Chapter 13 Genetic Engineering. Glow in the Dark, oil eating bacteria; clones; hybrids…say what??...

22
Chapter 13 Genetic Engineering

Transcript of Chapter 13 Genetic Engineering. Glow in the Dark, oil eating bacteria; clones; hybrids…say what??...

Page 1: Chapter 13 Genetic Engineering. Glow in the Dark, oil eating bacteria; clones; hybrids…say what?? Yes, these things are real and possible. If you could.

Chapter 13Genetic Engineering

Page 2: Chapter 13 Genetic Engineering. Glow in the Dark, oil eating bacteria; clones; hybrids…say what?? Yes, these things are real and possible. If you could.

Glow in the Dark, oil eating bacteria; clones; hybrids…say

what??• Yes, these things are real and possible. • If you could manipulate DNA, what would you

do?• What application would it have for society as

a whole? • What are some of the moral questions that

might arise from your proposed manipulation?

Page 3: Chapter 13 Genetic Engineering. Glow in the Dark, oil eating bacteria; clones; hybrids…say what?? Yes, these things are real and possible. If you could.

Changing the Living World

1. Selective Breeding: • Selective breeding allowing only the

organisms with desired traits to breed– Takes advantage of naturally occurring variation– Ex: domestic dogs, cats, farm animals, most crops

Page 4: Chapter 13 Genetic Engineering. Glow in the Dark, oil eating bacteria; clones; hybrids…say what?? Yes, these things are real and possible. If you could.

Cont. Selective Breeding• Hybridization crossing

dissimilar individuals & bringing together the best of both organisms– Hybrids usually hardier than either

of the parents– Ex: crossing disease resistance with

food production

• Inbreeding continued breeding of individuals with similar characteristics– Increased risk of genetic defects– Ex: maintaining characteristics in

breeds of dogs

Page 5: Chapter 13 Genetic Engineering. Glow in the Dark, oil eating bacteria; clones; hybrids…say what?? Yes, these things are real and possible. If you could.

Ever wondered what a human-dog hybrid would look like?!?!

Page 6: Chapter 13 Genetic Engineering. Glow in the Dark, oil eating bacteria; clones; hybrids…say what?? Yes, these things are real and possible. If you could.

Human-Dog hybrid was a sculpture created by an Australian artist named Patricia Piccinini.

Page 7: Chapter 13 Genetic Engineering. Glow in the Dark, oil eating bacteria; clones; hybrids…say what?? Yes, these things are real and possible. If you could.

Increasing Variation

• Breeders increase variation by inducing mutations (*** ultimate source of variation)

• New kinds of bacteria produced by treating them with chemicals and radiation - Results: bacteria that can digest oil used to clean up oil spills

Page 8: Chapter 13 Genetic Engineering. Glow in the Dark, oil eating bacteria; clones; hybrids…say what?? Yes, these things are real and possible. If you could.
Page 9: Chapter 13 Genetic Engineering. Glow in the Dark, oil eating bacteria; clones; hybrids…say what?? Yes, these things are real and possible. If you could.

Cont. Increasing Variation

• New kinds of plants produced by treating them with drugs that prevent chromosome separation during meiosis

- Results: polyploidy cells plants larger and stronger (LETHAL in animals!)

Page 10: Chapter 13 Genetic Engineering. Glow in the Dark, oil eating bacteria; clones; hybrids…say what?? Yes, these things are real and possible. If you could.

Manipulating DNA• Genetic engineering making changes in the DNA code of an

organism 1. The Tools of Molecular Biology

a. DNA extraction open cells and separate DNA from other cell parts

b. Cutting DNA via restriction enzymes cut DNA into smaller pieces at a specific sequence of nucleotides

c. Separating DNA via gel electrophoresis mixture of DNA fragments are put in one end of porous gel and an electric voltage is applied

- DNA is negatively charged so the fragments begin to travel toward the positive end of the gel- The smaller the fragment, the faster it travels; the larger/slower

Page 11: Chapter 13 Genetic Engineering. Glow in the Dark, oil eating bacteria; clones; hybrids…say what?? Yes, these things are real and possible. If you could.

Cutting DNA

Recombinant DNA is DNA taken from two different sources and fused into a single DNA molecule. Special DNA cutting enzymes, called restriction enzymes, cut the DNA at specific sites. Each

restriction enzyme recognizes a different nucleotide sequence. DNA that is cut with a restriction enzyme will have single-stranded ends, called “sticky ends”. Two molecules of DNA cut with the

same restriction enzyme will have the same exposed nucleotides and will undergo complementary base pairing.

Page 12: Chapter 13 Genetic Engineering. Glow in the Dark, oil eating bacteria; clones; hybrids…say what?? Yes, these things are real and possible. If you could.
Page 13: Chapter 13 Genetic Engineering. Glow in the Dark, oil eating bacteria; clones; hybrids…say what?? Yes, these things are real and possible. If you could.

Gel Electropheresis

Page 14: Chapter 13 Genetic Engineering. Glow in the Dark, oil eating bacteria; clones; hybrids…say what?? Yes, these things are real and possible. If you could.

Electrophoresis

Page 15: Chapter 13 Genetic Engineering. Glow in the Dark, oil eating bacteria; clones; hybrids…say what?? Yes, these things are real and possible. If you could.

Cont. Manipulating DNA

2. Using the DNA Sequence a. Reading the sequence use fluorescent dyes to identify specific bases and DNA sequencesb. Cutting and pasting via recombinant DNA use restriction enzymes to “cut” a gene form one organism and using special enzymes (ligase) “paste” it into the DNA of another organismc. Making copies via polymerase chain reaction (PCR) produces multiple copies of DNA strand

Page 16: Chapter 13 Genetic Engineering. Glow in the Dark, oil eating bacteria; clones; hybrids…say what?? Yes, these things are real and possible. If you could.

Cell Transformation 1. Transformation process in which bacteria or some other organism takes in DNA

from its environment and incorporates it into its own DNA

a. Transforming Bacteria• Plasmids small circular pieces of DNA useful for DNA transfer for 2 reasons:

1. Bacterial origin of replication2. Genetic marker a gene that makes it possible to identify the transformed bacteria Ex: genes for resistance to antibiotics

Page 17: Chapter 13 Genetic Engineering. Glow in the Dark, oil eating bacteria; clones; hybrids…say what?? Yes, these things are real and possible. If you could.
Page 18: Chapter 13 Genetic Engineering. Glow in the Dark, oil eating bacteria; clones; hybrids…say what?? Yes, these things are real and possible. If you could.

Cont. Transformation

b. Transforming Plant Cells• Infect plant cells with recombinant plasmid whose

tumor producing gene has been inactivated

c. Transforming Animal Cells• Inject DNA directly into the nucleus of an egg cell,

foreign DNA is inserted into the chromosome

Page 19: Chapter 13 Genetic Engineering. Glow in the Dark, oil eating bacteria; clones; hybrids…say what?? Yes, these things are real and possible. If you could.

Applications of Genetic Engineering 1. Transgenic Organisms contain genes from other organisms

a. Transgenic Microorganisms– Bacteria transformed with human genes for insulin, growth

hormone, clotting favors etc. produce human products b. Transgenic Animals

– Mice with human immune systems are used to study effects of disease

– Livestock with extra copies of growth hormone to produce faster growth and less fatty meat

c. Transgenic Plants – Genetically modified food (GM) 52% of soy beans and 25% corn – Plants contain genes that produce natural insecticide or weed

resistance

Page 20: Chapter 13 Genetic Engineering. Glow in the Dark, oil eating bacteria; clones; hybrids…say what?? Yes, these things are real and possible. If you could.

Transgenic Animal: Belgian Blue Cattle

Page 21: Chapter 13 Genetic Engineering. Glow in the Dark, oil eating bacteria; clones; hybrids…say what?? Yes, these things are real and possible. If you could.

Cloning1. Clone member of a

population of genetically identical cells produced from a single cell

• Steps: 1. Nucleus of egg cell removed

2. Donor nucleus fused with egg cell using an electric shock3. Fused cell begins to divide4. Embryo placed in uterus of foster mother

Page 22: Chapter 13 Genetic Engineering. Glow in the Dark, oil eating bacteria; clones; hybrids…say what?? Yes, these things are real and possible. If you could.

Dolly’s Bonnie