Chapter 2 Deterministic and Random Signal Analysis

download Chapter 2 Deterministic and Random Signal Analysis

of 106

Transcript of Chapter 2 Deterministic and Random Signal Analysis

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    1/106

    Digital CommunicationsChapter 2: Deterministic and Random Signal Analysis

    Po-Ning Chen, Professor

    Institute of Communications Engineering

    National Chiao-Tung University, Taiwan

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 1 / 106

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    2/106

    2.1 Bandpass and lowpass signal representation

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 2 / 106

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    3/106

    2.1 Bandpass and lowpass signal representation

    Definition (Bandpass signal)

    A bandpass  signal x (t )   is a real  signal whose frequency content is located around  central frequency  f 0, i.e.X 

    (f 

     ) = 0   for all 

     ∣f 

     ±f 0

    ∣ > W 

     X (f  )  

          

    f 0f 0 −W f 0 +W     

        

    −f 0 −f 0 +W −f 0 −W 

    f 0   may not be thecarrier frequency  f c !

    The spectrum of a bandpass signal is  Hermitian symmetric ,

    i.e.,  X (−f  ) = X ∗(f  ). (Why? Hint: Fourier transform.)Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 3 / 106

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    4/106

    2.1 Bandpass and lowpass signal representation

    Since the spectrum is Hermitian symmetric, we only need

    to retain half of the spectrum  X +(f  ) = X (f  )u −1(f  )(named analytic signal or pre-envelope) in order toanalyze it,

    where u −1(f  ) = ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

    1   f 

     > 0

    1

    2   f  = 00   f  

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    5/106

    2.1 Bandpass and lowpass signal representation -

    Baseband and bandpass signals

    Definition (Baseband signal)A lowpass  or  baseband  ( equivalent ) signal x (t )  is a complex signal  (because it is not necessarily Hermitian symmetric!)   whose spectrum is located around zero frequency, i.e.

    X (f  ) = 0   for all  ∣f  ∣ > W It is generally written as 

    x (t ) =   x i (t ) +   ı x q (t )where 

    x i 

    (t 

    ) is called the  in-phase  signal 

    x q (t )  is called the  quadrature  signal Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 5 / 106

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    6/106

    Baseband signal

    Our goal is to relate  x 

    (t 

    ) to  x 

    (t 

    ) and vice versa

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 6 / 106

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    7/106

    Bandwidths of   x (t ) and   x (t )

    Definition of bandwidth. The bandwidth of a signal is onehalf  of the entire range of frequencies over which the spectrum

    is essentially nonzero. Hence,  W   is the bandwidth in thelowpass signal we just defined, while 2W   is the bandwidth of the bandpass signal by our definition.

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 7 / 106

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    8/106

    Analytic signal

    Let’s start from the analytic signal x +

    (t 

    ).

    x +(t ) =    ∞−∞ X +(f  )e ı2πft df 

    =    ∞

    −∞

    (f 

     )u −1

    (f 

     )e ı2πft df 

    = F −1 {X (f  )u −1(f  )}   F −1 Inverse Fourier transform= F −1 {X (f  )} ⋆ F −1 {u −1(f  )}=

      x 

    (t 

    ) ⋆ 1

    2δ 

    (t 

    ) +  ı

      1

    2πt 

    =   12x (t ) +   ı 12 x̂ (t ),where x̂ 

    (t 

    ) = x 

    (t 

    ) ⋆  1πt 

    = ∫ ∞−∞

    x (τ )π(t −τ )d τ   is a real-valued signal.

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 8 / 106

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    9/106

    Appendix: Extended Fourier transform

    F −1 {2u −1(f  )} = F −1 {1 + sgn(f  )}

    = F −1

    {1

    } + F −1

    {sgn

    (f 

     )} = δ 

    (t 

    ) +  ı

      1

    πt 

    Since ∫  ∞−∞ ∣sgn(f  )∣ = ∞, the inverse Fourier transform of sgn(f  )does not exist in the   standard   sense! We therefore have toderive its inverse Fourier transform in the extended sense!

    (∀  f  )S (f  ) =   limn→∞S n(f  )  and (∀  n)   ∞−∞ ∣S n(f  )∣df  < ∞

    ⇒F−1

    {S 

    (f 

    )} =  limn→∞

    F−1

    {S n

    (f 

    )}.

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 9 / 106

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    10/106

    Appendix: Extended Fourier transform

    Since lima↓0 e −a

    ∣f  

    ∣sgn(f  ) = sgn(f  ),lima↓0    ∞−∞ e −a∣f  ∣sgn(f  )e ı2πft df =   lima↓0 − 

      0

    −∞e f  (a+ ı2πt )df  +  

      ∞

    0

    e f  (−a+ ı2πt )df  =   lima↓0 −   1a +   ı 2πt  +   1a −   ı 2πt 

    =   lima↓0   ı 4πt 

    a2 + 4π2t 2 = ⎧⎪⎪⎨⎪⎪⎩0   t 

     = 0

    ı   1πt    t  ≠ 0Hence, F −1 {2u −1(f  )} = F −1 {1} +F −1 {sgn(f  )} = δ (t ) +   ı   1πt .

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 10 / 106 ( ) ( ) ( )

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    11/106

    x (t ) ↔  x +(t ) ↔  x (t )

     X (f  )    

    f  0f  0 − W f  0 + W   

      

    −f  0   −f  0 + W −f  0 − W    ⇒

     X (f  )

          

      

    0−W W 

    We then observeX (f  ) = 2X +(f  + f 0).

    This implies

    x (t ) = F −1{X (f  )}= F −1{2X +(f  + f 0)}

    =  2x +

    (t 

    )e − ı2πf  0 t 

    = (x 

    (t 

    ) +  ı x̂ 

    (t 

    ))e − ı2πf  0 t 

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 11 / 106

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    12/106

    As a result,

    (t 

    ) +  ı x̂ 

    (t 

    ) = x (

    )e ı2πf  0t 

    which gives:

    (t 

    )  = Re

    {x 

    (t 

    ) +  ı x̂ 

    (t 

    )}   = Re

    (t 

    )e ı2πf  0t 

    By  x (t ) = x i (t ) +   ı x q (t ),

    x (t )  = Re (x i (t ) +   ı x q (t ))e ı2πf  0t = ×i (t ) cos(2πf 0t ) − x q (t ) sin(2πf 0t )Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 12 / 106

    X (f ) X (f )

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    13/106

    X (f   ) ↔  X (f   )From  x 

    (t 

    ) = Re

    {x 

    (t 

    )e ı2πf  0t 

    }, we obtain

    X (f  ) =    ∞−∞ x (t )e − ı2πft dt 

    =    ∞

    −∞Re

    (t 

    )e ı2πf  0t 

    e − ı2πft dt 

    =    ∞−∞ 12 x (t )e ı2πf  0t + x (t )e ı2πf  0t ∗ e − ı2πft dt =   12

      

      ∞

    −∞x (t )e − ı2π(f   −f  0)t dt 

    +1

    2    ∞

    −∞x ∗ (t )e 

    − ı2π(f   +f  0)t dt 

    =   12 [X (f  − f 0) +X ∗ (−f  − f 0)]

    X ∗ (−f ) = ∫

     ∞−∞ (x (t )e 

    − ı2π(−f   )t 

    )∗

    dt = ∫ ∞−∞

    x ∗ (f )e 

    − ı2πft dt Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 13 / 106

    S

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    14/106

    Summary

    Terminologies & relations

    Bandpass signal⎧⎪⎪⎨⎪⎪⎩

    (t 

    ) = Re

    {x 

    (t 

    )e ı2πf  0t 

    }X 

    (f 

     ) =  12 

    (f 

     −f 0

    ) +X ∗

     (−f 

     −f 0

    )Analytic signal or pre-envelope x +(t )  and  X +(f  )Lowpass equivalent signal or complex envelope

    ⎧⎪⎪⎨⎪⎪⎩x (t ) = (x (t ) +   ı x̂ (t ))e − ı2πf  0 t X (f  ) = 2X (f  + f 0)u −1(f  + f 0)Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 14 / 106

    U f l t k

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    15/106

    Useful to know

    Terminologies & relations

    From  x (t ) = x i (t ) +   ı x q (t ) = (x (t ) +   ı x̂ (t ))e − ı2πf  0 t ,

    ⎧⎪⎪⎨⎪⎪⎩x i 

    (t 

    ) = Re

    (x 

    (t 

    ) +  ı x̂ 

    (t 

    )) e − ı2πf  0t 

    x q (t ) = Im (x (t ) +   ı x̂ (t )) e − ı2πf  0t Also from x (t ) = (x (t ) +   ı x̂ (t ))e − ı2πf  0 t ,

    ⎧⎪⎪⎨⎪⎪⎩x 

    (t 

    ) = Re

     x (

    ) e ı2πf  0t 

    x̂ (t ) = Im  x (t ) e ı2πf  0t Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 15 / 106

    U f l t k

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    16/106

    Useful to know

    Terminologies & relations

    From  x (t ) = x i (t ) +   ı x q (t ) = (x (t ) +   ı x̂ (t ))e − ı2πf  0 t ,

    ⎧⎪⎪⎨⎪⎪⎩x i 

    (t 

    ) = Re

    (x 

    (t 

    ) +  ı x̂ 

    (t 

    )) e − ı2πf  0t 

    x q (t ) = Im (x (t ) +   ı x̂ (t )) e − ı2πf  0t Also from x (t ) = (x (t ) +   ı x̂ (t ))e − ı2πf  0 t ,

    ⎧⎪⎪⎨⎪⎪⎩x 

    (t 

    ) = Re

     (x i (

    ) +  ı x q (

    )) e ı2πf  0t 

    x̂ (t ) = Im (x i (t ) +   ı x q (t )) e ı2πf  0t Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 16 / 106

    Us f l t k

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    17/106

    Useful to know

    Terminologies & relations

    pre-envelope x +(t )complex envelope x (t )envelope

     ∣ ×

     (t 

    )∣ =  

    x 2i 

     (t 

    ) +x 2q 

    (t 

    ) = r 

    (t 

    )

    phase  θ

    (t 

    ) = arctan

    [x q 

    (t 

    )/x i 

    (t 

    )]Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 17 / 106 Modulaor/demodulator and Hilbert transformer

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    18/106

    Modulaor/demodulator and Hilbert transformer

    Usually, we will modulate and demodulate with respect to

    carrier frequency  f c , which may not be equal to the centerfrequency  f 0.

    (t 

    ) → x 

    (t 

    ) = Re

    {x 

    (t 

    )e ı2πf  c t 

    } ⇒ modulation

    x (t ) → x (t ) = (x (t ) +   ı x̂ (t ))e − ı2πf  c t  ⇒  demodulationThe demodulation requires to generate x̂ (t ), a Hilberttransform of  x (t )

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 18 / 106

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    19/106

    Hilbert transform is basically a 90-degree phase shifter.

    H (f  ) = F  1πt  = − ı sgn(f  ) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩ −ı ,   f 

     > 0

    0,   f  = 0ı ,   f   00   f    0−X (f  )   f    0−1   f   

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    20/106

    Energy considerations

    Definition (Energy of a signal)

    The energy  E s  of a (complex) signal s (t )  is E s  =    ∞−∞ ∣s (t )∣2 dt Hence, the energies of  x (t ),  x +(t )  and x (t )  areE x  =    ∞−∞ ∣x (t )∣2 dt 

    E x +

     =    ∞

    −∞ ∣x +

    (t 

    )∣2

    dt 

    E x  =    ∞−∞ ∣x (t )∣2 dt We are interested in the connection among

    Ex ,

    Ex 

    +, and

    Ex .

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 20 / 106

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    21/106

    First, from Parseval’s Theorem we see

    E x  =    ∞−∞ ∣x (t )∣2 dt  =  

      ∞−∞ ∣X (f  )∣2 df 

    Parseval’s theorem ∫  ∞−∞ x (t )y ∗(t )dt  = ∫  ∞−∞ X (f  )Y ∗(f  )df  (Rayleigh’s theorem) ∫  ∞−∞ ∣x (t )∣2dt  = ∫  ∞−∞ ∣X (f  )∣2df  Second

    X (f  ) =   12 X (f  − f c )=X +(f  )

    + 12X ∗ (−f  − f c )=X ∗+ (−f  )

    Third,  f c  ≫ W   andX (f  − f c )X ∗ (−f  − f c ) = 4X +(f  )X ∗+ (−f  ) = 0 for all f 

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 21 / 106

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    22/106

    It then shows

    E x 

     =    ∞

    −∞ 1

    2X 

    (f 

     −f c 

    ) + 1

    2X ∗

     (−f 

     −f c 

    )2

    df 

    =   14E x  + 14E x  =  12E x 

    and

    E x  =    ∞−∞ ∣X +(f  ) +X ∗+ (−f  )∣2 df = E x + + E x + = 2E x +Theorem (Energy considerations)E x  =   2E x  = 4E x +

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 22 / 106

    Extension of energy considerations

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    23/106

    Extension of energy considerations

    Definition (Inner product)We define the inner product of two (complex) signals x (t )  and 

     y (t )  as ⟨x 

    (t 

    ), y 

    (t 

    )⟩ =    ∞

    −∞

    (t 

    ) y ∗

    (t 

    )dt .

    Parseval’s relation immediately gives

    ⟨x 

    (t 

    ), y 

    (t 

    )⟩ = ⟨X 

    (f 

     ), Y 

    (f 

     )⟩.

    E x  = ⟨x (t ), x (t )⟩ = ⟨X (f  ), X (f  )⟩E x  = ⟨x (t ), x (t )⟩ = ⟨X (f  ), X (f  )⟩Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 23 / 106

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    24/106

    We can similarly prove that

    ⟨x 

    (t 

    ), y 

    (t 

    )⟩= ⟨X (f  ), Y (f  )⟩

    = 1

    2X 

    (f 

     −f c 

    ) + 1

    2X ∗

     (−f 

     −f c 

    ), 1

    2Y 

    (f 

     −f c 

    ) + 1

    2Y ∗

     (−f 

     −f c 

    )=  1

    4 ⟨X (f  − f c ), Y (f  − f c )⟩ + 1

    4 ⟨X (f  − f c ), Y ∗ (−f  − f c )⟩=0

    +1

    4

     ⟨X ∗

     (−f 

     −f c 

    ), Y 

    (f 

     −f c 

    )⟩=0 +1

    4

     ⟨X ∗

     (−f 

     −f c 

    ), Y ∗

     (−f 

     −f c 

    )⟩=   14⟨x (t ), y (t )⟩ + 1

    4(⟨x (t ), y (t )⟩)∗ =   12 Re{⟨x (t ), y (t )⟩} .

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 24 / 106

    Corss-correlation of two signals

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    25/106

    Corss correlation of two signals

    Definition (Cross-correlation)

    The  cross-correlation of two signals x (t ) and y (t ) is defined as ρx ,y 

     =  ⟨x (t ), y (t )⟩

     ⟨x 

    (t 

    ), x 

    (t 

    )⟩ ⟨ y 

    (t 

    ), y 

    (t 

    )⟩ = ⟨x (t ), y (t )⟩ E 

    E y 

    .

    Definition (Orthogonality)

    Two signals x 

    (t 

    ) and y 

    (t 

    ) are said to be  orthogonal  if  ρx ,y 

     = 0.

    The previous slide then shows  ρx ,y  = Re {ρx ,y }.ρx ,y   0

    ⇒ ρx ,y   0 but  ρx ,y   0

    /⇒ ρx ,y   0

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 25 / 106

    2 1-4 Lowpass equivalence of a bandpass system

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    26/106

    2.1 4 Lowpass equivalence of a bandpass system

    Definition (Bandpass system)

    A bandpass  system   is an LTI system with real  impulse response h(t )  whose transfer function is located around afrequency f c .

    Using a similar concept, we set the lowpass equivalentimpulse response as

    h

    (t 

    ) =  Re

    h

    (t 

    )e ı2πf  c t 

    and H (f  ) =   12 [H (f  − f c ) +H ∗ (−f  − f c )]

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 26 / 106

    Baseband input-output relation

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    27/106

    Baseband input output relation

    Let  x 

    (t 

    ) be a bandpass input signal and let

     y (t ) =   h(t )⋆x (t )   or equivalently   Y (f  ) = H (f  )X (f  )Then, we knowx 

    (t 

    ) =  Re

    (t 

    )e ı2πf  c t 

    h(t ) =   Reh(t )e ı2πf  c t 

     y (t ) =   Re y (t )e ı2πf  c t and

    Theorem (Baseband input-output relation)

     y (t ) =   h(t ) ⋆ x (t ) ⇐⇒   y (t ) =  12

    h(t ) ⋆ x (t )Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 27 / 106

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    28/106

    Proof:

    For  f  ≠ −f c   (or specifically, for u −1(f  + f c ) = u 2

    −1(f  + f c )),Note   12 = u −1(0) ≠ u 2−1(0) =   14 .Y 

    (f 

     ) =  2Y 

    (f 

     +f c 

    )u −1

    (f 

     +f c 

    )=   2H (f  + f c )X (f  + f c )u −1(f  + f c )=   12 [2H (f  + f c )u −1(f  + f c ) ] ⋅ [2X (f  + f c )u −1(f  + f c )]

    =  1

    2H 

    (f 

     ) ⋅X 

    (f 

     )The case for  f  = −f c   is valid since  Y (−f c ) = X (−f c ) = 0.

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 28 / 106

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    29/106

    The above theorem applies to a deterministic system.How about a stochastic system?

    x (t )   y (t )   h(t)   ⇓

    X (t )   Y (t )   h(

    The text abuses the notation by using  X (f  )  as the spectrumof  x 

    (t 

    ) but using  X 

    (t 

    ) as the stochastic counterpart of  x 

    (t 

    ).

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 29 / 106

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    30/106

    2.7 Random processes

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 30 / 106

    Random Process

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    31/106

    DefinitionA random process is a set of indexed random variables 

    {X 

    (t 

    ), t 

     ∈ T }, where 

     T   is often called the index set.

    Classification

    1 If  T   is a finite set ⇒   Random Vector2 If 

     T =Z  or  Z+

     ⇒  Discrete Random Process

    3 If  T = R or  R+ ⇒   Continuous Random Process4 If  T = R2,Z2,⋯,Rn,Zn ⇒   Random FieldDigital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 31 / 106

    Examples of random process

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    32/106

    p p

    Example 

    Let  U  be a random variable uniformly distributed over [−π, π). ThenX (t ) = cos (2πf c t  +U )

    is a continuous random process.

    Example 

    Let  B  be a random variable taking values in

     {−1, 1

    }. Then

    X (t ) =   cos(2πf c t )   if  B  = −1sin(2πf c t )   if  B  = +1 = cos 2πf c t  − π4 (B + 1)is a continuous random process.

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 32 / 106

    Statistical properties of random process

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    33/106

    p p p

    For any integer k 

     > 0 and any  t 1, t 2,

    ⋯, t k 

     ∈ T  , the

    finite-dimensional cumulative distribution function (cdf) for

    X (t )  is given by:F X  (t 1,⋯, t k ; x 1,⋯, x k ) =   Pr {X (t 1) ≤ x 1,⋯,X (t k ) ≤ x k }

    As event

     [X 

    (t 

    ) < ∞] (resp.

     [X 

    (t 

    ) ≤ −∞]) is always regarded

    as true (resp. false),

    limx s →∞F X 

     (t 1,

    ⋯, t k ; x 1,

    ⋯, x k 

    )=   F X  (t 1,⋯, t s −1, t s +1, t k ; x 1,⋯, x s −1, x s +1,⋯, x k )andlim

    x s →−∞F X 

    (t 1, , t k ; x 1, , x k 

    ) 0

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 33 / 106

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    34/106

    Definition

    Let  X (t )  be a random process; then the  mean function is mX (t ) =   E[X (t )],

    the  (auto)correlation function is 

    R X (t 1, t 2) =   E [X (t 1)X ∗(t 2)] ,and the  (auto)covariance function is 

    K X (t 1, t 2) =   E  (X (t 1) −mX (t 1)) (X (t 2) −mX (t 2))∗ Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 34 / 106

    Definition

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    35/106

    Definition

    Let  X 

    (t 

    ) and  Y 

    (t 

    ) be two random processes; then the 

    cross-correlation function is 

    R X ,Y (t 1, t 2) =   E [X (t 1)Y ∗(t 2)] ,and  cross-covariance function is 

    K X ,Y (t 1, t 2) =   E  (X (t 1) −mX (t 1)] [Y (t 2) −mY (t 2))∗ Proposition

    R X ,Y (t 1, t 2) =   K X ,Y (t 1, t 2) +mX (t 1)m∗Y (t 2)R Y ,X (t 2, t 1) =   R ∗X ,Y (t 1, t 2)   R X (t 2, t 1) = R ∗X (t 1, t 2)

    K Y ,X 

    (t 2, t 1

    )  K ∗

    X ,Y 

    (t 1, t 2

    )  K X 

    (t 2, t 1

    ) K ∗X 

    (t 1, t 2

    )Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 35 / 106 Stationary random processes

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    36/106

    Definition

    A random process  X (t )   is said to be  strictly  or  strict-sense stationary (SSS) if its finite-dimensional joint distribution

    function is shift-invariant, i.e. for any integer k  > 0, any t 1,

    ⋯, t k 

     ∈ T   and any  τ ,

    F X  (t 1 −

    τ,

    ⋯, t k  −

    τ ; x 1,⋯, x k ) =

     F X  (t 1,⋯

    , t k ; x 1,⋯, x k )Definition

    A random process  X 

    (t 

    )  is said to be  weakly  or  wide-sense 

    stationary (WSS) if its mean function and (auto)correlation

    function are shift-invariant, i.e. for any t 1, t 2 ∈ T   and any  τ ,mX (t  − τ ) = mX (t )  and  R X (t 1 − τ, t 2 − τ ) = R X (t 1, t 2).The above condition is equivalent to 

    mX 

    (t 

    ) constant   and R X 

    (t 1, t 2

    ) R X 

    (t 1 t 2

    ).

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 36 / 106

    Wide-sense stationary random processes

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    37/106

    Definition

    Two random processes  X (t )  and  Y (t )  are said to be  jointly wide-sense stationary  if 

    Both  X 

    (t 

    ) and  Y 

    (t 

    ) are WSS;

    R X 

    ,Y (t 1, t 2) = R X ,Y (t 1 − t 2).

    Proposition

    For jointly WSS  X 

    (t 

    ) and  Y 

    (t 

    ),

    R Y ,X (t 2, t 1) = R ∗X ,Y (t 1, t 2) ⇒   R X ,Y (τ ) = R ∗Y ,X (−τ )K Y ,X (t 2, t 1) = K ∗X ,Y (t 1, t 2) ⇒   K X ,Y (τ ) = K ∗Y ,X (−τ )

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 37 / 106

    Gaussian random process

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    38/106

    Definition

    A random process  {X (t ), t  ∈ T }   is said to be Gaussian if for any integer k  > 0  and for any t 1,⋯, t k  ∈ T  , the finite-dimensional  joint cdf 

    F X (t 1,⋯, t k ; x 1,⋯, x k ) = Pr [X (t 1) ≤ x 1,⋯,X (t k ) ≤ x k ]is Gaussian.

    RemarkThe joint cdf of a Gaussian process is fully determined by itsmean function and its autocovariance function.

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 38 / 106

    Gaussian random process

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    39/106

    Definition

    Two real random processes  {X (t ), t  ∈ T X }  and  {Y (t ), t  ∈ T Y }are said to be jointly Gaussian if for any integers j , k  > 0  and for any s 1,

    ⋯, s  j 

     ∈ T X  and t 1,

    ⋯, t k 

     ∈ T Y , the  finite-dimensional 

     joint cdf 

    Pr [X (s 1) ≤ x 1,⋯,X (s  j ) ≤ x  j ,Y (t 1) ≤ y 1,⋯,Y (t k ) ≤ y k ]is Gaussian.

    DefinitionA complex process is Gaussian if the real and imaginary processes are jointly Gaussian.

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 39 / 106

    Gaussian random process

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    40/106

    Remark

    For joint (in general complex) Gaussian processes,“uncorrelatedness”, defined as

    R X ,Y 

    (t 1, t 2

    ) =  E

    [X 

    (t 1

    )Y 

    (t 2

    )]=   E[X (t 1)]E[Y ∗(t 2)] = mX (t 1)m∗Y (t 2),implies “independence”, i.e.,

    Pr [X (s 1) ≤ x 1,⋯,X (s  j ) ≤ x  j ,Y (t 1) ≤ y 1,⋯,Y (t k ) ≤ y k ]= Pr [X (s 1) ≤ x 1,⋯,X (s k ) ≤ x k ]⋅Pr [Y (t 1) ≤ y 1,⋯,Y (t k ) ≤ y k ]Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 40 / 106

    Theorem

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    41/106

    If a Gaussian random process  X (t )   is WSS, then it is SSS.Idea behind the Proof:

    For any  k  > 0, consider the sampled random vector

    ⃗X k 

     =⎡⎢⎢⎢⎢⎢⎢⎢⎣X (t 1)X 

    (t 2

    )⋮X (t k )⎤⎥⎥⎥⎥⎥⎥⎥⎦

    .

    The mean vector and covariance matrix of 

     ⃗X k  are respectively

    m⃗X k = E[⃗X k ] = ⎡⎢⎢⎢⎢⎢E[X (t 

    1)]E[X (t 2)]⋮E

    [X 

    (t k 

    )]

    ⎤⎥⎥⎥⎥⎥ = mX (0) ⋅ ⃗1Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 41 / 106

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    42/106

    and

    R ⃗X  = E[⃗X k  ⃗X H k  ] = ⎡⎢⎢⎢⎢⎢⎣K X 

    (0

    )  K X 

    (t 1

     −t 2

    ) ⋯K X (t 2 − t 1)   K X (0) ⋯⋮ ⋮ ⋱⎤⎥⎥⎥⎥⎥⎦ .It can be shown that for a new sampled random vector

    ⎡⎢⎢⎢⎢⎢⎢⎢⎣

    X (t 1 + τ )X (t 2 + τ )

    ⋮X 

    (t k 

     +τ 

    )

    ⎤⎥⎥⎥⎥⎥⎥⎥⎦the mean vector and covariance matrix remain the same.

    Hence,  X (t )  is SSS.Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 42 / 106

    Power spectral density

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    43/106

    Definition

    Let R X (τ )  be the correlation function of a  WSS  randomprocess  X (t ). The  power spectral density (PSD) or  power spectrum of  X 

    (t 

    ) is defined as 

    S X (f  ) =    ∞−∞ R X (τ )e − ı2πf   τ  d τ.

    Let R X ,Y (τ )  be the cross-correlation function of two jointly WSS random process  X 

    (t 

    ) and  Y 

    (t 

    ); then the  cross spectral 

    density (CSD) is 

    S X ,Y (f  ) =    ∞−∞ R X ,Y (τ )e − ı2πf   τ  d τ.Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 43 / 106

    Properties of PSD

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    44/106

    PSD (in units of  watts per Hz) describes the density of power as a function of frequency.

    Analogously,  probability density function (pdf) describes

    the density of   probability as a function of outcome.The integration of PSD gives  power of the randomprocess over the considered range of frequency.Analogously, the integration of pdf gives  probability overthe considered range of outcome.

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 44 / 106

    Theorem

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    45/106

    Theorem

    S X 

    (f 

     ) is non-negative and real (which matches that the power 

    of a signal cannot be negative or complex-valued).

    Proof:   S X (f  )  is real becauseS X 

    (f 

     ) =    ∞

    −∞

    R X 

    (τ 

    )e − ı2πf   τ  d τ 

    =    ∞−∞ R X (−s )e ı2πfs  ds  (s  = −τ )

    =    ∞

    −∞R ∗X 

    (s 

    )e ı2πfs  ds 

    =    ∞−∞ R X (s )e − ı2πfs  ds ∗=   S ∗X (f  )

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 45 / 106

    S X (f  )   is non-negative because of the following (we only provethis based on that T ⊂ R and X(t) = 0 outside [−T , T ]).

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    46/106

    this based on that T R and  X (t )  0 outside [ T , T ]).S X 

    (f 

     ) =    ∞−∞

    E

    [X 

    (t 

     +τ 

    )X 

    (t 

    )]e − ı2πf   τ  d τ 

    =   EX ∗(t )   ∞−∞ X (t  + τ )e − ı2πf   τ  d τ  (s  = t  + τ )

    =  E

    (t 

    )   ∞−∞

    (s 

    )e − ı2πf   (s −t ) ds 

    =   E X ∗(t )X̃ (f  )e ı2πft    In notation,  X̃ (f  ) = F{X (t )}.Since the above is a constant with respect to  t  (by WSS),S X 

    (f 

     ) =  1

    2T 

        T 

    −T E

    (t 

    )X̃ 

    (f 

     )e ı2πft 

    dt 

    =   12T E X̃ (f  )   T −T  X ∗(t )e ı2πft dt   1

    2T E

    X̃ 

    (f 

    )X̃ 

    (f 

    )  1

    2T E

    ∣X̃ 

    (f 

    )∣2

     0.

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 46 / 106

    Wiener-Khintchine theorem

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    47/106

    Theorem (Wiener-Khintchine)

    Let  {X (t ), t  ∈ R}  be a WSS random process. Define X T (t ) =  X (t )   if t  ∈ [−T , T ]0,   otherwise.

    and set 

    X̃ T (f  ) =    ∞−∞ X T (t )e − ı2πft  dt  =    T −T  X (t )e − ı2πft  dt .If S X (f  )  exists (i.e., R X (τ )  has a Fourier transform), then

    S X (f  ) =   limT →∞

    1

    2T EX̃ T (f  )2

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 47 / 106

    Variations of PSD definitions

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    48/106

    Power density spectrum : Alternative definitionFourier transform of auto-covariance function (e.g.,Robert M. Gray and Lee D. Davisson, RandomProcesses: A Mathematical Approach for Engineers,p. 193)

    I remark that from the viewpoint of digitalcommunications, the text’s definition is more appropriatesince

    the auto-covariance function is independent of a

    mean-shift; however, random signals with different“means” consume different “powers.”

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 48 / 106

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    49/106

    What can we say about, e.g., the PSD of stochasticsystem input and output?

    x (t )x 

    (t 

    )  y (t )

     y 

    (t 

    )   h(t )

    12 h

    (t 

    ⎧⎪⎪⎨⎪⎪⎩

    ◻(t ) = Re{◻(t )e ı2πf  c t }

    (t 

    ) = (◻(t 

    ) +  ı ˆ

    ◻(t 

    ))e − ı2πf  c t 

    where “

    ◻” can be  x , y   or h.

    ⇓X 

    (t 

    )X (t )  Y 

    (t 

    )Y (t )   h

    (t 

    )1

    2

    h(t ) 

    ⎧⎪⎪⎨⎪⎪⎩◻(

    ) = Re

    {◻

    (t 

    )e ı2πf  c t 

    }◻

    (t 

    ) = (◻(t 

    ) +  ı ˆ

    ◻(t 

    ))e − ı2πf  c t 

    where “◻” can be  X ,Y   or  h.

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 49 / 106

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    50/106

    2.9 Bandpass and lowpass random processes

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 50 / 106

    Definition (Bandpass random signal)

    A b d (WSS) t h ti i l X (t) i l d

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    51/106

    A bandpass  (WSS) stochastic signal  X (t )  is a real  randomprocess whose  PSD  is located around  central frequency  f 0, i.e.

    S X (f  ) = 0   for all  ∣f  ± f 0∣ > W 

     S X 

    (f 

     )        

    f 0f 0

     −W f 0

     +W 

        

        

    −f 0

     −f 0

     +W 

    −f 0

     −W 

    f 0   may not be thecarrier frequency  f c !

    We know

    ⎧⎪⎪⎨X (t ) = Re {X (t )e ı2πf  c t }X  t  X  t    ı X̂  t  e − ı2πf  c t 

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 51 / 106

    Assumption (Fundamental assumption)

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    52/106

    The bandpass signal  X 

    (t 

    ) is WSS.

    In addition, its complex lowpass equivalent process  X (t 

    ) is 

    WSS. In other words,

    X i (t )  and  X q (t )  are WSS.X i 

    (t 

    ) and  X q 

    (t 

    ) are jointly WSS.

    Under this  fundamental assumption, we obtain thefollowing properties:

    P1)   If  X 

    (t 

    ) zero-mean, both  X i 

    (t 

    ) and  X q 

    (t 

    ) zero-mean

    because   mX  = mX i  cos(2πf c t ) −mX q  sin(2πf c t ) .P2)

    ⎧⎪⎪⎨

    R X i (τ ) = R X q (τ )R X i ,X q  τ  R X q ,X i  τ 

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 52 / 106

    Proof of P2):

    R

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    53/106

    R X 

    (τ 

    )=  E

    [X 

    (t 

     +τ 

    )X 

    (t 

    )]=   E ReX (t  + τ )e ı2πf  c (t +τ )ReX (t )e ı2πf  c t =   E [(X i (t  + τ ) cos(2πf c (t  + τ )) −X q (t  + τ ) sin(2πf c (t  + τ )))(X i 

    (t 

    )cos

    (2πf c t 

    ) −X q 

    (t 

    )sin

    (2πf c t 

    ))]=  R X i (

    τ 

    ) +R X q (

    τ 

    )2   cos(2πf c τ )+R X i ,X q (τ ) − R X q ,X i (τ )2

      sin(2πf c τ )+

    R X i 

    (τ 

    ) −R X q 

    (τ 

    )2   cos(2πf c (2t  + τ )) (= 0)−R X i ,X q (τ ) + R X q ,X i (τ )2

      sin(2πf c (2t  + τ )) (= 0)Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 53 / 106

    P3)   R X(τ ) = Re 12 R X(τ )e ı2πf  c τ .

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    54/106

    ) X ( ) 2 X ( ) Proof : Observe from P2),

    R X (τ ) =   E [X (t  + τ )X ∗ (t )]=   E [(X i (t  + τ ) +   ıX q (t  + τ ))(X i (t ) −   ıX q (t ))]=

      R X i 

    (τ 

    ) +R X q 

    (τ 

    ) −  ı R X i ,X q 

    (τ 

    ) +  ı R X q ,X i 

    (τ 

    )=   2R X i (τ ) +   ı 2R X q ,X i (τ ).Hence, also from  P2),R X 

    (τ 

    ) =  R X i 

    (τ 

    )cos

    (2πf c τ 

    ) −R X q ,X i 

    (τ 

    )sin

    (2πf c τ 

    )=   Re12 R X (τ )e ı2πf  c τ Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 54 / 106

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    55/106

    P4)   S X 

    (f 

     ) =  14

     S X 

    (f 

     −f c 

    ) +S ∗X 

    (−f 

     −f c 

    ).

    Proof : A direct consequence of  P3).

      ◻Note :Amplitude  X̃ (f  ) =   12 X̃ (f  − f c ) +  X̃ ∗ (−f  − f c )Amplitude square

    ∣X̃ (f  )∣2 =   14 X̃ (f  − f c ) +  X̃ ∗ (−f  − f c )2

    =   14 ∣X̃ (f  − f c )∣2 + X̃ ∗ (−f  − f c )

    2

    Wiener-Khintchine:   S X (f  ) ≡ ∣X̃ (f  )∣2.

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 55 / 106

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    56/106

    P5)   X i 

    (t 

    ) and  X q 

    (t 

    ) uncorrelated if one of them has

    zero-mean.Proof : From  P2),

    R X i ,X q 

    (τ 

    ) = −R X q ,X i 

    (τ 

    ) = −R X i ,X q 

    (−τ 

    ).

    Hence,  R X i ,X q (0) = 0 (i.e.,E[X i (t )X q (t )] = 0 = E[X i (t )]E[X q (t )]).

    ◻Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 56 / 106

    P6)   If  S X (−f  ) = S ∗X (f  )(= S X (f  ))  symmetric, thenX d X l d f id d

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    57/106

    X i 

    (t 

     +τ 

    ) and  X q 

    (t 

    ) uncorrelated for any  τ , provided one

    of them has zero-mean.

    Proof : From  P3),

    R X (τ ) = 2R X i (τ ) +   ı 2R X q ,X i (τ ).S X (−

     ) = S ∗X (

     ) implies  R X (

    τ 

    ) is real;

    hence,  R X q ,X i (τ ) = 0 for any  τ .   ◻Note that  S X 

    (−f 

     ) = S ∗X (

     ) iff  R X 

    (τ 

    ) real iff  R X q ,X i 

    (τ 

    ) = 0

    for any  τ .

    We next discuss the PSD of a system.

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 57 / 106

    X (t )   Y (t )   h(t )

        Y (t ) =    ∞−∞ h(τ )X (t  − τ )d τ   ∞

    h d

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    58/106

    mY 

     = mX 

      −∞

    h

    (τ 

    )d τ 

    R X ,Y (τ ) =   EX (t  + τ )   ∞−∞ h(u )X (t  − u )du ∗

    =    ∞

    −∞h∗

    (u 

    )R X 

    (τ 

     +u 

    )du 

     =    ∞

    −∞h∗

    (−v 

    )R X 

    (τ 

     −v 

    )dv 

    =   R X (τ ) ⋆ h∗(−τ )R Y (τ ) =   E

     

      ∞

    −∞h(u )X (t  + τ  − u )du 

     

      ∞

    −∞h(v )X (t  − v )dv ∗

    =    ∞

    −∞ h(u )   ∞

    −∞ h∗(v )R X ((τ  − u ) + v )dv du =    ∞−∞ h(u )R X ,Y (τ  − u )du   R X ,Y  τ  h τ   R X  τ  h

    ∗ τ  h τ  .

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 58 / 106

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    59/106

    Thus,

    S X ,Y (f  ) = S X (f  )H ∗(f  )  since    ∞−∞ h∗(−τ )e − ı2πf   τ d τ  = H ∗(f  )and

    S Y (f  ) = S X ,Y (f  )H (f  ) = S X (f  )∣H (f  )∣2.

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 59 / 106

    White process

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    60/106

    Definition (White process)

    A (WSS) process  W (t )   is called a white process if its PSD is constant  for all frequencies:S W 

    (f 

     ) =  N 0

    2

    This constant is usually denoted by   N 02   because the PSDis two-sided (

    −∞ ← 0 and 0

     → ∞). So, the power

    spectral  density is actually  N 0  per Hz (N 0/2 at  f  = −f 0and  N 0/2 at  f  = f 0).The autocorrelation function  R W (τ ) =   N 02  δ (⋅), where  δ (⋅)is the Dirac delta function.

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 60 / 106

    Why negative frequency?

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    61/106

    It is an imaginarily convenient way created by Human tocorrespond to the “imaginary” domain of a complex signal(that is why we call it “imaginary part”).

    By giving respectively the spectrum for f 0  and −f 0  (whichmay not be symmetric), we can specify the amount of  realpart and imaginary part in time domain corresponding to

    this frequency.

    For example, if the spectrum is conjugate symmetric, weknow imaginary part (in time domain)

     = 0.

    Notably, in communications, imaginary part is the part

    that will be modulated by (or transmitted with carrier)sin(2πf c t ); on the contrary, real part is the part that willbe modulated by (or transmitted with carrier) cos 2πf c t  .

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 61 / 106

    Why  δ (⋅)  function?D fi i i (Di d l f i )

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    62/106

    Definition (Dirac delta function)

    Define the Dirac delta function  δ 

    (t 

    ) as 

    δ (t ) =  ∞,   t  = 0;0,   t 

     ≠ 0

      ,

    which satisfies the  replication property , i.e., for every continuous  point of  g (t ),g 

    (t 

    ) =    ∞−∞

    (τ 

    )δ 

    (t 

     −τ 

    )d τ.

    Hence, by replication property,

      ∞−∞

    δ  u  du 

      ∞−∞

    δ  t  τ  d τ 

      ∞−∞

    1 δ  t  τ  d τ   1.

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 62 / 106

    Note that it seems  δ (t ) = 2δ (t ) =  ∞,   t  = 0;0,   t  ≠ 0   ; butith t 1 d t 2 ti t ll i t

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    63/106

    with  g 1

    (t 

    ) = 1 and  g 2

    (t 

    ) = 2 continuous at all points,

    1 =    ∞−∞ g 1(τ )δ (t  − τ )d τ  ≠    ∞−∞ g 2(τ )δ (t  − τ )d τ  = 2.So, it is not “well-defined” and contradicts the belowintuition: With  f 

     (t 

    ) = δ 

    (t 

    ) and g 

    (t 

    ) = 2δ 

    (t 

    ),

    f  (t ) = g (t )  for t  ∈ R except for countably many points

    ⇒    ∞−∞

     (t 

    )dt 

     =    ∞−∞

    (t 

    )dt 

     if 

        ∞−∞

     (t 

    )dt   is finite

    .

    Hence,  δ (t )  and 2δ (t )  are two “different” Diract deltafunctions by definition. (Their multiplicative constantcannot be omitted!)

    What is the problem saying  f  t   g  t   for t  R?

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 63 / 106

    Comment: x a y a x y is incorrect if a

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    64/106

    Comment:   x 

     +a

     = y 

     +a

     ⇒ x 

     = y    is incorrect if  a

     = ∞.

    As a result, saying

     ∞ = ∞  (or   δ 

    (t 

    ) = 2δ 

    (t 

    ) ) is not a

    “rigorously defined” statement.

    Summary:  The Dirac delta function, like “

    ∞”, is simply

    a concept  defined  only through its replication property .

    Hence, a white process  W (t )  that has autocorrelationfunction  R W 

    (τ 

    ) =  N 0

    2  δ 

    (τ 

    ) is just a convenient and

    simplified notion for theoretical research about real world

    phenomenon. Usually, N 0 = KT , where  T   is the ambienttemperature in kelvins and  k  is Boltzman’s constant.Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 64 / 106

    Discrete-time random processes

    The property of a time-discrete process X n n Z+

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    65/106

    The property of a time discrete process

     {X 

    [n

    ], n

     ∈Z

    }can be “obtained” using sampling notion via the Dirac

    delta function.X [n] = X (nT ), a sample at  t  = nT   from atime-continuous process  X (t ), where we assume  T  = 1for convenience.The autocorrelation function of a time-discrete process isgiven by:

    R X [m] =   E{X [n +m]X ∗[n]}=  E

    {X 

    (n

     +m

    )X 

    (n

    )}=   R X (m),  a sample from  R X (t ).

           

            

          

    R X (0)R X (1)

    R X (2)R X (3)R X (4)

    R X (5)R X (6)

    R X (7)R X (8)R X (9)

    R X (10)R X (11)

    R X (12)R X (13)

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 65 / 106

    ∞ ∞

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    66/106

    S X 

    [f 

     ] =    ∞−∞

      ∞

    n

    =−∞

    R X 

    (t 

    )δ 

    (t 

     −n

    )e − ı2πft dt 

    =   ∞n=−∞

       ∞−∞ R X (t )e − ı2πft δ (t  − n)dt 

    =  ∞

    n=−∞R X 

    (n

    )e − ı2πfn (Replication Property)

    =   ∞n=−∞

    R X [n]e − ı2πfn (Fourier Series)Hence, by Fourier sesies,

    R X [n] =    12−12 S X [f  ]e ı2πfmdf   = R X (n) =    ∞−∞ S X (f  )e ı2πfmdf  .Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 66 / 106

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    67/106

    2.8 Series expansion of random processes

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 67 / 106

    2.8-1 Sampling band-limited random process

    Deterministic case

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    68/106

    Deterministic case

    A deterministic signal x 

    (t 

    )  is called band-limited if 

    X (f  ) = 0 for all ∣f  ∣ > W .Shannon-Nyquist theorem: If the sampling rate  f s 

     ≥ 2W ,

    then  x 

    (t 

    ) can be perfectly reconstructed from samples.

    An example of such reconstruction is

    (t 

    ) =  ∞

    n=−∞x 

     n

    f s sinc

    f s 

     t 

     − n

    f s .

    Note that the above is only sufficient, not necessary.

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 68 / 106

    Stochastic case

    A WSS h i X i id b b d li i d

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    69/106

    A WSS stochastic process  X 

    (t 

    ) is said to be band-limited

    if its PSD  S X (f 

     ) = 0 for all

     ∣f 

     ∣ > W .

    It follows that

    R X 

    (τ 

    ) =  ∞

    n=−∞R X 

       n

    2W  sinc

    2W 

     τ 

     −  n

    2W  .

    In fact, this random process  X (t )  can be reconstructedby its random samples in the sense of mean square.

    Theorem

    E X (t ) −   ∞n=−∞

    X    n2W   sinc 2W  t  −   n

    2W  2 = 0

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 69 / 106

    The random samples

    Problems of using these random samples

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    70/106

    Problems of using these random samples.

    These random samples X    n2W  ∞n=−∞

     are in general

    correlated  unless  X (t )  is zero-mean white.EX    n

    2W  X ∗   m

    2W   = R X  n − m

    2W  

    ≠  E

      n

    2W  E

    X ∗

      m

    2W   = mX 

    2.

    If  X (t )   is zero-mean white,EX    n

    2W  X ∗   m

    2W   = R X  n − m

    2W   =  N 0

    2  δ n − m

    2W  

    =   EX    n2W  EX ∗   m2W   = mX 2 = 0  except  n = m.

    Thus, we will introduce the uncorrelated KL expansionsin Slide 87.

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 70 / 106

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    71/106

    2.9 Bandpass and lowpass random processes   (revisited)

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 71 / 106

    Definition (Filtered white noise)

    A process N t is called a filtered white noise if its PSD equals

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    72/106

    A process  N 

    (t 

    ) is called a filtered white noise  if its PSD equals 

    S N (f  ) =   N 02   , ∣f  ± f c ∣

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    73/106

    P0-1)   By  fundamental assumption  on Slide 52, we obtainthat  X 

    (t 

    ) and  X̂ 

    (t 

    ) are jointly WSS.

    R X ,X̂ (τ )   and   R ̂X (τ )   are only functions of   τ   because  X̂ (t )   is the

    Hilbert transform of X (t ), i.e., R X ,X̂ 

    (τ ) = R X (τ )⋆h∗(−τ ) = −R X (τ )⋆h(τ )  (since h∗(−τ ) = −h(τ )) and  R ̂

    X (τ ) = R 

    X ,X̂ (τ ) ⋆ h(τ ).

    P0-2)   X i (t ) = Re (X (t ) +   ı X̂ (t ))e 

    − ı2πf  c t 

      is WSS byfundamental assumption.P2 ′

    ) ⎧⎪⎪⎨⎪⎪⎩

    R X 

    (τ 

    ) = R ̂X 

    (τ 

    )R X ,X̂ (

    τ 

    ) = −R ̂X ,X (

    τ 

    )(X (t ) +   ı  X̂ (t )   is the “lowpassequivalent” signal of  X i (t )!)(X i 

    (t 

    ) +  ıX q 

    (t 

    )  is the lowpass

    equivalent signal of  X (t )!)Thus,   R ̂

    X ,X (τ ) = −R 

    X ,X̂ (τ ) =  R X (τ ) ⋆ h(τ ) =  R̂ X (τ )   is the Hilbert

    transform output due to input  R X (τ ).

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 73 / 106

    P3 ′)   R X i (τ ) = Re 12 R (X + ı  X̂ )(τ )e − ı2πf  c τ 1 2 f

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    74/106

    R X i 

    (τ 

    ) =  Re

    1

    2R (X + ı  X̂ )

    (τ 

    )e − ı2πf  c τ 

    =   Re(R X (τ ) +   ı R ̂X ,X (τ ))e − ı2πf  c τ =   R X (τ ) cos(2πf c τ ) +  R̂ X (τ ) sin(2πf c τ )Note that  Ŝ X 

    (f 

     ) = S X 

    (f 

     )H Hilbert

    (f 

     ) = S X 

    (f 

     )(−ı sgn

    (f 

     )).

    P4 ′)   S X i (f  )  = S X q (f  ) = S X (f  − f c ) + S X (f  + f c )   for ∣f  ∣

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    75/106

    Terminologies & relations

    ●⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

    R X (τ ) = Re   12 R X (τ ) e ı2πf  c τ  (P 3)R ̂X ,X 

    (τ ) = R X (τ ) ⋆ hHilbert(τ )

    P0-1

    = Im   12 R X (τ ) e ı2πf  c τ 

    ●  Then:   12 R X (τ ) = R X i (τ ) +   ı R X q ,X i (τ )Proof of  P 3

    = (R X (τ ) +   ıR ̂X ,X (τ ))e − ı2πf  c τ 

    ● ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩R X i (τ ) = Re (R X (τ ) +   ı R ̂X ,X (τ )) e − ı2πf  c τ  (P 3′)R X q ,X i (τ ) = Im (R X (τ ) +   ı R ̂X ,X (τ )) e − ı2πf  c τ  = R X i (τ ) ⋆ hHilbert(τ )

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 75 / 106

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    76/106

    Proof (of P4 ′′):   Hence,

    R X q ,X i (τ ) =   Im(R X (τ ) +   ı R ̂X ,X (τ ))e − ı2πf  c τ 

    = −R X 

    (τ 

    )sin

    (2πf c τ 

    ) +R ̂X ,X 

    (τ 

    )cos

    (2πf c τ 

    )= −R X (

    τ 

    )sin

    (2πf c τ ) +

     R̂ X (τ 

    )cos

    (2πf c τ )

    .

    Then we can prove  P4 ′′  by following similar procedure to theproof of  P4 ′.

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 76 / 106

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    77/106

    2.2 Signal space representation

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 77 / 106

    Key idea & motivation

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    78/106

    The low-pass equivalent representation removes thedependence of system performance analysis on carrierfrequency.

    Equivalent vectorization of the (discrete or continuous)signals further removes the “waveform” redundancy inthe analysis of system performance.

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 78 / 106

    Vector space concepts

    I d t n ∗ H

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    79/106

    Inner product:

     ⟨v 1,v 2

    ⟩ = ∑ni =1 v 1,i v ∗2,i 

     =v H 2 v 1

    (“H ” denotes Hermitian transpose)

    Orthogonal if  ⟨v 1,v 2⟩ = 0Norm:

     ∥v 

    ∥ =  ⟨v ,v 

    ⟩Orthonormal: ⟨v 1,v 2⟩ = 0 and ∥v 1∥ = ∥v 2∥ = 1Linearly independent:

    k i =1

    ai v i  = 0  iff  ai  = 0 for all  i Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 79 / 106

    Vector space concepts

    Triangle inequality

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    80/106

    ∥v 1 + v 2∥ ≤ ∥v 1∥ + ∥v 2∥Cauchy-Schwartz inequality∣⟨v 1,v 2

    ⟩∣ ≤ ∥v 1

    ∥ ∥v 2

    ∥.

    Equality holds iff  v 1 = av 2  for some  a.Norm square of sum:

    ∥v 1

     +v 2

    ∥2

    = ∥v 1

    ∥2

    + ∥v 2

    ∥2

    + ⟨v 1,v 2

    ⟩ + ⟨v 2,v 1

    ⟩Pythagorean: if  ⟨v 1,v 2⟩ = 0, thenv 1 v 2

    2v 1

    2v 2

    2

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 80 / 106

    Eigen-decomposition

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    81/106

    1 Matrix transformation w.r.t. matrix  A

    v̂  = Av 2 Eigenvalues of square matrix  A are solutions

     {λ

    } of 

    characteristic polynomialdet(A − λI ) = 0

    3 Eigenvectors for eigenvalue  λ  is solution  v   of 

    Av  = λv Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 81 / 106

    Signal space concept

    How to extend the signal space concept to a (complex)

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    82/106

    How to extend the signal space concept to a (complex)function/signal z 

    (t 

    ) defined over

     [0, T 

    ) ?

    Answer: We can start by defining the inner product forcomplex functions.

    Inner product: ⟨z 1(t ), z 2(t )⟩ = ∫   T 0   z 1(t )z ∗2 (t )dt Orthogonal if  ⟨z 1(t ), z 2(t )⟩ = 0.Norm:

     ∥z 

    (t 

    )∥ =  ⟨z 

    (t 

    ), z 

    (t 

    )⟩Orthonormal: ⟨z 1(t ), z 2(t )⟩ = 0 and ∥z 1(t )∥ = ∥z 2(t )∥ = 1.Linearly independent: ∑k i =1 ai z i (t ) = 0 iff  ai  = 0 for allai  ∈ C

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 82 / 106

    Triangle Inequality

    z 1 t  z 2 t  z 1 t  z 2 t 

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    83/106

    ∥ ( ) + ( )∥ ≤ ∥ ( ) ∥+∥ ( )∥Cauchy Schwartz inequality∣⟨z 1(t ), z 2(t )⟩∣ ≤ ∥z 1(t ) ∥ ⋅ ∥z 2(t )∥Equality holds iff  z 1

    (t 

    ) = a

    ⋅z 2

    (t 

    ) for some  a

     ∈C.

    Norm square of sum:

    ∥z 1(t ) + z 2(t )∥2 = ∥z 1(t )∥2 + ∥z 2(t )∥2+ ⟨

    z 1

    (t 

    ), z 2

    (t 

    ) ⟩+ ⟨z 2

    (t 

    ), z 1

    (t 

    )⟩Pythagorean property: if  ⟨z 1(t ), z 2(t )⟩ = 0,z 1 t  z 2 t 

    2z 1 t 

    2z 2 t 

    2

    Digital Communications: Chapter 2 Ver 2016.03.14 Po-Ning Chen 83 / 106

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    84/106

    Transformation w.r.t. a function  C 

    (t , s 

    )ẑ (t ) =    T 

    0C (t , s )z (s )ds 

    This is in parallel to

    v̂  v̂ t  =   ns =1

    At ,s v s    = Av .

    Digital Communications: Chapter 2 Ver 2016.03.14 Po-Ning Chen 84 / 106

    Eigenvalues and eigenfunctions

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    85/106

    Given a complex continuous function  C (t , s )  over [0, T )2, theeigenvalues and eigenfunctions are

     {λk 

    } and

     {ϕk 

    (t 

    )} such

    that

       T 0

    C (t , s )ϕk (s )ds  = λk ϕk (t ) (In parallel to  Av  = λv )

    Digital Communications: Chapter 2 Ver 2016.03.14 Po-Ning Chen 85 / 106

    Mercer’s theorem

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    86/106

    Theorem (Mercer’s theorem)Give a complex continuous function C (t , s )  over  [0, T ]2 that is Hermitian symmetric  (i.e., C 

    (t , s 

    ) = C ∗

    (s , t 

    )) and 

    nonnegative definite  (i.e.,

     ∑i 

     ∑ j  ai C 

    (t i , t  j 

    )a∗ j 

     ≥ 0  for any 

     {ai 

    }and  {t i }). Then the eigenvalues  {λk }  are reals, and C (t , s )has the following eigen-decompositionC 

    (t , s 

    ) = ∞

    k =1λk ϕk 

    (t 

    )ϕ∗k 

    (s 

    ).

    Digital Communications: Chapter 2 Ver 2016.03.14 Po-Ning Chen 86 / 106

    Karhunen-Loève theorem

    Theorem (Karhunen-Loève theorem)

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    87/106

    Let 

     {Z 

    (t 

    ), t 

     ∈ [0, T 

    )} be a zero-mean random process with a

    continuous autocorrelation function R Z (t , s ) = E[Z (t )Z ∗(s )].Then  Z (t )  can be written as Z 

    (t 

    ) M2

    = ∑∞k =1Z k 

     ⋅ϕk 

    (t 

    )  0

     ≤ t 

     < T 

    where “ =” is in the sense of mean-square,Z k  = ⟨Z (t ), ϕk (t )⟩ = ∫   T 0   Z (t )ϕ∗k (t )dt and  {ϕk (t )}  are orthonormal eigenfunctions of R Z (t , s ).

    Merit of KL expansion: {Z k }  are uncorrelated. (Butsamples {Z (k /(2W ) )}  are not uncorrelated even if Z  t   is bandlimited!)

    Digital Communications: Chapter 2 Ver 2016 03 14 Po-Ning Chen 87 / 106

    Proof.

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    88/106

    E[Z i Z ∗ j  ] =   E   T 0 Z (t )ϕ∗i  (t )dt     T 0 Z (s )ϕ∗ j  (s )ds ∗

    =    T 

    0

       T 

    0R Z 

    (t , s 

    )ϕ j 

    (s 

    )ds 

    ϕ∗i 

     (t 

    )dt 

    =    T 0 λ j ϕ j (t )ϕ∗i  (t )dt 

    = ⎧⎪⎪⎨⎪⎪⎩

    λ j    if   i  = j 0

      =E

    [Z i 

    ]E 

    [Z ∗

     j 

     ]  if   i 

     ≠ j 

    Digital Communications: Chapter 2 Ver 2016 03 14 Po-Ning Chen 88 / 106

    LemmaFor a given orthonormal set  {φk (t )}, how to minimize the energy of error signal e  t   s  t   ŝ  t   for  ŝ  t   spanned by (i d li bi ti f) φ t ?

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    89/106

    ( ) = ( ) − ( ) ( )(i.e., expressed as a linear combination of )

     {φk 

    (t 

    )}? 

    Assume ŝ (t ) = ∑k  ak φk (t ); then

    ∥e 

    (t 

    )∥2

    = ∥s 

    (t 

    ) − ŝ 

    (t 

    )∥2

    = ∥s 

    (t 

    ) −∑k ∶k ≠i ak φk 

    (t 

    ) −ai φi 

    (t 

    )∥2

    = ∥s (t ) −∑k ∶k ≠i ak φk (t )∥2 + ∥ai φi (t )∥2−⟨s (t ) −∑k ∶k ≠i ak φk (t ), ai φi (t )⟩− ⟨

    ai φi 

    (t 

    ), s 

    (t 

    ) −∑k ∶k ≠i ak φk 

    (t 

    )⟩= ∥s (t ) −∑k ∶k ≠i ak φk (t )∥2

    + ∣ai ∣2

    −a∗i  ⟨s (t ), φi (t )⟩ − ai  ⟨φi (t ), s (t )⟩By taking derivative w.r.t.  Re ai   and  Im ai  , we obtainai  s  t  , φi  t  .

    Digital Communications: Chapter 2 Ver 2016 03 14 Po-Ning Chen 89 / 106

    Definition

    If every finite energy signal s  t   (i.e., s  t 2

    ) satisfies 

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    90/106

    y gy g

    ( )(

     ∥ ( )∥ < ∞)

    ∥e (t )∥2 = s (t ) −k 

    ⟨s (t ), φk (t )⟩φk (t )2 = 0(equivalently,

    s (t ) L2= k 

    ⟨s (t ), φk (t )⟩φk (t ) = k 

    ak  ⋅ φk (t )(in the sense that the norm of the difference between

    left-hand-side and right-hand-side is zero), then the set of orthonormal functions  {φk (t )}   is said to be  complete .

    Digital Communications: Chapter 2 Ver 2016 03 14 Po Ning Chen 90 / 106

    Example  (Fourier series)⎧⎪⎪  2T 

     cos2πkt 

    T ,

      2

    T   sin

    2πkt 

    T  0  k  Z

    ⎫⎪⎪

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    91/106

    ⎨⎪⎪⎩

     

      ∶  ≤  ∈ ⎬⎪⎪⎭is a complete orthonormal set for signals defined over  [0, T )with finite number of discontinuities.

    For a complete orthonormal basis, the energy of  s 

    (t 

    )  is

    equal to ∥s (t )∥2 =  j 

    a j φ j (t ),k 

    ak φk (t )=  j  k 

    a j a∗k 

     ⟨φ j 

    (t 

    ), φk 

    (t 

    )⟩=  j 

    a j a∗

     j 

     j 

    a j 2

    Digital Communications: Chapter 2 Ver 2016 03 14 Po Ning Chen 91 / 106

    Given a deterministic function s (t ), and a set of  completeorthonormal basis φk  t   (possibly countably infinite),

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    92/106

     { ( )}s 

    (t 

    ) can be written as

    s (t )   L2=   ∞k =0

    ak φk (t ),   0 ≤ t  ≤ T where

    ak  = ⟨s (t ), φk (t )⟩ =    T 0

    s (t )φ∗k (t )dt .In addition,

    ∥s (t )∥2 = k  ∣ak ∣2.Digital Communications: Chapter 2 Ver 2016 03 14 Po Ning Chen 92 / 106

    Remark

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    93/106

    In terms of energy (and error rate):

    A bandpass signal s (t )  can be equivalently “analyzed”through lowpass equivalent signal  s (t )  without theburden of  carrier freq  f c ;

    A lowpass equivalent signal  s (t )  can be equivalently“analyzed” through (countably many)

    {ak 

     = ⟨s 

    (t 

    ), φk 

    (t 

    )⟩} without the burden of  continuous

    waveforms.

    Digital Communications: Chapter 2 Ver 2016.03

    .14 Po Ning Chen 93 / 106

    Gram-Schmidt procedure

    Given a set of functions v 1 t  , v 2 t  , , v k  t 

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    94/106

    ( ) ( ) ⋯ ( )1 φ1(t ) =   v 1(t )∥v 1(t )∥2 Compute for i 

     = 2, 3,

    ⋯, k  (or until

     ∥φi 

    (t 

    )∥ = 0),

    γ i (t ) = v i (t ) −  i 

    −1

     j =1 ⟨v i (t ), φ j (t )⟩φ j (t )and set  φi 

    (t 

    ) =  γ i (t )∥γ i (t )∥ .

    This gives an orthonormal basis  φ1(t ), φ2(t ),⋯, φk ′(t ), wherek ′ ≤ k .

    Digital Communications: Chapter 2 Ver 2016.03

    .14 Po Ning Chen 94 / 106

    Example 

    Find a Gram-Schmidt orthonormal basis of the following signals

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    95/106

    signals.

    Digital Communications: Chapter 2 Ver 2016.03

    .14 Po Ning Chen 95 / 106

    Sol.φ1(t ) =   v 1(t )∥v 1(t )∥ =   v 1(t )√ 2

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    96/106

    γ 2(t ) =   v 2(t ) − ⟨v 2(t ), φ1(t )⟩φ1(t )=   v 2(t ) −    30

    v 2(t )φ∗1(t )dt φ1(t ) = v 2(t )Hence  φ

    2(t ) =  γ 2(t )∥γ 2(t )∥ =

      v 2(t )√ 2

      .

    γ 3

    (t 

    ) =  v 3

    (t 

    ) − ⟨v 3

    (t 

    ), φ1

    (t 

    )⟩φ1

    (t 

    ) − ⟨v 3

    (t 

    ), φ2

    (t 

    )⟩φ2

    (t 

    )=   v 3(t ) −√ 2φ1(t ) − 0 ⋅ φ2(t ) =  −1,   2 ≤ t  

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    97/106

    γ 4(t ) =   v 4(t ) − ⟨v 4(t ), φ1(t )⟩φ1(t ) − ⟨v 4(t ), φ2(t )⟩φ2(t )−⟨v 4(t ), φ3(t )⟩φ3(t )=

      v 4

    (t 

    )−(−√ 2

    )φ1

    (t 

    ) − (0

    )φ2

    (t 

    ) −φ3

    (t 

    ) = 0

    Orthonormal basis=

    {φ1

    (t 

    ), φ2

    (t 

    ), φ3

    (t 

    )}, where 3

     ≤ 4.

    Di it l C i ti s Ch t 2 V 2016.03

    .14 P Ni Ch 97 / 106

    Example Represent the signals in slide 95 in terms of the orthonormal basis obtained in the same example.

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    98/106

    Sol.

    v 1

    (t 

    ) = √ 

    2φ1

    (t 

    ) +0

    ⋅φ2

    (t 

    ) +0

    ⋅φ3

    (t 

    ) ⇒ √ 

    2, 0, 0

    v 2(t ) =   0 ⋅ φ1(t ) +√ 2 ⋅ φ2(t ) + 0 ⋅ φ3(t ) ⇒ 0,√ 2, 0v 3(t ) = √ 2φ1(t ) + 0 ⋅ φ2(t ) + ⋅φ3(t ) ⇒ √ 2, 0, 1v 4

    (t 

    ) = −√ 

    2φ1

    (t 

    ) +0

    ⋅φ2

    (t 

    ) +1

    ⋅φ3

    (t 

    ) ⇒ −√ 

    2, 0, 1

    The vectors are named signal space representations orconstellations of the signals.

    Di it l C i ti Ch t 2 V 2016.

    03.

    14 P Ni Ch 98 / 106

    Remark

    The orthonormal basis is not unique.For example for k 1 2 3 re define

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    99/106

    For example, for k 

     = 1, 2, 3, re-define

    φk (t ) =   1,   k  − 1 ≤ t  

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    100/106

    s 1(t ) ⇒ (a1, a2,⋯, an)  for some complete basiss 2(t ) ⇒ (b 1, b 2,⋯, b n)  for the same complete basisd 12 =   Euclidean distance between  s 1(t )  and s 2(t )=     n

    i =1(ai  − b i )2

    = ∥s 1(t ) − s 2(t )∥ =    T 

    0 ∣s 1(t ) − s 2(t )∣2dt Di it l C i ti Ch t 2 V 2016

    .

    03.

    14 P Ni Ch 100 / 106

    Bandpass and lowpass orthonormal basis

    Now let’s change our focus from 0, T   to ,

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    101/106

     [ )  (−∞ ∞)A time-limited signal cannot be bandlimited to  W .A bandlimited signal cannot be time-limited to  T .

    Hence, in order to talk about the ideal bandlimited signal, wehave to deal with signals with unlimited time span.

    Re-define the inner product as:

    ⟨f  (t ), g (t )⟩ =    ∞−∞ f  (t )g ∗(t )dt Di i l C i i Ch 2 V 2016

    .

    03.

    14 P Ni Ch 101 / 106

    Let  s 1,(t )  and s 2,(t )  be lowpass equivalent signals of thebandpass s 1 t   and s 2 t  , satisfying

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    102/106

    ( ) ( )S 1,(f  ) = S 2,(f  ) = 0 for ∣f  ∣ > f B s i (t ) = Re s i ,(t )e ı2πf  c t    where  f c  ≫ f B Then, as we have proved in slide 24,

    ⟨s 1(t ), s 2(t )⟩ =   12 Re {⟨s 1,(t ), s 2,(t )⟩} .Proposition

    If  ⟨s 1,(t ), s 2,(t )⟩ = 0, then ⟨s 1(t ), s 2(t )⟩ = 0.Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 102 / 106

    PropositionIf  {φn,(t )}  is a complete basis for the set of lowpass signals,then

    φn t   Re 2φn, t  e ı2πf  c t 

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    103/106

    ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ ( ) = √  ( ) φ̃n(t ) = −Im√ 2φn,(t ) e ı2πf  c t = Re ı√ 2φn,(t ) e ı2πf  c t is a complete orthonormal set  for the set of bandpass signals.

    Proof:  First, orthonormality can be proved by

    ⟨φn

    (t 

    ), φm

    (t 

    )⟩ = 1

    2Re

    √ 

    2φn,

    (t 

    ),√ 

    2φm,

    (t 

    ) =

     ⎧⎪⎪⎨⎪⎪⎩

    1   n = m0   n

     ≠ m

    φ̃n(t ), φ̃m(t ) =  12

    Re ı√ 2φn,(t ), ı√ 2φm,(t ) = ⎧⎪⎪⎨1   n = m0   n  m

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 103 / 106

    and φ̃n(t ), φm(t ) =   12

    Re ı√ 2φn,(t ),√ 2φm,(t )  Re ı φn, t  , φm, t 

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    104/106

    = {  ⟨ ( ) ( )⟩}= ⎧⎪⎪⎨⎪⎪⎩Re{ ı} = 0   n = m0   n ≠ m

    Now, with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

    s (t ) = Re {s (t )e ı2πf  c t }ŝ (t ) = Re {ŝ (t )e ı2πf  c t }ŝ 

    (t 

    ) L2

    = n

    an,φn,

    (t 

    ) with  an,

     = ⟨s 

    (t 

    ), φn,

    (t 

    )⟩∥s (t ) − ŝ (t )∥2

    = 0we haves  t   ŝ  t 

    2  1

    2s  t   ŝ  t 

    2 0

    Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 104 / 106

    and

    ŝ  t    Re ŝ  t  e ı2πf  c t 

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    105/106

    ( ) = ( ) =   Ren an,φn,(t )e ı2πf  c t 

    = n

    Re

    an,

    √ 2

    Re

    √ 2φn,

    (t 

    )e ı2πf  c t 

    +Iman,√ 2 Im−√ 2φn,(t ) e ı2πf  c t 

    = n Re

    an,

    √ 2φn

    (t 

    ) +Im

    an,

    √ 2 φ̃n

    (t 

    ) ◻Digital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 105 / 106

    What you learn from Chapter 2

  • 8/18/2019 Chapter 2 Deterministic and Random Signal Analysis

    106/106

    Random processWSSautocorrelation and crosscorrelation functionsPSD and CSD

    White and filtered white

    Relation between (bandlimited) bandpass and lowpassequivalent deterministic signalsRelation between (bandlimited) bandpass and lowpass

    equivalent random signalsProperties of autocorrelation and power spectrum density

    Role of Hilbert transform

    Signal space conceptDigital Communications: Chapter 2 Ver. 2016.03.14 Po-Ning Chen 106 / 106