of "๐’”" gives us a system of equations as:

11/10/2021 26

Work out Method:

Powers of "๐’”" Equation

๐‘ 2 ๐ด + ๐ต = 0

๐‘ 1 2๐ด + ๐ถ = 0

๐‘ 0 5๐ด = 3

Solving the system of equations yields:

๐ด = 3 5

B= โˆ’ 3 5

C= โˆ’ 6 5

Page 27: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Tryโ€ฆ

- Find the Inverse Laplace Transform of the following functions:

a) ๐น ๐‘  =๐‘ +3

๐‘ 2+4๐‘ +5 ๐‘ +5

Solution:

b) G ๐‘  =10

๐‘ 2+9 ๐‘ +1

Solution:

11/10/2021 27

๐ด๐‘›๐‘ : ๐‘“ ๐‘ก = โˆ’1

5๐‘’โˆ’5๐‘ก +

1

5๐‘๐‘œ๐‘  ๐‘ก ๐‘’โˆ’2๐‘ก +

2

5๐‘ ๐‘–๐‘› ๐‘ก ๐‘’โˆ’2๐‘ก

๐ด๐‘›๐‘ : ๐‘” ๐‘ก = ๐‘’โˆ’๐‘ก โˆ’ ๐‘๐‘œ๐‘  3๐‘ก โˆ’1

3๐‘ ๐‘–๐‘› 3๐‘ก

Page 28: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Partial-Fraction Expansion with MATLAB Three (3) steps to obtain the Partial-Fraction Expansion :

1. Define the coefficients in descending powers of ๐‘  as follow:o Coefficients of numerator polynomial as numerator coefficients ,o Coefficients of denominator polynomial as denominator

coefficients

2. Use the โ€ฒ๐’“๐’†๐’”๐’Š๐’…๐’–๐’†โ€ฒ command to get the residues ๐’“ , poles ๐’‘and direct terms ๐’Œ of a Partial-Fraction Expansion of the ratio of the two polynomials ๐ต ๐‘  and ๐ด ๐‘  ;

3. The partial-fraction expansion of ๐ต ๐‘  ๐ด ๐‘  is given by:

๐ต ๐‘ 

๐ด ๐‘ = ๐‘˜ ๐‘  +

๐‘Ÿ 1

๐‘  โˆ’ ๐‘ 1+

๐‘Ÿ 2

๐‘  โˆ’ ๐‘ 2+ โ‹ฏ +

๐‘Ÿ ๐‘›

๐‘  โˆ’ ๐‘ ๐‘›

Syntax:

๐‘Ÿ, ๐‘, ๐‘˜ = ๐‘Ÿ๐‘’๐‘ ๐‘–๐‘‘๐‘ข๐‘’ ๐‘›๐‘ข๐‘š๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘œ๐‘Ÿ ๐‘๐‘œ๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก๐‘  , ๐‘‘๐‘’๐‘›๐‘œ๐‘š๐‘–๐‘›๐‘Ž๐‘ก๐‘œ๐‘Ÿ ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก๐‘ 

11/10/2021 28

Page 29: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Example Get the partial-fraction expansion for the following expression:

๐ต ๐‘ 

๐ด ๐‘ =

๐‘ 4+8๐‘ 3+16๐‘ 2+9๐‘ +6

๐‘ 3+6๐‘ 2+11๐‘ +6

Solution- Step_1: Coefficient definition:

o Numerator: ๐‘ = 1 8 16 9 6o Denominator: ๐ท = 1 6 11 6

- Step_2: โ€˜residueโ€™ command in Matlab

o ๐‘Ÿ, ๐‘, ๐‘˜ = ๐‘Ÿ๐‘’๐‘ ๐‘–๐‘‘๐‘ข๐‘’ 1 8 16 9 6 , 1 6 11 6= ๐‘Ÿ๐‘’๐‘ ๐‘–๐‘‘๐‘ข๐‘’ ๐‘, ๐ท

11/10/2021 29

Page 30: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Solution (Contโ€™d) MatLab Results:

For direct terms ๐’Œ :

๐’Œ ๐’” = ๐Ÿ๐’”๐Ÿ + ๐Ÿ๐’”๐ŸŽ = ๐’” + ๐Ÿ

- Step_3: Write the partial-fraction expansion as:

๐ต ๐‘ 

๐ด ๐‘ =

๐‘ 4+8๐‘ 3+16๐‘ 2+9๐‘ +6

๐‘ 3+6๐‘ 2+11๐‘ +6โ‡”

๐ต ๐‘ 

๐ด ๐‘ = ๐‘  + 2 โˆ’

6

๐‘ +3โˆ’

4

๐‘ +2+

3

๐‘ +1

11/10/2021 30

Page 31: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Tryโ€ฆ With MatLab, get the partial-fraction expansion for the following

expressions:

1) ๐น ๐‘  =โˆ’4๐‘ +8

๐‘ 2+6๐‘ +8

2) ๐บ ๐‘  =2๐‘ 4+๐‘ 

๐‘ 2+1

11/10/2021 31

๐ด๐‘›๐‘ : ๐น ๐‘  =โˆ’12

๐‘  + 4+

8

๐‘  + 2

๐ด๐‘›๐‘ : ๐บ ๐‘  = 2๐‘ 2 โˆ’ 2 +0.5 โˆ’ ๐‘–

๐‘  โˆ’ ๐‘–+

0.5 + ๐‘–

๐‘  + ๐‘–

Page 32: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

The Laplace Transform can be used to solve differential

equations using a four step process:

1. Take the Laplace Transform of the differential equationusing the derivative property (and, perhaps, others) as necessary.

2. Put initial conditions into the resulting equation.

3. Solve for the output variable.

4. Get result from the Laplace Transform Tables. (look up the terms individually):

- If the result is in a form that is not in the tables, you'll need to use the Inverse Laplace Transform.

C. Steps to Solving Differential Equations

11/10/2021 32

Page 33: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Examples

1) Find the response ๐‘ฆ ๐‘ก for the following differential equation ๐‘‘๐‘ฆ ๐‘ก

๐‘‘๐‘ก+ 2๐‘ฆ ๐‘ก = ๐‘“ ๐‘ก , with input ๐‘“ ๐‘ก and output ๐‘ฆ ๐‘ก ;

if ๐‘“ ๐‘ก = ๐‘ข ๐‘ก โˆ’ ๐‘ข ๐‘ก โˆ’ 1 i.e. a Unit Step Function, and the initial condition ๐‘ฆ 0โˆ’ = โˆ’2.

Solution:- Step_1: Take the Laplace Transform of the differential equation.

โ€ข โ„’๐‘‘๐‘ฆ ๐‘ก

๐‘‘๐‘ก= ๐‘ ๐‘Œ ๐‘  โˆ’ ๐‘ฆ 0โˆ’

โ€ข โ„’ ๐‘ฆ ๐‘ก = ๐‘Œ ๐‘ 

โ€ข โ„’ ๐‘“ ๐‘ก = ๐น ๐‘  =1

๐‘ โˆ’ ๐‘’โˆ’๐‘ ๐น ๐‘  =

1

๐‘ โˆ’ ๐‘’โˆ’๐‘  1

๐‘ 

So,

๐‘‘๐‘ฆ ๐‘ก

๐‘‘๐‘ก+ 2๐‘ฆ ๐‘ก = ๐‘ข ๐‘ก โˆ’ ๐‘ข ๐‘ก โˆ’ 1 โ†’

โ„’๐‘ ๐‘Œ ๐‘  โˆ’ ๐‘ฆ 0โˆ’ + 2๐‘Œ ๐‘  =

1

๐‘ โˆ’ ๐‘’โˆ’๐‘  1

๐‘ 

11/10/2021 33

Page 34: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Solution (Contโ€™d)

- Step_2: Put initial conditions into the resulting equation.

โ€ข ๐‘ ๐‘Œ ๐‘  โˆ’ ๐‘ฆ 0โˆ’ + 2๐‘Œ ๐‘  =1

๐‘ โˆ’ ๐‘’โˆ’๐‘  1

๐‘ (The resulting equation)

โ€ข ๐‘ ๐‘Œ ๐‘  + 2 + 2๐‘Œ ๐‘  =1

๐‘ โˆ’ ๐‘’โˆ’๐‘  1

๐‘ (After putting the initial condition)

- Step_3: Solve for the output variable ๐‘Œ ๐‘  .

โ€ข ๐‘Œ ๐‘  =1

๐‘  ๐‘ +2โˆ’ ๐‘’โˆ’๐‘  1

๐‘  ๐‘ +2โˆ’ 2

1

๐‘ +2

- Step_4: Get result from the Laplace Transform Tables.

โ€ข โ„’โˆ’1 1

๐‘  ๐‘ +2=

1

21 โˆ’ ๐‘’โˆ’2๐‘ก

โ€ข โ„’โˆ’1 โˆ’๐‘’โˆ’๐‘  1

๐‘  ๐‘ +2=

1

21 โˆ’ ๐‘’โˆ’2 ๐‘กโˆ’1 ๐‘ข ๐‘ก โˆ’ 1

โ€ข โ„’โˆ’1 โˆ’21

๐‘ +2= โˆ’2๐‘’โˆ’2๐‘ก

Finally: ๐‘ฆ ๐‘ก =12 1 โˆ’ ๐‘’โˆ’2๐‘ก โˆ’ 1

21 โˆ’ ๐‘’โˆ’2 ๐‘กโˆ’1 ๐‘ข ๐‘ก โˆ’ 1 โˆ’ 2๐‘’โˆ’2๐‘ก

11/10/2021 34

Page 35: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Examples (Contโ€™d)

2) Find the response ๐‘ฆ ๐‘ก for the following differential equation: ๐‘‘2๐‘ฆ ๐‘ก

๐‘‘๐‘ก2 + 2๐‘‘๐‘ฆ ๐‘ก

๐‘‘๐‘ก+ 10๐‘ฆ ๐‘ก =

๐‘‘๐‘“ ๐‘ก

๐‘‘๐‘ก, with input ๐‘“ ๐‘ก and output ๐‘ฆ ๐‘ก ;

if ๐‘“ ๐‘ก = ๐‘ข ๐‘ก i.e. a unit step input, and

the initial conditions: ๐‘“ 0โˆ’ = 0, ๐‘ฆ 0โˆ’ = 0 and๐‘‘๐‘ฆ 0โˆ’

๐‘‘๐‘ก= 1.

Solution:- Step_1: Take the Laplace Transform of the differential equation.

โ€ข โ„’๐‘‘2๐‘ฆ ๐‘ก

๐‘‘๐‘ก2 = ๐‘ 2๐‘Œ ๐‘  โˆ’ ๐‘ ๐‘ฆ 0โˆ’ โˆ’ ๐‘ฆโ€ฒ 0โˆ’

โ€ข โ„’ 2๐‘‘๐‘ฆ ๐‘ก

๐‘‘๐‘ก= 2 ๐‘ ๐‘Œ ๐‘  โˆ’ ๐‘ฆ 0โˆ’

โ€ข โ„’ 10๐‘ฆ ๐‘ก = 10๐‘Œ ๐‘ 

โ€ข โ„’๐‘‘๐‘“ ๐‘ก

๐‘‘๐‘ก= ๐‘ ๐น ๐‘  โˆ’ ๐‘“ 0โˆ’ = ๐‘ 

1

๐‘ = 1

So,๐‘‘2๐‘ฆ ๐‘ก

๐‘‘๐‘ก2+ 2

๐‘‘๐‘ฆ ๐‘ก

๐‘‘๐‘ก+ 10๐‘ฆ ๐‘ก =

๐‘‘๐‘“ ๐‘ก

๐‘‘๐‘กโ†’โ„’

๐‘ 2๐‘Œ ๐‘  โˆ’ ๐‘ ๐‘ฆ 0โˆ’ โˆ’ ๐‘ฆโ€ฒ 0โˆ’ + 2 ๐‘ ๐‘Œ ๐‘  โˆ’ ๐‘ฆ 0โˆ’ + 10๐‘Œ ๐‘  = 1

11/10/2021 35

Page 36: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Solution (Contโ€™d)

- Step_2: Put initial conditions into the resulting equation.

โ€ข ๐‘ 2๐‘Œ ๐‘  โˆ’ ๐‘ ๐‘ฆ 0โˆ’ โˆ’ ๐‘ฆโ€ฒ 0โˆ’ + 2 ๐‘ ๐‘Œ ๐‘  โˆ’ ๐‘ฆ 0โˆ’ + 10๐‘Œ ๐‘  = 1 (The resulting equation)

โ€ข ๐‘ 2๐‘Œ ๐‘  โˆ’ ๐‘ . 0 โˆ’ 1 + 2 ๐‘ ๐‘Œ ๐‘  โˆ’ 0 + 10๐‘Œ ๐‘  = 1 (After putting the initial condition)

โ‡” ๐‘ 2๐‘Œ ๐‘  โˆ’ 1 + 2๐‘ ๐‘Œ ๐‘  + 10๐‘Œ ๐‘  = 1

- Step_3: Solve for the output variable ๐‘Œ ๐‘  .

โ€ข ๐‘Œ ๐‘  ๐‘ 2 + 2๐‘  + 10 = 2

โ‡’ ๐‘Œ ๐‘  =2

๐‘ 2+2๐‘ +10

- Step_4: Get result from the Laplace Transform Tables.

โ€ข As the above result is not in the tables, let use the Inverse Laplace Transform.

Hence:

๐‘Œ ๐‘  =2

๐‘ 2+2๐‘ +10โ‡” ๐‘Œ ๐‘  =

2

๐‘ +1 2+9=

2

๐‘ +1 2+32

11/10/2021 36

Page 37: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

From : ๐‘Œ ๐‘  =2

๐‘ +1 2+9=

2

๐‘ +1 2+32

โ‡’ ๐‘Œ ๐‘  =2

3

3

๐‘ +1 2+32

We then use the table to determine the solution and finally get:

๐‘ฆ ๐‘ก =2

3๐‘’โˆ’๐‘ก๐‘ ๐‘–๐‘› 3๐‘ก

Tryโ€ฆ- Find the response ๐‘ฅ ๐‘ก for the following differential equations:

1) ๐‘ฅ + 3 ๐‘ฅ + 2๐‘ฅ = 0 with the following initial conditions: ๐‘ฅ 0 = ๐‘Ž, ๐‘ฅ 0 = ๐‘

2) ๐‘ฅ + 2 ๐‘ฅ + 5๐‘ฅ = 3 with the following initial conditions: ๐‘ฅ 0 = ๐‘Ž, ๐‘ฅ 0 = ๐‘

11/10/2021 37

Page 38: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

CHAP_2. 3: Transfer Function

11/10/2021 38

Page 39: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

2.3. Transfer Function (TF)A. Overview

โ€ข Commonly used to characterize the inputโ€”output relationships of components or systems that can be described by linear and time-invariant differential equations.

โ€ข It is defined as โ€œthe ratio of the Laplace Transform of the output(response function) to the Laplace Transform of the input (driving function) under the assumption that all initial conditions are zeroโ€

๐‘บ๐’š๐’”๐’•๐’†๐’ŽInput Output

๐‘Ÿ ๐‘ก ๐‘ ๐‘ก๐’‚

๐‘บ๐’–๐’ƒ๐’š๐’”๐’•๐’†๐’ŽInput Output

๐‘Ÿ ๐‘ก ๐‘ ๐‘ก๐’ƒ

๐‘บ๐’–๐’ƒ๐’š๐’”๐’•๐’†๐’Ž ๐‘บ๐’–๐’ƒ๐’š๐’”๐’•๐’†๐’Ž

With:โ€ข ๐‘Ÿ ๐‘ก โ‰ก ๐‘Ÿ๐‘’๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’ ๐‘–๐‘›๐‘๐‘ข๐‘กโ€ข ๐‘ ๐‘ก โ‰ก ๐‘๐‘œ๐‘›๐‘ก๐‘Ÿ๐‘œ๐‘™๐‘™๐‘’๐‘‘ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘–๐‘Ž๐‘๐‘™๐‘’

11/10/2021 39

Page 40: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Overview (Contโ€™d)โ€ข A general form of the differential equation for Linear and Time

Invariant System (LTI-System) with an input ๐‘Ÿ ๐‘ก and output ๐‘ ๐‘ก is given by:

๐‘Ž๐‘›๐‘‘๐‘›๐‘ ๐‘ก

๐‘‘๐‘ก๐‘› + ๐‘Ž๐‘›โˆ’1๐‘‘๐‘›โˆ’1๐‘ ๐‘ก

๐‘‘๐‘ก๐‘›โˆ’1 + โ‹ฏ + ๐‘Ž0๐‘ ๐‘ก = ๐‘๐‘š๐‘‘๐‘š๐‘Ÿ ๐‘ก

๐‘‘๐‘ก๐‘š + ๐‘๐‘šโˆ’1๐‘‘๐‘šโˆ’1๐‘Ÿ ๐‘ก

๐‘‘๐‘ก๐‘šโˆ’1 + โ‹ฏ + ๐‘0๐‘Ÿ ๐‘ก

โ€ข The Transfer Function of this system is obtained by taking the Laplace transforms of both sides of Equation (assuming zero initial conditions),

๐‘Ž๐‘›๐‘ ๐‘›๐ถ ๐‘  + ๐‘Ž๐‘›โˆ’1๐‘ ๐‘›โˆ’1๐ถ ๐‘  + โ‹ฏ + ๐‘Ž0๐ถ ๐‘  = ๐‘๐‘š๐‘ ๐‘š๐‘… ๐‘  + ๐‘๐‘šโˆ’1๐‘ ๐‘šโˆ’1๐‘… ๐‘  + โ‹ฏ + ๐‘0๐‘… ๐‘ 

๐‘Ž๐‘›๐‘ ๐‘› + ๐‘Ž๐‘›โˆ’1๐‘ ๐‘›โˆ’1 + โ‹ฏ + ๐‘Ž0 ๐ถ ๐‘  = ๐‘๐‘š๐‘ ๐‘š + ๐‘๐‘šโˆ’1๐‘ ๐‘šโˆ’1 + โ‹ฏ + ๐‘0 ๐‘… ๐‘ 

๐ถ ๐‘ 

๐‘… ๐‘ =

๐‘๐‘š๐‘ ๐‘š+๐‘๐‘šโˆ’1๐‘ ๐‘šโˆ’1+โ‹ฏ+๐‘0

๐‘Ž๐‘›๐‘ ๐‘›+๐‘Ž๐‘›โˆ’1๐‘ ๐‘›โˆ’1+โ‹ฏ+๐‘Ž0= ๐บ ๐‘  โ€ขThe equation ๐‘ฎ ๐’” is called

Transfer Function (TF).

11/10/2021 40

Page 41: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Three (3) steps to obtain manually the Transfer Function:1. Write the differential equation for the system.2. Take the Laplace transform of the differential equation,

assuming all initial conditions are zeros.3. Take the ratio of the output ๐ถ ๐‘  to the input ๐‘… ๐‘  .

This ratio is the transfer function.

The key advantage of Transfer Functions is that: they allow engineers to use simple algebraic equations instead of

complex differential equations for analyzing and designing systems.

A. 1. To obtain Transfer Function Manually

11/10/2021 41

Page 42: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

From the given differential equations, find the Transfer Function represented by ๐‘ ๐‘ก , to an input ๐‘Ÿ ๐‘ก :

a)๐‘‘๐‘ ๐‘ก

๐‘‘๐‘ก+ 2๐‘ ๐‘ก = ๐‘Ÿ ๐‘ก

b) ๐‘ + 3 ๐‘ + ๐‘ = ๐‘Ÿ ๐‘ก

Solution:

a)๐‘‘๐‘ ๐‘ก

๐‘‘๐‘ก+ 2๐‘ ๐‘ก = ๐‘Ÿ ๐‘ก

โ€ข Taking the Laplace Transform:

๐‘ ๐ถ ๐‘  + 2๐ถ ๐‘  = ๐‘… ๐‘ 

โ€ข The Transfer Function ๐บ ๐‘  , is:

๐บ ๐‘  =๐ถ ๐‘ 

๐‘… ๐‘ =

1

๐‘ +2

Example

11/10/2021 42

b) ๐‘ + 3 ๐‘ + 2๐‘ = ๐‘Ÿ ๐‘ก

โ€ข Taking the Laplace Transform:

๐‘ 2๐ถ ๐‘  + 3s๐ถ ๐‘  + ๐ถ ๐‘  = ๐‘… ๐‘ 

โ€ข The Transfer Function ๐บ ๐‘  , is:

๐บ ๐‘  =๐ถ ๐‘ 

๐‘… ๐‘ =

1

๐‘ 2+3๐‘ +1

Page 43: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

From the given differential equations, find the Transfer Function represented by ๐‘ ๐‘ก , to an input ๐‘Ÿ ๐‘ก :

a) 5๐‘‘2๐‘ ๐‘ก

๐‘‘๐‘ก2 โˆ’ 3๐‘ ๐‘ก = 2๐‘Ÿ ๐‘ก

b) ๐‘ฅ + 2 ๐‘ฅ + 5๐‘ฅ = 3๐‘Ÿ ๐‘ก

Tryโ€ฆ

11/10/2021 43

Page 44: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

A. 2. To obtain Transfer Function with MatLab Two (2) steps to obtain the Transfer Function:

1. Define the coefficients of the differential equation in descending power as :o input signal coefficients as numerator coefficients ,o output signal coefficients as denominator coefficients

2. Use the โ€ฒ๐’•๐’‡โ€ฒ command to generate the Transfer Function (TF);

Syntax:

๐บ ๐‘† = ๐‘ก๐‘“ ๐‘›๐‘ข๐‘š๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘œ๐‘Ÿ ๐‘๐‘œ๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก๐‘  , ๐‘‘๐‘’๐‘›๐‘œ๐‘š๐‘–๐‘›๐‘Ž๐‘ก๐‘œ๐‘Ÿ ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก๐‘ 

Example: 5๐‘‘4๐‘ฆ

๐‘‘๐‘ก4 โˆ’ 4๐‘‘2๐‘ฆ

๐‘‘๐‘ก2 + 10๐‘ฆ = 20๐‘‘๐‘ข

๐‘‘๐‘ก+ 4๐‘ข

Solution: -Step_1: Coefficient definition.

o Numerator: ๐‘ = 20 4o Denominator: ๐ท = 5 0 โˆ’ 4 10

-Step_2: โ€ฒ๐’•๐’‡โ€ฒ command in Matlab.

o ๐บ = ๐‘ก๐‘“ 20 4 , 5 0 โˆ’ 4 10= ๐‘ก๐‘“ ๐‘, ๐ท

o Answer: ๐บ =20๐‘ +4

5๐‘ ^3โˆ’4๐‘ +10

11/10/2021 44

Page 45: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

โ€ข Use MATLAB to extract the Transfer Function represented by the following equations:

1.๐‘‘๐‘ ๐‘ก

๐‘‘๐‘ก+ 2๐‘ ๐‘ก = ๐‘Ÿ ๐‘ก

2. 5๐‘‘2๐‘ ๐‘ก

๐‘‘๐‘ก2 โˆ’ 3๐‘ ๐‘ก = 2๐‘Ÿ ๐‘ก

Tryโ€ฆ

11/10/2021 45

Page 46: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

B. Open-Loop Transfer Function (OLTF)

OLTF can be represented using a block diagram:

๐‘… ๐‘  ๐ถ ๐‘ 

๐‘… ๐‘  ๐ถ ๐‘ 

Where:

๐ถ ๐‘  = ๐บ ๐‘  ๐‘… ๐‘  or G ๐‘  =๐ถ ๐‘ 

๐‘… ๐‘ 

NOTE: G ๐‘  =๐ถ ๐‘ 

๐‘… ๐‘ โ‰ก Open-Loop Transfer Function.

๐บ ๐‘ 

๐‘๐‘š๐‘ ๐‘š + ๐‘๐‘šโˆ’1๐‘ ๐‘šโˆ’1 + โ‹ฏ + ๐‘0

๐‘Ž๐‘›๐‘ ๐‘› + ๐‘Ž๐‘›โˆ’1๐‘ ๐‘›โˆ’1 + โ‹ฏ + ๐‘Ž0

11/10/2021 46

Page 47: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

B. Closed-Loop Transfer Function (CLTF)

CLTF can be represented using a block diagram:

๐‘… ๐‘  + E ๐‘  ๐ถ ๐‘ 

โˆ“

Thus: ๐ธ ๐‘  = R ๐‘  โˆ’ ๐ป ๐‘  ๐ถ ๐‘  (eq.1) and ๐ถ ๐‘  = G ๐‘  ๐ธ ๐‘  (eq.2)

eq.1 into eq.2: ๐ถ ๐‘  = G ๐‘  [R ๐‘  โˆ’ ๐ป ๐‘  ๐ถ ๐‘  ] (eq.3)

Re-arranging the eq.3 yields to:

๐ถ ๐‘ 

๐‘… ๐‘ =

๐บ ๐‘ 

1ยฑ๐บ ๐‘  ๐ป ๐‘ โ‰ก Closed-Loop Transfer Function.

๐บ ๐‘ 

๐ป ๐‘ 

Plant and Controller

Output

Feedback

Input Actuating signal (error)

11/10/2021 47

Page 48: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Feedback and its Effects Why Feedback?

โ€ข Feedback is a key tool that can be used to modify the behaviorof a system.

โ€ข This behavior altering effect of feedback is a key mechanism that control engineers exploit deliberately to achieve the objective of acting on a system to ensure that the desired performance specifications are achieved.

Feedback Effects.

โ€ข To reduce the error between the input and output of the system.

โ€ข It effects the system performance characteristics such as stability, overall system gain, sensitivity and bandwidth.

11/10/2021 48

Page 49: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

o Feedback Effects on:

i. system sensitivity:

โ€ข It can make the systemโ€™s response less sensitive to externaldisturbances, parameter changes and noise

ii. system stability:

โ€ข An unstable system can be stabilized using feedback

โ€ข Stability refers to the ability of a system to follow its input signal

โ€ข A system that canโ€™t control its output, or its output increases infinitely is an unstable system

โ€ข Adding feedback may also cause instability to an already stable system

11/10/2021 49

Page 50: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

o Feedback Effects on (Contโ€™d)

iii. system gain:

โ€ข Feedback influences the systemโ€™s Transfer Function and consequently, the overall system gain:

โ€ข Thus, the systemโ€™s gain can be obtained by finding the magnitude of the systemโ€™s Transfer Function:

a) The system gain for OLCS: ๐ถ ๐‘ 

๐‘… ๐‘ = ๐บ ๐‘ 

b) The system gain for CLCS: ๐ถ ๐‘ 

๐‘… ๐‘ =

๐บ ๐‘ 

1+๐บ ๐‘  ๐ป ๐‘ 

Effects of the product ๐บ ๐‘  ๐ป ๐‘  :

โ€“ If ๐บ ๐‘  ๐ป ๐‘  is negative;

๐ถ ๐‘ 

๐‘… ๐‘ > ๐บ ๐‘  and we have positive feedback.

11/10/2021 50

Page 51: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Effects of the product ๐บ ๐‘  ๐ป ๐‘  (Contโ€™d):

โ€“ If ๐บ ๐‘  ๐ป ๐‘  is positive;

๐ถ ๐‘ 

๐‘… ๐‘ < ๐บ ๐‘  and we have negative feedback.

o If ๐บ ๐‘  ๐ป ๐‘  is positive and ๐บ ๐‘  ๐ป ๐‘  โ‰ซ 1;

๐ถ ๐‘ 

๐‘… ๐‘ โ‰ˆ

๐บ ๐‘ 

๐บ ๐‘  ๐ป ๐‘ =

1

๐ป ๐‘ 

The gain is independent of the gain of the forward path ๐บ ๐‘  .

Depending on whether the feedback is positive + or negative โˆ’ , the system gain of a Closed-Loop Control System (CLCS) can be increased or decreased.

11/10/2021 51

Page 52: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

o Feedback Effects on (contโ€™d)

iv. system bandwidth:

โ€ข The system bandwidth increases as the gain is reduced with feedback;

โ€ข in some cases the gain ร— bandwidth = constant

11/10/2021 52

Page 53: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

CHAP_2. 4: Block Diagram Models

11/10/2021 53

Page 54: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

2.4 Block Diagram ModelsA. Overview

โ€ข A block diagram of a system is a pictorial representation of the functions performed by each component and of the flow of signals.

โ€“ Such diagram depicts the interrelationships that exist among the various components.

โ€“ Differing from a purely abstract mathematical representation, a block diagram has the advantage of indicating more realistically the signal flows of the actual system.

โ€ข Transfer function can be represented as a block diagram:

๐‘๐‘š๐‘ ๐‘š + ๐‘๐‘šโˆ’1๐‘ ๐‘šโˆ’1 + โ‹ฏ + ๐‘0

๐‘Ž๐‘›๐‘ ๐‘› + ๐‘Ž๐‘›โˆ’1๐‘ ๐‘›โˆ’1 + โ‹ฏ + ๐‘Ž0

๐‘… ๐‘  ๐ถ ๐‘ 

11/10/2021 54

Page 55: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Components of a Block Diagram for a LTI system

a) Signals

๐‘… ๐‘  ๐ถ ๐‘ 

b) System

๐บ ๐‘ ๐‘… ๐‘  ๐ถ ๐‘ 

Input Output

โˆ’

c) Summing Junction

๐‘…1 ๐‘  +

๐‘…2 ๐‘ ๐‘…3 ๐‘ 

๐ถ ๐‘  = ๐‘…1 ๐‘  + ๐‘…2 ๐‘  โˆ’ ๐‘…3 ๐‘ 

+

d) Pickoff point

๐‘… ๐‘  ๐‘… ๐‘ 

๐‘… ๐‘ 

๐‘… ๐‘ 

11/10/2021 55

Page 56: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Four (4) steps for drawing Block Diagram:

1) Write the equations that describe the dynamic behavior for each component.

2) Take Laplace Transform of these equations, assuming zero initial conditions.

3) Represent each Laplace-transformed equation individually in block form.

4) Assembly the elements into a complete block diagram.

Procedures for drawing Block Diagram

11/10/2021 56

Page 57: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Blocks of Block diagram can be connected in three basic forms:

1) Cascade:

2) Parallel

3) Feedback

Basic Forms of Block Diagram Blocks

๐บ2 ๐‘ ๐บ1 ๐‘  ๐บ3 ๐‘ ๐‘… ๐‘  ๐‘‹2 ๐‘ ๐‘‹1 ๐‘  ๐ถ ๐‘ 

๐บ1 ๐‘ ๐‘‹1 ๐‘ 

๐‘… ๐‘ ๐บ2 ๐‘ 

๐บ3 ๐‘ 

๐‘‹2 ๐‘ 

๐‘‹3 ๐‘ 

๐ถ ๐‘ ยฑยฑ

ยฑ

๐‘… ๐‘ ๐บ ๐‘ 

๐ป ๐‘ 

๐ธ ๐‘  ๐ถ ๐‘ 

๐‘‹ ๐‘ โˆ“

11/10/2021 57

Page 58: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

B. Block Diagram Algebra

Simplify block diagrams into simpler, recognizable forms;

In order to determine the equivalent transfer function.

1. Simplify to instances of the three standard forms;

then simplify those forms

2. Move blocks around relative to summing junctions and pickoff points;

simplify to a standard form:

i. Move blocks forward/backward past summing junctions

ii. Move blocks forward/backward past pickoff points

11/10/2021 58

Page 59: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Rules for Reduction of Block Diagrams

1. Any number of cascaded blocks can be reduced by a single block representing transfer function being a product of transfer functions of all cascaded blocks.

๐บ1 ๐‘ ๐‘… ๐‘ 

๐บ2 ๐‘  ๐บ3 ๐‘ 

๐‘‹1 ๐‘ = ๐บ1 ๐‘† ๐‘… ๐‘ 

๐‘‹2 ๐‘ = ๐บ2 ๐‘  ๐บ1 ๐‘† ๐‘… ๐‘ 

๐ถ ๐‘ = ๐บ3 ๐‘  ๐บ2 ๐‘  ๐บ1 ๐‘† ๐‘… ๐‘ 

๐’‚

๐‘ฎ๐Ÿ‘ ๐’” ๐‘ฎ๐Ÿ ๐’” ๐‘ฎ๐Ÿ ๐‘บ๐‘… ๐‘  ๐ถ ๐‘ 

๐’ƒ

11/10/2021 59

Page 60: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

โ€ขRules for reduction of the block diagram (Contโ€™d):

2. Equivalent Transfer Function for parallel substations.

๐บ1 ๐‘ ๐‘‹1 ๐‘  = ๐‘… ๐‘  ๐บ1 ๐‘ 

๐‘… ๐‘ ๐บ2 ๐‘ 

๐บ3 ๐‘ 

๐‘‹2 ๐‘  = ๐‘… ๐‘  ๐บ2 ๐‘ 

๐‘‹3 ๐‘  = ๐‘… ๐‘  ๐บ3 ๐‘ 

๐ถ ๐‘ = ยฑ๐บ1 ๐‘  ยฑ๐บ2 ๐‘  ยฑ ๐บ3 ๐‘† ๐‘… ๐‘ 

ยฑยฑ

ยฑ

ยฑ๐‘ฎ๐Ÿ ๐’” ยฑ๐‘ฎ๐Ÿ ๐’” ยฑ ๐‘ฎ๐Ÿ‘ ๐‘บ๐‘… ๐‘  ๐ถ ๐‘ 

๐’ƒ

๐’‚

11/10/2021 60

Page 61: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

โ€ขRules for reduction of the block diagram (Contโ€™d):

3. Equivalent Transfer Function for substations with feedback.

๐บ ๐‘ 

1 ยฑ ๐บ ๐‘  ๐ป ๐‘ 

๐‘… ๐‘  ๐ถ ๐‘ 

๐’ƒ

๐’‚

๐‘… ๐‘ ๐บ ๐‘ 

๐ป ๐‘ 

๐ธ ๐‘  ๐ถ ๐‘ 

๐‘‹ ๐‘ 

โˆ“

11/10/2021 61

Page 62: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

โ€ขRules for Reduction of Block Diagrams (Contโ€™d):

4. Moving Blocks/a Summing Junction.

๐‘‹ ๐‘ 

โˆ“

+ ๐ถ ๐‘ โ‰ก๐บ ๐‘ 

๐‘… ๐‘ 

๐‘‹ ๐‘ 

โˆ“

+๐บ ๐‘ 

๐‘… ๐‘ 

๐บ ๐‘ 

๐บ ๐‘ ๐ถ ๐‘  ๐‘… ๐‘  ๐ถ ๐‘ 

๐’‚ Back Past a Summing Junction/Behind the Block

๐’ƒ Forward Past a Summing Junction/Ahead of the Block

๐‘‹ ๐‘ 

โ‰กโˆ“

+

โˆ“

+

1

๐บ ๐‘ 

๐บ ๐‘ ๐ถ ๐‘ ๐‘… ๐‘ 

๐‘‹ ๐‘ 

11/10/2021 62

Page 63: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

โ€ขRules for reduction of the block diagram (Contโ€™d):

5. Moving Blocks/a Pickoff Point.

๐‘… ๐‘ 

๐‘… ๐‘ 

๐‘… ๐‘  ๐บ ๐‘ 

โ‰ก๐บ ๐‘ ๐‘… ๐‘ 

๐บ ๐‘ 

๐‘… ๐‘  1

๐บ ๐‘ ๐บ ๐‘ 

๐‘… ๐‘  ๐บ ๐‘ 

๐‘… ๐‘  ๐‘… ๐‘ 

๐’‚ Backward Past Pickoff Point/Behind the Block

๐’ƒ Forward Past Pickoff Point/Ahead of the Block

โ‰ก

๐บ ๐‘ ๐‘… ๐‘  ๐บ ๐‘ 

๐‘… ๐‘ 

๐‘… ๐‘  ๐บ ๐‘ 

1

๐บ ๐‘ 

๐‘… ๐‘ 

๐‘… ๐‘  ๐บ ๐‘ 

๐‘… ๐‘  ๐บ ๐‘ 

๐บ ๐‘ 

๐บ ๐‘ 

๐‘… ๐‘  ๐บ ๐‘ 

๐‘… ๐‘  ๐บ ๐‘ 

11/10/2021 63

Page 64: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Three (3) tips for calculating the Equivalent Transfer Function of reduced Block Diagrams:

1) The Numerator of the closed-loop Transfer Function ๐ถ ๐‘  ๐‘… ๐‘  is the product of the transfer functions of the

feed forward path.

2) The denominator of the closed-loop transfer function ๐ถ ๐‘  ๐‘… ๐‘  is equal to:

1 โˆ’ ๐‘๐‘Ÿ๐‘œ๐‘‘๐‘ข๐‘๐‘ก ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘‡๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘“๐‘’๐‘Ÿ ๐น๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘›๐‘  ๐‘Ž๐‘Ÿ๐‘œ๐‘ข๐‘›๐‘‘ ๐‘’๐‘Ž๐‘โ„Ž ๐‘™๐‘œ๐‘œ๐‘

3) The positive feedback loop yields a negative term in the denominator.

Conclusion of Block Diagram Reduction Techniques

11/10/2021 64

Page 65: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Example_1โ€ข Reduce the following block diagram

11/10/2021 65

Page 66: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Workingโ€ฆ

1) Moving the summing point ahead of ๐บ1, we have:

11/10/2021 66

Page 67: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Workingโ€ฆ

2) Combining ๐บ1 and ๐บ2 in Cascade, we get:

11/10/2021 67

Page 68: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Workingโ€ฆ

3) Eliminating the feedback loop ๐บ1, ๐บ2 and ๐ป1, we get:

11/10/2021 68

Page 69: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Workingโ€ฆ

4) Combing the two blocks in Cascade, we get

11/10/2021 69

Page 70: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Workingโ€ฆ

5) Similarly eliminating the second feedback loop, we get:

11/10/2021 70

Page 71: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Workingโ€ฆ

6) Similarly eliminating the third feedback loop, we get:

11/10/2021 71

Page 72: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Workingโ€ฆ

7) Finally, the system is reduced to the following block diagram:

11/10/2021 72

Page 73: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Example_2โ€ข Deduce the response ๐’€ ๐’” of the following control system with two

inputs ๐‘… ๐‘  and ๐ท ๐‘  .

โ€ข Solution:

a) Find:

- Step_1: ๐‘Œ1 ๐‘  ๐ท ๐‘  when ๐‘… ๐‘  = 0

๐‘Œ1 ๐‘ 

๐ท ๐‘  ๐‘… ๐‘  =0=

๐บ2

1+๐บ2 ๐ป1โˆ’๐ป2

- Step_2: ๐‘Œ2 ๐‘  ๐‘… ๐‘  when ๐ท ๐‘  = 0

๐‘Œ2 ๐‘ 

๐‘… ๐‘  ๐ท ๐‘  =0=

๐บ1๐บ2

1+๐บ2 ๐ป1โˆ’๐ป2

b) The total response ๐‘Œ ๐‘  when ๐‘… ๐‘ and ๐ท ๐‘  are zeros is:

๐‘Œ ๐‘  = ๐‘Œ1 ๐‘  + ๐‘Œ2 ๐‘ 

= ๐‘Œ1 ๐‘ 

๐ท ๐‘  ๐‘… ๐‘  =0โˆ™ ๐ท ๐‘  +

๐‘Œ2 ๐‘ 

๐‘… ๐‘  ๐ท ๐‘  =0โˆ™ ๐‘… ๐‘ 

=๐บ2

1+๐บ2 ๐ป1โˆ’๐ป2๐ท ๐‘  +

๐บ1๐บ2

1+๐บ2 ๐ป1โˆ’๐ป2๐‘… ๐‘ 

11/10/2021 73

Page 74: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

C. Signal Flow Graphs

Alternative method to block diagram representation, developed by Samuel Jefferson Mason.

They provide graphical description of systems.

Advantage:

the availability of a flow graph gain formula, also calledMasonโ€™s gain formula.

A signal flow graph consists of a network in which nodesare connected by directed branches.

It depicts the flow of signals from one point of a system to another and gives the relationships among the signals.

11/10/2021 74

Page 75: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Components of Signal Flow Graphs

Signal flow graphs consist of:

1) Nodes โ€“represent signals

Nodes (sometimes) labeled with signal names

2) Branches โ€“represent system blocks

Branches labeled with system transfer functions

Unidirectional line segment joining two nodes.

4) Path: a branch or continuous sequence of branches.

5) Arrows indicate signal flow direction

6) Implicit summation at nodes:

Always a positive sum

Negative signs associated with branch transfer functions

11/10/2021 75

Page 76: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Four (4) steps:

1) Identify and label all signals on the block diagram

2) Place a node for each signal

3) Connect nodes with branches in place of the blocks;

Maintain correct direction

Label branches with corresponding transfer functions

Negate transfer functions as necessary to provide negativefeedback

4) If desired, simplify where possible.

Conversion Procedures from a Block

Diagram to a Signal Flow Graph

11/10/2021 76

Page 77: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Example_1โ€ข Convert the following block diagram to a signal flow graph

โ€ข Solution:

Step_1:

- Identify and Label any unlabeled signals.

Step_2:

- Place a node for each signal.

๐‘น ๐’” ๐‘ฟ๐Ÿ ๐’” ๐‘ฌ ๐’” ๐‘ผ ๐’”๐’€ ๐’”

๐‘ฟ๐Ÿ ๐’”

11/10/2021 77

Page 78: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Solution (Contโ€™d)Step_3:

- Connect nodes with branches, each representing a system block

Note: the โˆ’1 to provide negative feedback of ๐‘ฟ๐Ÿ ๐’”

Step_4:

- To simplify, intermediate nodes with a single input and single output can be eliminated, if desired:

This makes sense for ๐‘‹1 ๐‘  and ๐‘‹2 ๐‘ 

Leave ๐‘ˆ ๐‘  to indicate separation between controller and plant.

๐‘น ๐’” ๐‘ฟ๐Ÿ ๐’” ๐‘ฌ ๐’” ๐‘ผ ๐’” ๐’€ ๐’”

๐‘ฟ๐Ÿ ๐’”โˆ’๐Ÿ

๐‘ฏ๐Ÿ ๐’” ๐Ÿ ๐‘ซ ๐’” ๐‘ฎ ๐’”

๐‘ฏ๐Ÿ ๐’”

๐‘น ๐’” ๐‘ฌ ๐’” ๐‘ผ ๐’” ๐’€ ๐’”๐‘ฏ๐Ÿ ๐’” ๐‘ซ ๐’” ๐‘ฎ ๐’”

โˆ’๐‘ฏ๐Ÿ ๐’”

11/10/2021 78

Page 79: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Example_2โ€ข Convert the following block diagram to a signal flow graph

โ€ข Solution:

Step_1: Label all signals, then place a node for each

11/10/2021 79

Page 80: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Solution (Contโ€™d)Step_3: Connect nodes with branches, each representing a system block

Step_4: Simplify โ€“ eliminate ๐‘‹5 ๐‘  , ๐‘‹6 ๐‘  and ๐‘‹7 ๐‘ 

11/10/2021 80

Page 81: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Tryโ€ฆโ€ข Convert the following block diagram to a signal flow graph

2

1 2

11/10/2021 81

Page 82: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

D. Masonโ€™s Rule (Mason, 1953)

The block diagram reduction technique requiressuccessive application of fundamental relationships in order to arrive at the system transfer function.

On the other hand, Masonโ€™s rule for reducing a signal-flow graph to a single transfer function requires the application of one formula.

The formula was derived by S. J. Mason when he related the signal-flow graph to the simultaneous equations that can be written from the graph.

Before presenting the Masonโ€™s rule formula, we need to define some terminology:

11/10/2021 82

Page 83: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Masonโ€™s Rule: Terminology Loop: a closed path that originates and terminates on the

same node.

Non-touching loops: loops that do not have any nodes in common.

Loop gain: Total gain (product of individual gains) around any path in the signal flow graph.

Beginning and ending at the same node.

Not passing through any node more than once.

Forward path gain: gain along any path from the input to the output.

Not passing through any node more than once.

Nonโ€touching loop gains: the product of loop gains from nonโ€touching loops, taken two, three, four, or more at a time.

11/10/2021 83

Page 84: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Masonโ€™s Rule: Illustration of Terminology From the following signal flow graph, let get:

1) The loop gain:

3 loops with gains: โˆ’๐บ1 ๐‘  ๐ป3 ๐‘  ,

๐บ2 ๐‘  ๐ป1 ๐‘  , and

โˆ’๐บ2 ๐‘  ๐บ3 ๐‘  ๐ป2 ๐‘ 

2) Forward path gain:

2 forward paths with gains: ๐บ1 ๐‘  ๐บ2 ๐‘  ๐บ3 ๐‘  ๐บ4 ๐‘ 

๐บ1 ๐‘  ๐บ2 ๐‘  ๐บ5 ๐‘ 

3) Non-touching loop gains:

2 pairs of non-touching loops with gains: โˆ’๐บ1 ๐‘  ๐ป3 ๐‘  โˆ™ ๐บ2 ๐‘  ๐ป1 ๐‘ 

โˆ’๐บ1 ๐‘  ๐ป3 ๐‘  โˆ™ โˆ’๐บ2 ๐‘  ๐บ3 ๐‘  ๐ป2 ๐‘ 

11/10/2021 84

Page 85: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

The Transfer Function, ๐ถ ๐‘  ๐‘… ๐‘  , of a system representedby a signal-flow graph is:

๐ถ ๐‘ 

๐‘… ๐‘ =

๐‘–=1๐‘› ๐‘ƒ๐‘–โˆ†๐‘–

โˆ†

Where: โ€ข ๐‘› = number of forward pathsโ€ข ๐‘ƒ๐‘– = the ๐‘–๐‘กโ„Ž forward path gainโ€ข โˆ†= determinant of the Systemโ€ข โˆ†๐‘–= determinant of the ๐‘–๐‘กโ„Ž forward path

โˆ† is called the signal flow graph determinant or characteristic function since โˆ†= 0 is the system characteristic equation.

Masonโ€™s Rule

11/10/2021 85

Page 86: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

โ€ข โˆ†= 1 โˆ’ ๐‘™๐‘œ๐‘œ๐‘ ๐‘”๐‘Ž๐‘–๐‘›๐‘ 

+ ๐‘›๐‘œ๐‘› โˆ’ ๐‘ก๐‘œ๐‘ข๐‘โ„Ž๐‘–๐‘›๐‘” ๐‘™๐‘œ๐‘œ๐‘ ๐‘”๐‘Ž๐‘–๐‘›๐‘  ๐‘ก๐‘Ž๐‘˜๐‘’๐‘› 2 ๐‘Ž๐‘ก ๐‘Ž ๐‘ก๐‘–๐‘š๐‘’

โˆ’ ๐‘›๐‘œ๐‘› โˆ’ ๐‘ก๐‘œ๐‘ข๐‘โ„Ž๐‘–๐‘›๐‘” ๐‘™๐‘œ๐‘œ๐‘ ๐‘”๐‘Ž๐‘–๐‘›๐‘  ๐‘ก๐‘Ž๐‘˜๐‘’๐‘› 3 ๐‘Ž๐‘ก ๐‘Ž ๐‘ก๐‘–๐‘š๐‘’

+ ๐‘›๐‘œ๐‘› โˆ’ ๐‘ก๐‘œ๐‘ข๐‘โ„Ž๐‘–๐‘›๐‘” ๐‘™๐‘œ๐‘œ๐‘ ๐‘”๐‘Ž๐‘–๐‘›๐‘  ๐‘ก๐‘Ž๐‘˜๐‘’๐‘› 4 ๐‘Ž๐‘ก ๐‘Ž ๐‘ก๐‘–๐‘š๐‘’

โˆ’ โ‹ฏ

โ€ข โˆ†๐‘–= โˆ† โˆ’ ๐‘™๐‘œ๐‘œ๐‘ ๐‘”๐‘Ž๐‘–๐‘› ๐‘ก๐‘’๐‘Ÿ๐‘š๐‘  ๐‘–๐‘› โˆ† ๐’•๐’‰๐’‚๐’• ๐’•๐’๐’–๐’„๐’‰ ๐‘กโ„Ž๐‘’ ๐‘–๐‘กโ„Ž ๐‘“๐‘œ๐‘Ÿ๐‘ค๐‘Ž๐‘Ÿ๐‘‘ ๐‘๐‘Ž๐‘กโ„Ž

= ๐‘™๐‘œ๐‘œ๐‘ ๐‘”๐‘Ž๐‘–๐‘› ๐‘ก๐‘’๐‘Ÿ๐‘š๐‘  ๐‘–๐‘› โˆ† ๐’•๐’‰๐’‚๐’• ๐’๐’๐’• ๐’•๐’๐’–๐’„๐’‰๐’Š๐’๐’ˆ ๐‘กโ„Ž๐‘’ ๐‘–๐‘กโ„Ž ๐‘“๐‘œ๐‘Ÿ๐‘ค๐‘Ž๐‘Ÿ๐‘‘ ๐‘๐‘Ž๐‘กโ„Ž

Note: โˆ†๐‘–= 1 if there are no non-touching loops to the ๐‘–๐‘กโ„Ž path.

Masonโ€™s Rule (Contโ€™d)

11/10/2021 86

Page 87: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Seven (7) steps:

1) Calculate forward path gain ๐‘ƒ๐‘– for each forward path ๐‘–.

2) Calculate all loop Transfer Functions

3) Consider non-touching loop gains (NTLGs) taken 2 at a time

4) Consider non-touching loop gains (NTLGs) taken 3 at a time

5) Etc.

6) Calculate โˆ† from steps 2, 3, 4 and 5.

7) Calculate โˆ†๐’Š as portion of โˆ† that not touching the forward path ๐’Š.

Masonโ€™s Rule Systematic Approach

11/10/2021 87

Page 88: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Example Apply Masonโ€™s Rule to calculate the transfer function of the system

represented by the following Signal Flow Graph.

Solution:

11/10/2021 88

Step_1: Get the forward path gain ๐‘ƒ๐‘– for

each forward path ๐’Š:

โ€ขNumber of forward paths is 2

โ€ขForward path gains: ๐‘ƒ1 = ๐บ1๐บ2๐บ3๐บ4

๐‘ƒ2 = ๐บ1๐บ2๐บ5

Step_2: Get the ๐‘™๐‘œ๐‘œ๐‘ ๐‘”๐‘Ž๐‘–๐‘›๐‘ 

โ€ขNumber of loops with gains is 3

โ€ข ๐‘™๐‘œ๐‘œ๐‘ ๐‘”๐‘Ž๐‘–๐‘›๐‘  = โˆ’๐บ1๐ป3 + ๐บ2๐ป1 โˆ’ ๐บ2๐บ3๐ป2

Step_3: Get the ๐‘๐‘‡๐ฟ๐บ๐‘  2 @ ๐‘ก๐‘–๐‘š๐‘’

each forward path ๐’Š:

โ€ขNumber of NTLs is 2 pairs

โ€ข ๐‘๐‘‡๐ฟ๐บ๐‘  = โˆ’๐บ1๐ป3๐บ2๐ป1

+ ๐บ1๐ป3๐บ2๐บ3๐ป2

Step_4: Get โˆ†:

โ€ขโˆ†= 1 โˆ’ โˆ’๐บ1๐ป3 + ๐บ2๐ป1 โˆ’ ๐บ2๐บ3๐ป2

+ โˆ’๐บ1๐ป3๐บ2๐ป1 + ๐บ1๐ป3๐บ2๐บ3๐ป2

Page 89: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Solution (Contโ€™d)Step_5: Get โˆ†๐‘–:

โ€ข โˆ†๐‘–= โˆ† โˆ’ ๐‘™๐‘œ๐‘œ๐‘ ๐‘”๐‘Ž๐‘–๐‘› ๐‘ก๐‘’๐‘Ÿ๐‘š๐‘  ๐‘–๐‘› โˆ† ๐’•๐’‰๐’‚๐’• ๐’•๐’๐’–๐’„๐’‰ ๐‘กโ„Ž๐‘’ ๐‘–๐‘กโ„Ž ๐‘“๐‘œ๐‘Ÿ๐‘ค๐‘Ž๐‘Ÿ๐‘‘ ๐‘๐‘Ž๐‘กโ„Ž

= ๐‘™๐‘œ๐‘œ๐‘ ๐‘”๐‘Ž๐‘–๐‘› ๐‘ก๐‘’๐‘Ÿ๐‘š๐‘  ๐‘–๐‘› โˆ† ๐’•๐’‰๐’‚๐’• ๐’๐’๐’• ๐’•๐’๐’–๐’„๐’‰๐’Š๐’๐’ˆ ๐‘กโ„Ž๐‘’ ๐‘–๐‘กโ„Ž ๐‘“๐‘œ๐‘Ÿ๐‘ค๐‘Ž๐‘Ÿ๐‘‘ ๐‘๐‘Ž๐‘กโ„Ž

Thus:

11/10/2021 89

Note: Simplest way to find โˆ†๐‘– terms is to calculate โˆ† with the ๐’Š๐’•๐’‰ path removed;

โ€ข Must remove nodes as well !!!

For ๐‘– = 1:

With forward path 1 removed, there are no loops, so:

โˆ†1= โˆ†= 1 โˆ’ 0 = 1

For ๐‘– = 2:

Similarly, removing forward path 2 leaves no loops, so:

โˆ†2= โˆ†= 1 โˆ’ 0 = 1

Finally:

๐‘Œ ๐‘ 

๐‘… ๐‘ =

๐‘–=1๐‘› ๐‘ƒ๐‘–โˆ†๐‘–

โˆ†=

๐‘ƒ1โˆ†1 + ๐‘ƒ2โˆ†2

โˆ†=

๐บ1๐บ2๐บ3๐บ4 + ๐บ1๐บ2๐บ5

1 + ๐บ1๐ป3 โˆ’ ๐บ2๐ป1 + ๐บ2๐บ3๐ป2 โˆ’ ๐บ1๐ป3๐บ2๐ป1 + ๐บ1๐ป3๐บ2๐บ3๐ป2

Page 90: Chapter 2 : Fundamental of Mathematical Modeling

Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.

Tryโ€ฆโ€ข Apply Masonโ€™s Rule to calculate the transfer function of the

system represented by the following Signal Flow Graph.

Solution:

11/10/2021 90

Page 91: Chapter 2 : Fundamental of Mathematical Modeling

Thank You!!!

Any Questions?

10/11/2021 91Control System for Industrial Automation, Dept of Electrical Eng, Faculty of

Engineering Technology, UTHM. @ Dr. HIKMA Shabani.