Chapter 1

13
9/2/15 1 REACTION ENGINEERING CKB 20104 CHAPTER 1 MOLE BALANCE Dr. Kelly Yong Tau Len Section of Chemical Engineering Technology UniKL MICET Tel: 065512051, Email: [email protected], Elearning: CKB20104 – Kelly Yong Chapter 1 1.1 Definition of reaction rate 1.2 The general mole balance 1.3 Types of reactor in industry Objectives Upon the completion of this chapter, students are able to: Define the rate of chemical reaction Apply mole balance equation in reactors systems Identify commercial/industries reactor system 2

description

Reaction

Transcript of Chapter 1

Page 1: Chapter 1

9/2/15

1

REACTION  ENGINEERINGCKB  20104  

CHAPTER  1MOLE  BALANCEDr.  Kelly  Yong  Tau  Len

Section  of  Chemical  Engineering  Technology  UniKL  MICETTel:  06-­5512051,  Email:  [email protected],  

E-­learning:  CKB20104  – Kelly Yong

Chapter 11.1 Definition  of  reaction  rate1.2 The  general  mole  balance1.3 Types  of  reactor  in  industry

ObjectivesUpon  the  completion  of  this  chapter,  students  are  able  to:� Define  the  rate  of  chemical  reaction� Apply  mole  balance  equation  in  reactors  systems� Identify  commercial/industries    reactor  system

2

Page 2: Chapter 1

9/2/15

2

Introduction3

When  has  a  chemical  reaction  taken  place?

When  a  chemical  species  lost  its  chemical  identity  and  a  new  compound  forms

Chemical  Identity

Kind

Configuration

Number

4

IntroductionWhat  are  the  ways  a  species  may  lose  its  

chemical  identities?

Combination

Decomposition

Isomerization

Page 3: Chapter 1

9/2/15

3

5

Product

Reactant

Reaction

1.1 Definition of Reaction Rate

1. After  reaction,  reactant  will  disappear  (reacted)  while  product  will  appear  (formed).  

2. The  rate  at  which  this  occur  is  called  RATE  OF  REACTION  (or  simply  known  as  REACTION  RATE)  and  it  can  be  expressed  in  2  ways  either  as:

The  rate  of  DISAPPEARANCE   of  a  reactantor

The  rate  of  APPEARANCE  of  a  product

1.1 Definition of Reaction Rate

❀ The  rate  of  DISAPPEARANCE  of  reactant  A,  –rA is  the  number  of  moles  of  A  reacting  (disappearing)  per  unit  time  per  unit  volume  (mol/volume.time).

❀ The  rate  of  FORMATION of  product  B,  +rB is  the  number  of  moles  of  B formed  (appearing)  per  unit  time  per  unit  volume  (mol/volume.time).

❀However,  we  usually  use  rate  of  DISAPPEARANCE  of  reactant  A,  –rA to  evaluate  rate  of  reaction.

❀Both  are  functions  of  concentration,  temperature,  pressure  and  types  of  catalyst  (if  any).

6

A B

Page 4: Chapter 1

9/2/15

4

Test Your Understanding 1

Give  one  example  of  unit  for  rate  of  

DISAPPEARANCE  and  rate  of  FORMATION

7

A B

1.1 Definition of Reaction Rate

Rate  of  reaction  can  be  evaluated  in  other  ways  too.  +r  means  rate  of  formation  formation  and  –r  means  rate  of  

disappearance.  

8

A B

A–rARate  of  DISAPPEARANCE   of  

reactant  A

–rA value  will  be  a  positive  (+)  number   because  A  disappear  

E.g.  –rA =  20  mol/dm3.s

+rARate  of  FORMATION   of    

reactant  A

+rA value  will  be  a  negative  (–)  number   because  A  disappear  E.g.  +rA =  –20  mol/dm3.s

Page 5: Chapter 1

9/2/15

5

1.1 Definition of Reaction Rate

Rate  of  reaction  can  be  evaluated  in  other  ways  too.  +r  means  rate  of  formation  formation  and  –r  means  rate  of  

disappearance.  

9

A B

–rBRate  of  DISAPPEARANCE   of  

product   B

–rB value  will  be  a  negative  (–)  number   because  B  is  formed    E.g.  –rB =  –20  mol/dm3.s

+rBRate  of  FORMATION   of          

product   B

+rB value  will  be  a  positive  (+)  number   because  B  is  formed    E.g.  +rB =  20  mol/dm3.s

B

Consider  the  reaction:    A  +  2B  à C  +  2D  Given  the  rate  of  disappearance  of  A  is  15  mol/L.min at  the  start  of  the  reaction.  At  the  start  of  the  reaction:

1. Determine  –rA2. Determine  the  rate  of  formation  of  B  3. Determine  the  rate  of  formation  of  C  4. Determine  the  rate  of  disappearance  of  C  5. Determine  the  rate  of  formation  of  A  6. Determine  –rB

10

Example 1

Page 6: Chapter 1

9/2/15

6

1.  Determine  –rASolution:  –rA is  the  rate  of  disappearance  of  A

−𝑟A=15  mol𝐿.𝑚𝑖𝑛

2.  Determine  the  rate  of  formation  of  B  Solution:  For  every  1  mol of  A  that  disappears,  2  moles  of  B  also  disappear.  Reactant  B  is  being  used  up  therefore  its  rate  of  formation  is  a  negative  number.  

+𝑟B=−30  mol𝐿. 𝑚𝑖𝑛

11

Example 1A  +  2B  à C  +  2D  

3.  Determine  the  rate  of  formation  of  C  Solution:   C  is  a  product  that  is  being  formed  as  fast  as  A  is  disappearing.  Because  C  is  being  formed,  its  rate  of  formation  is  positive.

+𝑟C=15  mol𝐿. 𝑚𝑖𝑛

4.  Determine  the  rate  of  disappearance   of  C  Solution:   The  rate  of  disappearance  of  C  is  –rC.  Because  C  is  a  product,  its  rate  of  disappearance,  -­rC,  is  a  negative  number

−𝑟C=−15  mol𝐿 .𝑚𝑖𝑛

12

Example 1A  +  2B  à C  +  2D  

Page 7: Chapter 1

9/2/15

7

5.  Determine  the  rate  of  formation  of  A  Solution:  A  is  a  reactant  that  is  being  used  up.  Therefore,  its  rate  of  formation  is  a  negative  number  

+𝑟A=−15  mol𝐿.𝑚𝑖𝑛

6.  Determine  –rBSolution:  –rB is  the  rate  of  disappearance  of  B

−𝑟B=30  mol𝐿.𝑚𝑖𝑛

13

Example 1A  +  2B  à C  +  2D  

Test Your Understanding 214

A  +  2B  à C  +  2D  Given  the  rate  of  disappearance  of  A  is  15  mol/L.min at  the  start  of  the  reaction.  At  the  start  of  the  reaction:1. Determine  the  rate  of  formation  of  D2. Determine  the  rate  of  disappearance  of  D

Page 8: Chapter 1

9/2/15

8

1.2 The General Mole Balance15

A AA

FA0

GA

FARate  of  flow  of  A  into  the  system

(moles/time)INFA0

Rate  of  generationof  A  by  chemical  reaction  within  

system(moles/time)GENERATION

Rate  of  flow  of  A  out   of  the  system(moles/time)

OUTFA

+ – =Rate  of  

accumulationof  A  within  system(moles/time)

ACCUMULATION

𝒅𝐍𝐀𝒅𝒕

NA represents  the  no.  of  moles  of  species  A  in  the  system  at  time  t

Rate  of  generation,  GA is  a  product   of  variation  in  the  rate  of  reaction,  rAthroughout   the  reactor  

volume,  V

𝐆𝐀 = : 𝒓𝑨𝑽

1.2 The General Mole Balance16

A AA

FA0

GA

FARate  of  flow  of  A  into  the  system

(moles/time)INFA0

Rate  of  generationof  A  by  chemical  reaction  within  

system(moles/time)GENERATION

Rate  of  flow  of  A  out   of  the  system(moles/time)

OUTFA

+ – =Rate  of  

accumulationof  A  within  system(moles/time)

ACCUMULATION

𝒅𝐍𝐀𝒅𝒕𝐆𝐀 = : 𝒓𝑨

𝑽

𝐅𝐀𝟎 + : 𝒓𝑨− 𝐅𝐀𝑽

=𝒅𝐍𝐀𝒅𝒕

Basic  Equation   for  Chemical  Reaction  

Engineering

Page 9: Chapter 1

9/2/15

9

1.3 Types of Reactor in IndustryBatch Reactors17

• Used  for  small  scale  operation.• For  testing  new  process.  • Manufacturing  of  expensive  products.• Processes  that  are  difficult  to  convert  to  continuous  operations.

Advantages:• High  conversions  obtained  by  leaving  reactant  in  the  reactor  for  long  periods  of  time.

Disadvantages:• High  labor  costs  per  batch.• Variability  of  product  from  batch  to  batch.• Difficulty  large  scale  production.

18

Source:  http://www.youtube.com/watch?v=ftnLJ6VDwS8

1.3 Types of Reactor in IndustryBatch Reactors

Page 10: Chapter 1

9/2/15

10

Key  Characteristics• Unsteady-­state  operation  because  there  is  NO  flow  through  the  system.

• No  spatial  variation of  concentration  and  temperature  (well-­mixed).

• Mainly  used  for  small  scale  operation.

• Suitable  for  slow  reactions• Has  no  inflow and  no  outflowof  reactants  or  products  while  reaction  is  carried  out.

19

1.3 Types of Reactor in IndustryBatch Reactors

1.3 Types of Reactor in IndustryContinuous Flow Reactors20

Continuous  Flow  

Reactors

Continuous  Stirred  Tank  Reactor  (CSTR)

Plug  Flow  Reactor  (PFR)

Packed  Bed  

Reactor  (PBR)

Page 11: Chapter 1

9/2/15

11

21

• Commonly  used  in  industrial  processing.• Also  referred  to  as  backmix reactor.• Used  primarily  for  liquid  phase  reaction.

Source:  http://www.youtube.com/watchv=sSjn7doP550&list=PL4bHyGq-­6VBol0o9LMUC7Z2EntbS-­4Iv9

1.3 Types of Reactor in IndustryContinuous Stirred Tank Reactor (CSTR)

22

Key  Characteristics• Steady  state  operation  (flow  through  the  system),  hence  no  accumulation.

• Can  be  used  in  series  configurations.

• No spatial  variation  of  concentration  or  temperature  (well-­mixed).

• Mainly  used  for  liquid  phase  reaction.

• Suitable  for  viscous  liquid.• Reactants  are  continuously  introduced  into  the  reactor  while  products  are  continuously  removed.

1.3 Types of Reactor in IndustryContinuous Stirred Tank Reactor (CSTR)

Page 12: Chapter 1

9/2/15

12

1.3 Types of Reactor in IndustryPlug Flow Reactor (PFR)

23

• Commonly  used  in  industrial  processing.• Consists  of  a  cylindrical  pipe• Used  more  often  for  gas  phase  reaction

Source:  http://www.youtube.com/watch?v=I241zL4vJ7A

Key  Characteristics• Steady-­state  operation  (flow  through  the  system),  hence  no  accumulation• Consists  of  a  cylindrical  pipe  which  reactants  and  products  can  flow  through

• Spatial  variation  in  axial  direction  but  not  in  radial  direction• Suitable  for  fast  reaction  mainly  used  for  gas  phase  reaction• Temperature  control  may  be  difficult• There  are  no  moving  parts

24

1.3 Types of Reactor in IndustryPlug Flow Reactor (PFR)

Page 13: Chapter 1

9/2/15

13

1.3 Types of Reactor in IndustryPacked Bed Reactor (PBR)

25

Key  Characteristics• Similar   to  PFR.  Can  be  thought  of  as  PFR  packed  with  solid  particles,  which  are  almost  always  catalysts.

• Steady-­state  operation.• Spatial   variation.• Mainly  used  for  gas  phase  catalytic  reaction  although  examples  for  liquid   phase  reaction  are  also  known.

• Temperature  control  may  be  difficult.• There  are  no  moving  parts.• Pressure  drop  across  the  packed  bed  is  an  important  consideration.

IN OUT

Test Your Understanding 326

Determine  which  reactor  you  will  recommend  for  this  reaction.

ProductReactant

Reaction