Changes in physical and chemical properties of …Naomi Harada1*, Tamami Ueno 2, Yuko Sagawa 2,...

30
47 JAMSTEC Rep. Res. Dev., Volume 15, September 2012,47 _ 76 Naomi Harada 1* , Tamami Ueno 2 , Yuko Sagawa 2 , Youhei Taketomo 2 , Yasushi Hashimoto 2 , Yutaka Matsuura 2a , and Kazuhiro Sugiyama 2 Marine sediment cores are usually stored in archives after collection until they are utilized. Few studies, however, have investigated changes in the physical and chemical properties of sediment cores during storage. Therefore, it has not been known how long archived sediment cores are useful for determining certain physical, geochemical or chemical components. To clarify changes in physical and chemical properties of archived sediments, we monitored moisture ratio, magnetic susceptibility, lightness, color reflectance, total carbon, total nitrogen, and organic carbon contents in archived sediments stored at 20–25 , 4 , or –20 , using sediment cores collected from the North Pacific seafloor near Japan. We also monitored magnetic susceptibility in foraminiferal ooze and diatomaceous pelagic clay sediments from the North Pacific. The moisture ratio changed toward a constant value at all depths with increasing time because pore water in the sediment could easily move throughout the sediment core. There was no significant difference in magnetic susceptibility in hemipelagic and diatom-bearing clay sediments archived at 4 and at 20–25 . In foraminiferal ooze, diatom-bearing foraminiferal ooze, and diatom-bearing pelagic silty clay, magnetic susceptibility showed a reducing trend throughout the monitoring period, and the magnitude of reduction was larger at 20–25 than at 4 . Changes in lightness and color reflectance were significant and rapid, occurring within weeks of the collection date. Slight differences in the preservation of carbon and nitrogen were observed at different storage temperatures, with a smaller degradation rate at –20 than at 4 or 20–25 . The presence of an inert gas, argon, was not effective at preserving organic materials. The possible effectiveness of other inert gases for this purpose should be investigated. Our results will be useful for estimating the alteration rate of physical and chemical properties of archived sediment samples under various storage conditions. Keywords: Marine sediment, Quality monitoring, Magnetic susceptibility, Moisture ratio, Lightness, Color reflectance, Total carbon, Total nitrogen, Organic carbon Received 11 October 2011 ; Accepted 19 April 2012 1 Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC) 2 Marine Works Japan Ltd. Present affiliation a Ocean Engineering & Development Co. Ltd. *Corresponding author: Naomi Harada Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC) 2-15 Natsushima-cho, Yokosuka 237-0061, Japan Tel. +81-46-867-9504 [email protected] Copyright by Japan Agency for Marine-Earth Science and Technology Changes in physical and chemical properties of archived sediment — Report —

Transcript of Changes in physical and chemical properties of …Naomi Harada1*, Tamami Ueno 2, Yuko Sagawa 2,...

47

JAMSTEC Rep. Res. Dev., Volume 15, September 2012,47_76

Naomi Harada1*, Tamami Ueno2, Yuko Sagawa2, Youhei Taketomo2,

Yasushi Hashimoto2, Yutaka Matsuura2a, and Kazuhiro Sugiyama2

Marine sediment cores are usually stored in archives after collection until they are utilized. Few studies, however, have

investigated changes in the physical and chemical properties of sediment cores during storage. Therefore, it has not been known how

long archived sediment cores are useful for determining certain physical, geochemical or chemical components. To clarify changes in

physical and chemical properties of archived sediments, we monitored moisture ratio, magnetic susceptibility, lightness, color

reflectance, total carbon, total nitrogen, and organic carbon contents in archived sediments stored at 20–25ど, 4ど, or –20ど, using

sediment cores collected from the North Pacific seafloor near Japan. We also monitored magnetic susceptibility in foraminiferal ooze and

diatomaceous pelagic clay sediments from the North Pacific. The moisture ratio changed toward a constant value at all depths with

increasing time because pore water in the sediment could easily move throughout the sediment core. There was no significant difference

in magnetic susceptibility in hemipelagic and diatom-bearing clay sediments archived at 4ど and at 20–25ど. In foraminiferal ooze,

diatom-bearing foraminiferal ooze, and diatom-bearing pelagic silty clay, magnetic susceptibility showed a reducing trend throughout the

monitoring period, and the magnitude of reduction was larger at 20–25ど than at 4ど. Changes in lightness and color reflectance were

significant and rapid, occurring within weeks of the collection date. Slight differences in the preservation of carbon and nitrogen were

observed at different storage temperatures, with a smaller degradation rate at –20ど than at 4ど or 20–25ど. The presence of an inert

gas, argon, was not effective at preserving organic materials. The possible effectiveness of other inert gases for this purpose should be

investigated. Our results will be useful for estimating the alteration rate of physical and chemical properties of archived sediment

samples under various storage conditions.

Keywords: Marine sediment, Quality monitoring, Magnetic susceptibility, Moisture ratio, Lightness, Color reflectance, Total carbon,

Total nitrogen, Organic carbon

Received 11 October 2011 ; Accepted 19 April 2012

1  Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)

2  Marine Works Japan Ltd.

Present affiliation

a  Ocean Engineering & Development Co. Ltd.

*Corresponding author:

Naomi Harada

Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)

2-15 Natsushima-cho, Yokosuka 237-0061, Japan

Tel. +81-46-867-9504

[email protected]

Copyright by Japan Agency for Marine-Earth Science and Technology

Changes in physical and chemical properties of archived sediment

— Report —

48

Changes in properties of archived sediment

JAMSTEC Rep. Res. Dev., Volume 15, September 2012, 47_76

1. Introduction

Marine sediment cores contain important records of past

climatic and environmental changes. Geological, geophysical,

geochemical, and biological features and components extracted

from sediment cores can be used as proxies to reconstruct past

environments. After a cruise, sediment cores are typically stored

at room temperature or at colder temperatures until they are used

in scientific investigations. Whether the quality and quantity of

components of stored sediment samples are maintained for a long

time has often been questioned, because vulnerable components

such as water content, color, and organic materials are known to

change or degrade in a short period. Therefore, we monitored various

physical and chemical properties including moisture ratio, magnetic

susceptibility, lightness, color reflectance, and total carbon, total

nitrogen, and organic carbon contents in marine sediment cores stored

at room temperature (20–25 ど) or at cold temperature (~4 ど) or

frozen (–20 ど) over the course of 5–6 years.

Our aim was to determine how sediment properties change

with the passage of time at various storage temperatures. The results

from this study will enable us to judge the period and temperature

for which stored sediment samples remain suitable for scientific

investigations.

2. Monitoring strategy

2.1. Sediment and frequency of data collectionSediment cores consisting of hemipelagic clay, diatom-

bearing clay, foraminiferal ooze, and diatom-bearing foraminiferal

ooze as their dominant lithology were collected with multiple (MC)

or piston corers (PC), and pilot cores (PL) during R/V Mirai cruise

MR00-ENG in 2000 and cruises MR01-ENG and MR01-K03 in

2001 (Fig. 1 and Table 1). The piston cores were cut into sections

of 1 m, and sections of all cores were split lengthwise into half-

cores. These split cores were covered with a plastic sheet and sealed

in airtight plastic bags which is multi layer structure of polyamide

and polyethylene. The air inside the bags was exhausted manually,

because the use of a vacuum device makes water exude from the

sediment. The inert gas argon (Ar) was introduced into most of the

plastic bags of core sections to investigate its effectiveness for the

preservation of organic carbon and nitrogen, but Ar was not introduced

into some sections. All half-cores were stored at 20–25 ど, 4 ど, or

–20 ど from August 2000 to November 2006. All properties, storage

conditions, and specific purposes of monitoring are summarized in

Table 2. The initial values of physical and chemical properties were

measured onboard or on land immediately after the cruise. A second

measurement of physical and chemical properties was done within

a few weeks to a few months after the initial values were obtained.

After the second measurement, data were collected at intervals of

several months to a year.

140˚E 

140˚E 

160 

160 

180 

180 

30  30 

35  35 

40  40 

45  45 

50  50 

55˚N  55˚N 

0 200400

km

12, 3

68

574

Okhotsk Sea

Japan Sea

Fig. 1. Location map of sediment cores used in this study. Numbers are core locations cited in Table 1.

49

N. Harada et al.

JAMSTEC Rep. Res. Dev., Volume 15, September 2012, 47_76

Table 1. Sediment samples used in this study.

Cruise number Sample ID Collection

dateLatitude

(N)Longitude

(E)Water depth

(m)Sediment

length (cm) Lithology

1 MR00-ENG PL-1 3 May, 2000 36°06.70' 141°47.80' 2022 30 Hemipelagic clay

2 MR01-ENG PC-1, PL-1 5 May,2001 33°36.2' 143°45' 5681 369, 32 Hemipelagic clay

3 MR01-ENG MC-1 5 May,2001 33°36.2' 143°45' 5681 27 Hemipelagic clay

4 MR01-K03 PC-3 22 June,2001 45°00.50' 164°56.94' 6027 1071 Diatom-bearing clay

5 MR01-K03 MC-1 15 June,2001 45°02.32' 170°14.72' 2647 28 Foraminifera ooze

6 MR01-K03 MC-2 16 June,2001 44°57.41' 170°21.45' 3140 29 Diatom-bearing

foraminifera ooze

7 MR01-K03 MC-3 17 June,2001 45°00.50' 164°56.93' 6027 31 Diatom-bearing clay

8 MR01-K03 MC-5 12 July,2001 39°57.38' 145°29.90' 5266 34 Diatom-bearing silty clay

*room temp equals to 20–25ど

Table 2. Physical and chemical properties, sediment storage conditions and analytical purposes.

Property Cruise No. and Sediment ID Storage temp Inert gas,

Ar Purpose Data

Moistureratio

MR01-ENG PC-1 4ど used Detection of time series alternation under 4ど Fig. 2, Appendix1-1

MR01-ENG MC-1 4ど used

Comparison between 4ど and room temp Fig. 3, Appendix1-2

MR01-ENG MC-2 room temp used

Magnetic susceptibility

MR01-ENG PC-14ど, room

temp

used Comparison among the various lithologic sediments Fig. 4, Appendix2-1

MR01-K03 MC-1, MC-2, MC-3, MC-5,

PC-3used Comparison between 4ど and room temp Fig. 5, Appendix2-2

Lightness and color

reflectance

MR01-ENG MC-1

4ど

used Detection of time series alternation under 4ど using short core Fig. 6, Appendix3-1

MR01-ENG PC-1 used Detection of time series alternation under 4ど using long core Fig. 7, Appendix3-2

Carbon and nitrogen content

MR00-ENG PL-1 4ど, -20ど used Comparison between 4ど and -20ど Fig. 8, Appendix4-1

MR01-ENG MC-1 4ど, room temp used Comparison between 4ど and room temp Fig. 9, Appendix4-2

MR01-ENG PL-01 4どused and unused

Confirm the effectiveness of the inert gas, Ar to avoid the alternation under 4ど

Fig. 10, Appendix4-3

50

Changes in properties of archived sediment

JAMSTEC Rep. Res. Dev., Volume 15, September 2012, 47_76

2.2. Moisture ratioThe moisture ratio is the weight ratio of water to dry

sediment and is different from the water content, which is the relative

weight percentage of water in the sediment. Samples were taken

from a halved core for every measurement. A spatula was used to

obtain a cubic subsample of wet sediment 2 cm on each side, which

was placed in a beaker and weighed. The weighed sediment was

then dried at 60–80 ど for 48 h. The moisture ratio was estimated

by the following equation (Ikehara, 1989):

        [wet weight of sediment (g)-dry weight of sediment (g)]Moisture ratio (%) =               × 100 (1)           dry weight of sediment (g)

2.3. Magnetic susceptibilityA plastic cube (inner size 2.1 cm on a side and outer size

2.25 cm on a side) was used to obtain subsamples. An MS2 magnetic

susceptibility measurement system equipped with an MS2B dual

frequency sensor (Bartington Instruments Ltd., Witney, England) was

used. The system can measure values of up to 0.1 SI unit, and the

maximum resolution is 2 × 10-6 SI. The measurement accuracy is within

1%. We used the average of triplicate measurements at each analysis.

2.4. Lightness and color reflectanceThe lightness and color reflectance of the half-cores were

measured at 2-cm intervals through the transparent wrap (Saran

WrapTM, Asahi Kasei Chemicals Co., Ltd., Tokyo, Japan), which

is composed of polyvinylidene chloride, using a reflectance

spectrophotometer (Minolta CM-2002, Konica Minolta, Tokyo,

Japan) at wavelengths of 400 to 700 nm. To ensure accuracy, the

spectrophotometer was used with a double-beam feedback system

that monitors the illumination on the specimen at the time of

measurement and automatically compensates for any changes in

the intensity or spectral distribution of the light. The measurement

data were converted to the L*-a*-b* system. This system can be

visualized as a cylindrical coordinate system in which the axis of

the cylinder is the lightness variable L*, which ranges from 0 (black)

to 100 (white). Parameters a* and b* are chromaticity variables that

define object color; a* is the color shift from red (+60) to green (–60),

and b* is the color shift from yellow (+60) to blue (–60). The a*b*

coordinate point (0, 0) is achromatic, and color saturation becomes

more intense with the degree of deviation of the a* and b* values

from zero. The standard deviation of replicated spectral reflectance

was within 0.3%. In opal-rich sediment, there is a good correlation

between b*and the opal content (Nürnberg and Tiedemann, 2004), and

these show a good correlation with the δ18O profile of Greenland ice

cores (Ono et al., 2005). Thus, b* can be useful in constructing an

age model for an opal-rich sediment core.

2.5. Total carbon, total nitrogen, and organic carbon contentsOne to two gram samples of wet sediment were acquired,

freeze-dried, and ground into a homogeneous powder with a

mortar and pestle. Ar had been introduced into some of the plastic

bags containing the sediment to prevent oxidation during storage.

We compared preservation differences among the three storage

temperatures and between samples stored with or without Ar gas. A

subsample (10–20 mg) of dry powder was placed into a tin capsule

for measurement of total carbon (TC) and total nitrogen (TN)

content or into a silver capsule for measurement of organic carbon

(OC) content (weight percent [wt %] of dry sediment). The sample

in the silver capsule was decalcified with concentrated HCl vapor for

8 h and then deacidified with granular NaOH in a dry-conditioning

desiccator for a few days before analysis. The samples in the tin and

silver capsules were analyzed with an elemental analyzer (Perkin

Elmer Series II CHNS/O Analyzer 2400, Perkin Elmer Japan, Co.

Ltd., Yokohama, Japan). The replicate analytical errors for TC, TN,

and OC were within 2%, 6%, and 2%, respectively.

3. Results

3.1. Moisture ratioThe initial values of the moisture ratio in MR01-ENG PC-1

piston core sediments stored at 4 ど ranged from 86% to 139% and

showed considerable variation of high amplitude throughout the core

(Fig. 2 and Appendix 1-1). Moisture ratios throughout the core became

smaller than their initial values and approached constant values,

ranging from about 100% to 130%, with the passage of time. By 153

days, in October 2001, a slight loss of moisture was detected, and then

the moisture ratio remained constant until the eighth measurement in

March 2004. In September 2005, 1581 days after the sediment was

collected, the moisture ratio had fallen dramatically.

The moisture ratio was compared between 4 ど and 20–25 ど

in sediments of the foraminiferal ooze multiple core MR01-ENG

MC-1 (Appendix 1-2). The initial values showed large amplitudes,

ranging from 110% to 154% in the samples stored at 4 ど and from

90% to 154% in those stored at 20–25 ど. The moisture ratios

fell within a narrower range in this core than in the piston core,

except at the top of the sediment (Fig. 3), where the multiple corer

preserves the interface between seawater and sediment better than

the piston corer. The moisture ratio in the samples stored at 4 ど

began to decline 1581 days after the sediment core was collected,

in September 2005, whereas that in the samples stored at 20–25 ど

51

N. Harada et al.

JAMSTEC Rep. Res. Dev., Volume 15, September 2012, 47_76

Fig. 2. Changes in the moisture ratio in the MR01-ENG PC-1 core during storage at 4 ど.

Fig. 3. Changes in the moisture ratio in the MR01-ENG MC-1 core during storage at (a) 4 ど or (b) room temperature

(RT: 20–25 ど).

52

Changes in properties of archived sediment

JAMSTEC Rep. Res. Dev., Volume 15, September 2012, 47_76

had already started to decrease after 1291 days, in November 2004

(Fig. 3). The sediment stored at 20–25 ど also became drier than

that stored at 4 ど, with a maximum of 44% of moisture ratio drop

by 1987 days after the sediment was collected (Fig. 3 and Appendix

1-2). In contrast, a maximum of 16% of moisture ratio drop was lost

during storage at 4 ど during the 1987 days. After several years, the

moisture ratio anomaly (defined as the difference from the initial

value) was considerably larger with storage at 20–25 ど than at 4 ど.

Unfortunately, we did not confirm the difference of the humidity in

storage rooms between 20–25 ど and 4 ど.

3.2. Magnetic susceptibilityIn the hemipelagic sediment MR01-ENG PC-1 stored at

4 ど, the initial values of magnetic susceptibility varied from 162 to

206 × 10-5 SI units; these were the highest values among the different

sediments (Fig. 4a and Appendix 2-1). The magnetic susceptibility

decreased slightly with increasing storage time, resulting in a small

anomaly (4.5% at maximum) during the 1855-day monitoring

period. Under storage at 20–25 ど, the initial magnetic susceptibility

values ranged from 169 to 180 × 10-5 SI (Fig. 5a and Appendix 2-2),

which also decreased slightly with time; the maximum anomaly

was less than 5.6% during the 1855-day monitoring period. The

difference in magnetic susceptibility between the two storage

temperatures during the monitoring period was not significant, and

at both temperatures the magnitude of the change with time was

smaller in this core than in any of the other cores.

In the foraminiferal ooze sediment MR01-K03 MC-1 stored

at 4 ど, the initial magnetic susceptibility values varied from 12 to

27 × 10-5 SI, the lowest values among all sediment types (Fig. 4b and

Appendix 2-1). Although no apparent trend with time was observed

in any part of this core, the differences from the initial value were

large: anomalies of 15% were observed at the second monitoring

(81 days), and the maximum anomaly was ~22%. Under storage

at 20–25 ど, the initial magnetic susceptibility values ranged from

6.1 to 15 × 10-5 SI (Fig. 5b and Appendix 2-2). However, the values

had decreased drastically, with a maximum deviation of ~22%, by

81 days after the initial data was collected, except at 11 cm depth

(No. 1 sample), where the magnetic susceptibility increased by

67% from the initial value during the first 81 days of storage. The

decreasing trend, observed in all parts of the core except at 11 cm

depth, continued throughout the monitoring period, and the overall

magnitude of the reduction was a little larger than the maximum

reduction under storage at 4 ど.

In the diatom-bearing foraminiferal ooze sediment

MR01-K03 MC-2 stored at 4 ど, the initial magnetic susceptibility

values varied from 77 to 85 × 10-5 SI (Fig. 4c and Appendix 2-1).

Deviations of up to ~8.6% were observed during the 1855-day

monitoring period. Under storage at 20–25 ど, the initial magnetic

susceptibility values ranged from 48 to 110 × 10-5 SI, showing a

large dynamic range (Fig. 5c and Appendix 2-2). With increasing

time, deviations of up to 11.8% were observed. This sediment type

showed neither an increasing nor decreasing trend with time at

any point in the sediment core at either temperature, although the

magnitude of the deviations was slightly larger in sediment stored at

20–25 ど than in that stored at 4 ど.

In the diatom-bearing pelagic clay sediment MR01-K03

MC-3 stored at 4 ど, the initial magnetic susceptibility values varied

from 69 to 162 × 10-5 SI, showing a large dynamic range (Fig. 4d

and Appendix 2-1). The changes with time were within ~6% during

the 1855-days monitoring period. Under storage at 20–25 ど, the

initial magnetic susceptibility values ranged from 67 to 100 × 10-5

SI (Fig. 5d and Appendix 2-2), and the deviations were up to ~4.9%

during the monitoring period. This sediment type also did not show

any increasing or decreasing trend with time at any point in the

sediment core at either temperature, nor was there any difference

in the magnitude of the deviations between the two temperatures.

In the diatom-bearing pelagic silty clay sediment

MR01-K03 MC-5 stored at 4 ど, the initial magnetic susceptibility

values varied from 31 to 64 × 10-5 SI (Fig. 4e and Appendix 2-1).

There was no increasing or decreasing trend with time at any point

in the sediment core. A large change, with a maximum difference

of 46% compared with the initial value, was measured during the

second monitoring, 81 days after the sediment was collected, but

thereafter the magnitude of the observed changes was small. Under

storage at 20–25 ど, the initial magnetic susceptibility values ranged

from 24 to 46 × 10-5 SI (Fig. 5e and Appendix 2-2). The changes

with time were quite large; a 66.5% deviation was measured during

the second monitoring, and the maximum anomaly during the

monitoring period was ~77%. The magnitude of the change was

larger in sediment stored at 20–25 ど than in that stored at 4 ど.

In the diatom-bearing clay sediment MR01-K03 PC-3

stored at 4 ど, the initial magnetic susceptibility values varied from

78 to 129 × 10-5 SI (Fig. 4f and Appendix 2-1). The deviations

during the monitoring period were up to ~9.1%. Under storage at

20–25 ど, the initial magnetic susceptibility values ranged from

91 to 132 × 10-5 SI (Fig. 5f and Appendix 2-2), and the maximum

anomaly was 7.4%. This sediment type also showed no increasing

or decreasing trend with time at either temperature, nor was any

difference in the magnitude of the deviation observed between

storage temperatures.

53

N. Harada et al.

JAMSTEC Rep. Res. Dev., Volume 15, September 2012, 47_76

Fig. 4. Changes in magnetic susceptibility (× 10-5 SI) in sediment cores stored at 4 ど: (a) MR01-ENG PC-1, (b) MR01-K03 MC-1, (c) MR01-K03 MC-2,

(d) MR01-K03 MC-3, (e) MR01-K03 MC-5, (f) MR01-K03 PC-3.

54

Changes in properties of archived sediment

JAMSTEC Rep. Res. Dev., Volume 15, September 2012, 47_76

Fig. 5. Changes in magnetic susceptibility (× 10-5 SI) in sediment cores stored at RT: (a) MR01-ENG PC-1, (b) MR01-K03 MC-1, (c) MR01-K03 MC-2,

(d) MR01-K03 MC-3, (e) MR01-K03 MC-5, (f) MR01-K03 PC-3.

55

N. Harada et al.

JAMSTEC Rep. Res. Dev., Volume 15, September 2012, 47_76

3.3. Lightness and color reflectanceHemipelagic clay sediments of the MR01-ENG MC-1

and PC-1 cores stored at 4 ど were used for monitoring L*, a*, and

b*. In core MC-1, the initial value of L* ranged from 33.5 to 39.3

(Fig. 6a and Appendix 3-1). The alteration of L* occurred quickly:

the maximum deviation from the initial value, 13%, was observed

within 19 days. L* gradually changed toward a brighter (larger)

value, with some oscillation, during the 1969 days. The initial value

of a* ranged from 3.15 to 5.53 (Fig. 6b and Appendix 3-1), and its

maximum deviation from the initial value was 38% within 19 days.

With increasing time, a* gradually tended toward a greener (more

negative) value, though with large oscillation. The initial value of

b* ranged from 6.13 to 12.6 (Fig. 6c and Appendix 3-1), and the

maximum anomaly reached 40% within 19 days, which was larger

than the maximum anomaly for L* or a*. With increasing time, b*

changed gradually toward a more blue (more negative) value, also

with large oscillation.

In the hemipelagic clay sediment MR01-ENG PC-1, the

initial value of L* ranged from 32.7 to 56.0 (Fig. 7a and Appendix

3-2), and the L* anomaly after 19 days was up to 23%. The range of

the anomaly was larger than that in MC-1, which was a short core

collected at the same location as PC-1. As in MC-1, L* in PC-1 also

changed gradually to a brighter value, with some oscillation, during

the 1969 days; at the last measurement, L* was up to 23% brighter.

The initial value of a* ranged from –0.930 to 5.05 (Fig. 7b and

Appendix 3-2), and the maximum anomaly at 19 days was 207%,

with the 19-day value being more green (more negative). With

increasing time, a* had redder (more positive) values. The alteration

was especially large in layers with a negative initial value of a* (Fig.

7b). The initial value of b* ranged from 1.64 to 14.8 (Fig. 7c and

Appendix 3-2), and the maximum change with time was 54%,

which occurred within the first 19 days of storage. With increasing

time, b* became yellower (more positive), although it became bluer

(more negative) at specific depths (around 100, 200, 277 cm, and at

the bottom of the core at 369 cm).

3.4. Total carbon, total nitrogen, and organic carbon contentsWe monitored TC, TN, and OC in the hemipelagic clay

sediments MR00-ENG PL-1 and MR01-ENG MC-1 and PL-1, and

compared the data between storage at 4 ど and –20 ど (Fig. 8 and

Appendix 4-1) and between storage at 20–25 ど and 4 ど (Fig. 9

and Appendix 4-2). We also monitored the effect of the presence

of Ar gas on TC, TN, and OC at 4 ど (Fig. 10 and Appendix 4-3).

At all points in the sediment cores, the initial TC content

ranged from 2.7% to 2.9% under storage at 4 ど, and from 2.1%

to 3.1% under storage at –20 ど (Figs. 8a and 8b). The initial TN

content ranged from 0.26% to 0.31% at 4 ど and from 0.27% to

0.32% at –20 ど (Figs. 8c and 8d), and that of OC ranged from

2.1% to 2.5% at 4 ど and from 2.2% to 2.6% at –20 ど at all points

in the sediment cores (Figs. 8e and 8f). These results showed that

the relative contents of carbon and nitrogen were stable throughout

the sediment cores. At the second measurement, performed 18 days

later, the TC, TN, and OC contents decreased from 2.7% to 2.1%

(reduction of 24%), from 0.29% to 0.22% (reduction of 24%), and

from 2.25% to 1.83% (reduction of 19%), respectively, at 4 ど,

and from 3.1% to 2.6% (reduction of 16%), from 0.32% to 0.26%

(reduction of 9%), and from 2.6% to 2.3% (reduction of 12%),

respectively, at –20 ど. After the second measurement, some TC,

OC, and TN values increased and showed a large deviation from

the initial value. At 2272 days after the initial measurement, TC,

TN, and OC had decreased from 2.7% to 2.6% (reduction of 5%),

from 0.26% to 0.26% (reduction of 0%) and from 2.14% to 2.09%

(reduction of 2.4%), respectively, under storage at 4 ど, and from

3.0% to 2.8% (reduction of 5%), from 0.30% to 0.29% (reduction of

3%), and from 2.5% to 2.4% (reduction of 3%), respectively, under

storage at –20 ど. The value at 7 cm depth, however, decreased by

more than 20% after 2272 days of storage at –20ど.

The initial TC, TN, and OC contents of the samples stored

at both 20–25 ど and 4 ど (Fig. 9 and Appendix 4-2) ranged from

0.23% to 0.54%, from 0.04% to 0.07%, and from 0.23% to 0.51%,

respectively. At the third measurement, 120 days after the initial

measurement, the TC, TN, and OC values decreased from 0.36%

to 0.32% (reduction of 10%), from 0.056% to 0.050% (reduction of

16%), and from 0.25% to 0.22% (reduction of 10%), respectively,

at 20–25 ど, and from 0.35% to 0.30% (reduction of 15%), from

0.056% to 0.04% (reduction of 27%), and from 0.36% to 0.29%

(reduction of 17%) at 4 ど. At the last measurement, 2272 days

after the initial measurement, the TC, TN, and OC values decreased

from 0.37% to 0.32% (reduction of 15%), from 0.05% to 0.04%

(reduction of 25%), and from 0.35% to 0.31% (reduction of 12%),

respectively, at 20–25 ど, and from 0.39% to 0.32% (reduction of

17%), from 0.06% to 0.05% (reduction of 23%), and from 0.36% to

0.32% (reduction of 11%), respectively, at 4 ど.

In the comparison between storage with and without Ar

at 4 ど (Fig. 10 and Appendix 4-3), the initial TC, TN, and OC

contents ranged from 0.25% to 0.9%, from 0.04% to 0.1%, and

from 0.24% to 0.9%, respectively, at all points in the sediment

cores. At the second measurement, 280 days after the initial

measurement, the TC, TN, and OC contents decreased from 0.91%

to 0.41% (reduction of 55%), from 0.11% to 0.05% (reduction of

52%), and from 0.92% to 0.40% (reduction of 56%), respectively,

during storage with Ar gas, and from 0.27% to 0.22% (reduction of

56

Changes in properties of archived sediment

JAMSTEC Rep. Res. Dev., Volume 15, September 2012, 47_76

Fig. 6. Changes in lightness and color reflectance in the hemipelagic sediment core MR01-ENG MC-1 under storage at 4 ど: (a) L*, (b) a*, (c) b*.

57

N. Harada et al.

JAMSTEC Rep. Res. Dev., Volume 15, September 2012, 47_76

Fig. 7. Changes in lightness and color reflectance in the hemipelagic sediment core MR01-ENG PC-1 under storage at 4 ど: (a) L*, (b) a*, (c) b*. The each

dot and line drawn in different color shows each sample. Showing of sample number with color as a legend is omitted, because the legend becomes busy due

to 185 of sample number.

58

Changes in properties of archived sediment

JAMSTEC Rep. Res. Dev., Volume 15, September 2012, 47_76

Fig. 8. Changes in TC, TN, and OC contents in the hemipelagic sediment core MR00-ENG PL-1 under storage at 4 ど or –20 ど: (a) TC at 4 ど;

(b) TC at –20ど; (c) TN at 4 ど; (d) TN at –20ど; (e) OC at 4 ど; (f) OC at –20 ど.

59

N. Harada et al.

JAMSTEC Rep. Res. Dev., Volume 15, September 2012, 47_76

Fig. 9. Changes in TC, TN, and OC contents of the hemipelagic sediment core MR00-ENG PL-1 under storage at RT or 4ど: (a) TC at RT; (b) TC at 4ど;

(c) TN at RT; (d) TN at 4ど; (e) OC at RT; (f) OC at 4ど.

60

Changes in properties of archived sediment

JAMSTEC Rep. Res. Dev., Volume 15, September 2012, 47_76

Fig. 10. Changes in TC, TN, and OC contents of the coastal sediment core MR00-ENG PL-1 stored at 4ど with or without Ar gas: (a) TC with Ar;

(b) TC without Ar; (c) TN with Ar; (d) TN without Ar; (e) OC with Ar; (f) OC without Ar.

61

N. Harada et al.

JAMSTEC Rep. Res. Dev., Volume 15, September 2012, 47_76

16%), from 0.05% to 0.03% (reduction of 29%), and from 0.26%

to 0.23% (reduction of 14%), respectively, without Ar gas. At the

fifth measurement, 1287 days after the initial measurement, the TC,

TN, and OC values respectively decreased from 0.91% to 0.51%

(reduction of 44%), from 0.11% to 0.09% (reduction of 24%), and

from 0.92% to 0.50% (reduction of 46%) with Ar, and from 0.91%

to 0.76% (reduction of 17%), from 0.11% to 0.09% (reduction of

19%), and from 0.92% to 0.73% (reduction of 21%) without Ar.

4. Discussion

4.1. Moisture ratioThe sediment half-cores were stored horizontally in the

archives. Pore water could thus move easily through the sediment,

with the result that the moisture ratio tended toward a homogeneous

value (110–130%) during the storage. Even though wrapping the

half-cores in plastic sheets and putting them in airtight plastic bags

slowed the drying of the sediment and although the humidity in

storage was kept constant until the seventh measurement (546 days)

during the monitoring period, the moisture ratio decreased abruptly

1581 days after the sediment was collected, and up to 16% of the

moisture ratio declined over five years of storage at 4 ど. The bags

were opened and samples for moisture ratio were taken from a

half-core at every measurement. In addition, void space increased

in the half-core with repeated subsampling. Thus, water would

be lost as vapor with every sampling and increasing void space

would accelerate the drying of the sediment, especially by the ninth

monitoring.

We recommend that subsampling for moisture ratio

measurement should be done onboard as soon as possible after

sediment collection to avoid shifts of pore water. If onboard

measurement is not possible, the cores should be packed in a plastic

sheet, put in an airtight plastic bag, and stored at 4 ど until the

measurement can be performed.

4.2 Magnetic susceptibilityThe monitoring of magnetic susceptibility showed no

significant alteration with increasing time in hemipelagic or

diatom-bearing clay at any storage temperature. On the other hand,

a relatively large scatter was found in the data from foraminiferal

ooze and diatom-bearing pelagic silt. The reduction in magnetic

susceptibility of these sediments was larger at 20–25 ど than at

4 ど, which implies that differences in sediment composition

(organic matter and total sulfur contents, Yamazaki et al., 2003)

and redox potential (production of dissolved Fe2+ by reduction of

ferric oxide, Yamazaki and Solheid, 2011) might affect the degree

of alteration of magnetic susceptibility with time. We compared

magnetic susceptibility (Appendix 2-1) with lightness and color

reflectance data (Appendix 3-2) in hemipelagic sediment samples

No. 1 to No. 5 in core MR01-ENG PC-1 and found no distinct

correlation or trend (Fig. 11). However, in hemipelagic sediment

the magnetic susceptibility showed no significant change with time.

Therefore, this comparison for other types of sediment such as

foraminiferal ooze and diatom-bearing silt would be valuable for

further understanding of the alteration mechanism.

On the basis of this study, magnetic susceptibility should

be measured onboard immediately after collection if the sediment is

primarily foraminiferal ooze or diatom-bearing silt.

4.3 Lightness and color reflectanceLightness and color reflectance are robust properties of

sediment with high (centimeter and millimeter) resolution, even

if the structure has been affected by local perturbations such as

bioturbation (Chapman and Shackleton, 1998). The L* value of

deep-sea sediment, as in this study, is generally interpreted as

reflecting variations in the relative contents of carbonate and clay

(Schneider et al., 1995). The maximum change in L* over time

was 23%, and the degree of alteration of L* was almost the same

after 19 days of storage as it was at the end of monitoring. Thus the

dominant shift of L* occurred soon after sediment collection and

then remained approximately constant during five years of storage.

There was a relatively large difference between the initial a*

value and that measured one year later, when a* became negative.

Although a* has been used as a proxy for ice-rafted debris (IRD)

(Helmke et al., 2002), the interpretation of a* in areas not influenced

by IRD is difficult (e.g., Debret et al., 2006). There was also a

relatively large shift of b* within the first week or month, after which

b*remained approximately constant during the five years of storage.

In laminated sediment, light colors (yellowish: high b*) correspond

to diatom-rich sediment and darker colors correspond to detrital

material (olive to olive gray silty clay: low b*). Thus, the change in

b*can be useful for determining changes in the relative abundances

of these two types of sediments (Debret et al., 2006).

The extent of darkening or brightening is affected by changes

in water content; a reduction in the sediment water content causes the

sediment to lighten (Balsam et al., 1998). A maximum of 16% of

the moisture ratio declined during storage for five years at 4 ど. In

the MC-1 core, the trend in L*, a*, and b* toward white, green, and

blue over time can be explained by the progressive drying of the

sediment during storage. In the PC-1 core, the changes in L* also can

be explained by drying, but another mechanism is needed to explain

62

Changes in properties of archived sediment

JAMSTEC Rep. Res. Dev., Volume 15, September 2012, 47_76

Fig. 11. Comparison of magnetic susceptibility (× 10-5 SI) with lightness and color reflectance of the hemipelagic sediment core MR01-ENG PC-1 at 4 ど:

(a) sediment No. 1; (b) No. 2; (c) No. 3; (d) No. 4; (e) No.5. R means a correlation coefficient.

63

N. Harada et al.

JAMSTEC Rep. Res. Dev., Volume 15, September 2012, 47_76

the trends of a* and b* toward redder and yellower values with time

(Fig. 7). Oxidation can plausibly influence the sediment color and

seems to have a greater effect on the color spectra than water content

in anoxic sediment (Debret et al., 2006). Among common sediment

components, iron compounds and organic matter are most subject

to oxidation. The oxidation of iron compounds to iron oxides and

oxyhydroxides typically changes the sediment color toward redder

values. Unoxidized organic matter is dark colored, and its oxidation

causes organic-containing sediment to become lighter (Deaton

and Balsam, 1993). Thus, in this study, the dominant reason for

the trend of a* and b* in PC-1 toward redder and yellower values,

respectively, with time may be oxidation of iron and organic matter.

These changes are discussed in the following section.

Our results suggest that lightness and color reflectance

should be measured immediately, while still onboard, because

alteration of these properties occurs within a couple of weeks.

4.4 Total carbon, total nitrogen, and organic carbon contentsAfter several years of storage, the difference in TC for

storage at 4 ど and –20 ど was within statistical error. For TN and

OC, the range of variation relative to initial values under storage at

–20 ど was narrower than that under storage at 4 ど. Only the OC

and TN data showed an advantage of storage at –20 ど over storage

at 4 ど. In the comparison between storage at 20–25 ど and 4 ど,

the apparent difference in TC, TN, and OC between the initial and

second measurement (18 days after collection) was smaller under

storage at 20–25 ど than at 4 ど, whereas a few years later, the

preservation did not differ between the two temperatures. Because

the vast majority of organic carbon and nitrogen produced in the

surface is remineralized into its inorganic constituents in the water

column or on the sea floor, subsequent degradation of the remaining

carbon and nitrogen in the sediment can be expected to be quite

small (Sarmient and Gruber, 2006). It seems likely that the range

of storage temperature in this study is an insignificant factor in the

degradation of organic materials in the tested cores. However, some

TC, TN, and OC values increased or showed a large difference from

the initial value after the second measurement. These differences

among samples probably reflect the heterogeneity of the sediment

composition, because a discrete sediment subsample was obtained

from the half-core for each measurement. The reduction of TC, TN,

and OC in sediment stored in an Ar atmosphere was greater than in

the sediment stored without Ar at all measurement times, suggesting

that Ar had a negative effect on preservation of carbon or nitrogen

during the storage period. For long-time storage of sediment cores,

the ambient atmosphere should be taken into account for its effect

on degradation of organic materials. The use of other inert gases

such as nitrogen to enhance preservation should be investigated.

Although, as described in section 4.3, oxidation of organic

matter may have affected the a* and b* values of PC-1, which

tended toward redder and yellower values with time, the OC

content did not show any significant degradation with time at any

storage temperature. Unfortunately, our data were insufficient to

test the significance of the relationship between colors and OC;

however, previous investigations have reported that the color of

marine sediment particles generally varies between light brown

through gray to almost black, largely reflecting differences in

the chemical speciation of iron and sulfur (Lyle, 1983; Bull and

Williamson, 2001). Thus, it seems likely that changes in a* and

b* are more sensitive indicators of oxidation than of changes in

organic carbon. However, bulk chemistry alone may be insufficient

to understand the dynamics of color change of sediment. Lorna

et al. (2009) combined time-lapse imaging of sediment profiles

with in situ measurements of color profiles and pore-water Fe and

Mn profiles in sediment from the North Sea. They reported that

the relation between sediment color and the Fe redox boundary

at different locations is likely to be related to variations in recent

infaunal bioturbation rather than variations in sediment source or

differences in bulk sediment chemistry. In addition, differences in

laboratory procedure might influence the results and make direct

comparisons of the different properties difficult. Color data for

the sample surface were obtained through a sheet of plastic wrap,

whereas the subsample for carbon and nitrogen analyses was taken

from the interior of the core. In summary, the optimum storage

temperature of sediment for TC, TN, and OC analyses is –20 ど.

However, sediment stored at 4 ど would be suitable for TC, TN, and

OC analyses for 5 years after collection.

5. Conclusion

We monitored the moisture ratio in foraminiferal ooze,

and magnetic susceptibility in hemipelagic sediment, foraminiferal

ooze, and diatom-bearing clay during several years of storage. We

also monitored lightness, color reflectance, and TC, TN, and OC

contents in hemipelagic sediment cores during several years of

storage. With the passage of time, the moisture ratio throughout

hemipelagic sediments stored at 4 ど decreased to constant values

of about 110% to 130%, although the initial values of the moisture

ratio showed considerable variation. Wrapping the half-core in a

plastic sheet and putting it in an airtight plastic bag stored at 4 ど is

useful to retain moisture in the sediment for at least 1.5 years (546

days) if the half-core has no open space. Magnetic susceptibility

64

Changes in properties of archived sediment

JAMSTEC Rep. Res. Dev., Volume 15, September 2012, 47_76

showed no significant alteration with time in hemipelagic or

diatom-bearing clay at any storage temperature, whereas a relatively

large scatter was found in foraminiferal ooze and diatom-bearing

pelagic silt. The magnetic susceptibility of both foraminiferal ooze and

diatom-bearing pelagic silt decreased more at 20–25 ど than at 4 ど,

which implies that differences in sediment composition (organic

matter and total sulfur contents) and production of dissolved Fe2+

by reduction of ferric oxide might influence magnetic susceptibility

with time. For lightness, the alteration of L* was almost the same

after 19 days of storage as at the end of monitoring. It suggests

that the dominant shift of L* occurred shortly after sediment

collection and then remained approximately constant during 5

years of storage. There was a relatively large change in a* over the

first year of storage, when a* became negative. There was also a

relatively large shift in b* within the first week or month, after which

it remained approximately constant during 5 years of storage. The

dominant reason for the trend of a* and b* in PC-1 toward redder

and yellower values, respectively, with time may be oxidation of

iron and organic matter and another factor such as bioturbation. The

differences in TC, TN, and OC values between the initial and second

measurements were smaller under storage at 20–25 ど than under

storage at 4 ど, whereas a few years later, the preservation did not

differ between the two temperatures. It seems likely that the storage

temperatures in this study did not significantly affect degradation of

organic materials in the tested cores. However, some TC, TN, and

OC values changed from the initial value after just 18 days. These

differences among samples probably reflect the heterogeneity of

the sediment composition, because a discrete sediment sample was

obtained from the half-core for each measurement.

We propose that the optimum timing to measure physical

and chemical properties of sediment samples is as follows.

(1) Moisture ratio or water content, lightness, and color

reflectance should be measured immediately, while still onboard,

because alteration of these properties occurs within a week. If

onboard measurement is not possible, the sediment cores should be

stored at 4 ど until the measurement can be performed.

(2) The alteration rate of magnetic susceptibility varies

with the type of sediment, and it should be measured immediately

in foraminiferal ooze and diatom-bearing sediment. Magnetic

susceptibility of hemipelagic sediment and diatom-bearing clay is

stable during storage for at least 5 years at any temperature.

(3) TC, TN, and OC contents are stable for 6 years in

sediment cores stored at 4 ど, although their alteration rates are

slightly lower when stored at –20 ど. Argon does not enhance

preservation of carbon or nitrogen during this storage period.

Acknowledgments

We are grateful to the captains and crews of R/V Mirai

for their help with sediment collection and water sampling during

the MR00-ENG, MR01-ENG, and MR01-K03 cruises. This work

was supported by the Japan Agency for Marine-Earth Science and

Technology.

References

Balsam, W. L., B. C. Deaton, and J. E. Damuth (1998), The effects

of water content on diffuse reflectance spectrophotometry

studies of deep-sea sediment cores, Mar. Geol., 149, 177–

189.

Bull, D. C., and R. B. Williamson (2001), Prediction of principal

metal-binding solid phases in estuarine sediments from

color image analysis. Environ. Sci. Technol. 35, 1658–1662.

Chapman, M. R., and N. J. Shackleton (1998), What level of

resolution is attainable in a deep-sea core? Results of a

spectrometer study, Paleoceanography, 13, 311–315.

Deaton B. C., and W. L. Balsam (1993), Identifying production

zone with NUV/VIS/NIR spectra: examples from the

Caddo Limestone and Strawn Sand, Geol. Soc. Am., Abstr.

Programs, vol. 25, 8pp.

Debret, M., M. Desmet, W. Balsam, Y. Copard, P. Francus, and

C. Laj (2006), Spectrophotometer analysis of Holocene

sediments from an anoxic fjord: Saanich Inlet, British

Columbia, Canada, Mar. Geol., 229, 15–28.

Helmke, J. P., M. Schultz, and H. A. Bauch (2002), Sediment-

color record from the northeast Atlantic reveals patterns of

millennial-scale climate variability during the past 500,000

yrs, Quat. Res., 57, 49–57.

Ikehara, K. (1989), Some physical properties of shelf to basin

deposits off Sanʼin and Hokuriku district, southern part of

Japan Sea, Bull. Geol. Surv. Japan, 40(5), 239–250.

Lorna, T. R., R. Parker, G. Fones, and M. Solan (2009), Simultaneous

determination of in situ vertical transitions of color, pore-

water metals, and visualization of infaunal activity in

marine sediments. Limnol. Oceanogr., 54(5), 1801–1810,

doi:10.4319/lo.2009.54.5.1801.

Lyle, M. (1983) The brown-green color transition in marine

sediments: A marker of the Fe(III)-Fe(II) redox boundary.

Limnol. Oceanogr., 28, 1026–1033.

Nürnberg, D., and R., Tiedemann (2004), Environmental change

in the Sea of Okhotsk over the past 1.1 million years-

65

N. Harada et al.

JAMSTEC Rep. Res. Dev., Volume 15, September 2012, 47_76

atmospheric teleconnections to China, Paleoceanography,

19, PA4011, doi:10.1029/2004 PA001023.

Ono, A., K. Takahashi, K. Katsuki, Y. Okazaki, and T. Sakamoto

(2005), The Dansgaard-Oeschger cycles discovered in the

up stream source region of the North Pacific Intermediate

Water formation, Geophys. Res. Lett., 32, L11607,

doi:10.1029/2004GL02260.

Sarmient, J. L., and N. Gruber (2006), Chapter 5 Organic matter

export and remineralization, Sarmient, J. L., and N. Gruber

(Eds.), Ocean Biogeochemical Dynamics, Princeton

University Press, pp. 173–226.

Schneider, R. R., A. Cramp, J. E. Damuth, R. N. Hiscott, R. O.

Kowsmann, M. Lopez, F. Nanayama, W. R. Normark,

and Shipboard Scientific Party (1995), Color-reflectance

measurements obtained from leg 155 cores, Flood, R. D.,

D. J. W. Piper, A. Klaus et al., Eds., Proc. ODP, Init. Repts.,

vol. 155. Ocean Drilling Program, College Station, TX, pp.

1–65.

Yamazaki, T., A. L. Abdeldayem, and K. Ikehara (2003), Rock-

magnetic changes with reduction diagenesis in Japan

Sea sediments and preservation of geomagnetic secular

variation in inclination during the last 30,000 years, Earth

Planets and Space, 55(6), 327–340.

Yamazaki, T., and P. Solheid (2011), Maghemite-to-magnetite

reduction across the Fe-redox boundary in a sediment

core from the Ontong-Java Plateau: influence on relative

paleointensity estimation and environmental magnetic

application. Geophysical Journal International, 185(3),

1243–1254.

66

Changes in properties of archived sediment

JAMSTEC Rep. Res. Dev., Volume 15, September 2012, 47_76

Sample No.

Core depth (cmbsf)*

Initial value (%) 2nd (%) 3rd (%) 4th (%) 5th (%) 6th (%) 7th (%) 8th (%) 9th (%) 10th (%) 11th (%)

(0 day) 5 May,

2001

(38 days) 12 Jun, 2001

(66 days) 10 Jun, 2001

(102 days) 15 Aug,

2001

(153 days) 25 Oct, 2001

(209 days) 5 Dec, 2001

(546 days) 7 Nov, 2002

(1051 days) 27 Mar, 2004

(1291 days) 22 Nov,

2004

(1581 days) 8 Sep, 2005

(1987 days) 19 Oct, 2006

1 1.1 139 130 124 2 3.4 132 120 128 128 3 5.6 124 123 118 4 7.9 123 119 124 123 5 10.1 123 117 6 12.4 86 119 7 14.6 111 118 113 117 8 16.9 107 117 103 9 19.1 104 109 101 104 10 21.4 102 104 11 23.6 110 113 101 12 25.9 119 119 119 101 13 28.1 123 124 114 14 30.4 119 120 124 118 15 32.6 126 125 16 34.9 120 121 17 37.1 110 126 18 39.4 127 120 115 101 19 41.6 120 125 20 43.9 116 112 21 46.1 110 112 98 22 48.4 92 127 23 50.6 117 119 96 24 52.9 117 115 25 55.1 124 123 26 57.4 124 118 27 59.6 122 121 116 28 61.9 114 113 120 29 64.1 114 118 30 66.4 121 120 31 68.6 112 113 113

Temperature of storage

(ど)

Sample No.

Core depth

(cmbsf)

Initial value (%)

2nd(%)

3rd(%)

4th(%)

5th(%)

6th(%)

7th(%)

8th(%)

9th(%)

10th (%)

11th (%)

(0 day) 5 May, 2001

(38 days) 12 Jun, 2001

(66 days) 10 Jun, 2001

(102 days) 15 Aug,

2001

(153 days) 25 Oct, 2001

(209 days) 5 Dec, 2001

(546 days) 7 Nov, 2002

(1051 days) 27 Mar,

2004

(1291 days) 22 Nov,

2004

(1581 days) 8 Sep, 2005

(1987 days) 19 Oct, 2006

4

1 1.1 154 146 119 131 2 3.4 126 134 3 5.6 124 127 114 129 4 7.9 122 118 122 5 10.1 118 119 121 125 6 12.4 119 125 7 14.6 119 8 16.9 117 111 108 111 9 19.1 118

10 21.4 113 115 11 23.6 110 107 113 12 25.9 113 97 13 28.1 110

20~25

1 1.3 154 145 138 112 2 3.5 137 124 3 5.8 123 125 124 111 4 8.0 121 108 94 5 10.3 120 122 104 6 12.5 116 119 115 7 14.8 115 8 17.0 119 118 101 99 9 19.3 123 118

10 21.5 116 11 23.8 120 113 99.1 12 26.0 124 80 13 28.3 89.5

Appendix 1-1 Changes in moisture ratio (%) of MR01-ENG PC-1 sediment stored at 4ど.

Appendix 1-2 Comparison of moisture ratios (%) in MR01-ENG MC-1 sediment stored at 4ど and RT (20–25ど).

*Core depth in cm bellow sea floor (cmbsf): the cmbsf of center of plastic cube (2.25cm) utilized for sub-sampling.

67

N. Harada et al.

JAMSTEC Rep. Res. Dev., Volume 15, September 2012, 47_76

Sample ID No. Core depth (cmbsf)

Initial value (× 10-5 SI)

2nd (× 10-5 SI)

3rd (×10-5 SI)

4th (×10-5 SI)

5th (×10-5 SI)

6th (×10-5 SI)

7th (×10-5 SI)

8th (×10-5 SI)

(0 day) 18 Sep, 2001

(81 days) 7 Dec, 2001

(153 days) 18 Feb, 2002

(415 days) 6 Nov, 2002

(921 days) 26 Mar,

2004

(1151 days) 11 Nov,

2004

(1451 days) 7 Sep, 2005

(1855 days) 16 Oct, 2006

MR01-ENG PC-1 sec.20

1 1901 162 159 155 160 158 158 158 159

2 1903 206 200 198 203 204 199 200 198

3 1906 200 194 196 196 195 194 197 194

4 1908 200 198 195 198 197 196 198 195

5 1910 175 171 171 172 170 172 173 171

MR01-K03 MC-1

1 1.1 27.2 25.3 22.6 25.2 24.8 25.2 25.1 25.6

2 3.4 21.4 18.2 16.0 16.8 16.8 17.9 18.0 16.8

3 5.6 12.7 13.1 16.0 16.1 14.7 15.3 15.6 13.9

4 7.9 11.9 13.9 14.6 13.8 15.0 14.6 14.6 14.2

5 10.1 15.2 13.1 13.9 13.3 12.4 13.9 13.1 13.1

MR01-K03 MC-2

1 1.1 77.3 77.9 77.9 79.8 78.4 79.8 80.9 79.8

2 3.4 78.7 78.7 77.3 79.5 79.5 79.8 80.2 78.7

3 2.1 85.2 77.9 79.4 80.6 81.2 79.5 80.7 79.8

4 4.4 84.4 80.2 79.5 80.2 80.9 80.2 80.9 80.9

MR01-K03 MC-3

1 1.1 69.0 69.2 66.4 69.0 68.5 68.5 69.6 68.2

2 3.4 79.8 78.0 75.8 78.7 79.5 79.9 79.8 79.1

3 5.6 116 114 113 115 116 115 116 116

4 7.9 162 152 154 155 155 155 157 154

5 10.1 112 112 112 114 115 115 113 113

MR01-K03 MC-5

1 1.1 55.4 29.9 26.9 31.7 31.4 30.7 30.6 31.4

2 3.4 39.4 33.5 35.0 35.1 33.5 33.2 34.3 33.9

3 5.6 30.6 39.4 36.4 38.7 38.3 37.6 38.7 38.3

4 7.9 31.1 41.5 40.8 40.4 42.3 40.8 41.2 40.4

5 10.1 63.9 55.4 53.8 56.9 54.7 55.1 56.2 56.1

MR01-K03 PC-3 sec.20

1 1800 78.4 81.6 83.7 83.4 82.8 82.0 81.6 82.4

2 1802 80.9 83.1 84.5 83.8 82.9 84.5 83.1 84.2

3 1804 129 130 127 131 126 130 132 129

4 1806 92.4 88.9 90.4 91.3 91.9 90.0 90.4 90.8

5 1809 93.7 89.6 85.2 91.0 91.1 90.0 90.4 87.8

Appendix 2-1 Changes in magnetic susceptibility (× 10-5 SI) of sediment cores stored at 4ど.

68

Changes in properties of archived sediment

JAMSTEC Rep. Res. Dev., Volume 15, September 2012, 47_76

Sample ID No. Core depth (cmbsf)

Initial value (× 10-5 SI)

2nd (× 10-5 SI)

3rd (×10-5 SI)

4th (×10-5 SI)

5th (×10-5 SI)

6th (×10-5 SI)

7th (×10-5 SI)

8th (×10-5 SI)

(0 day)18 Sep, 2001

(81 days)7 Dec, 2001

(153 days) 18 Feb, 2002

(415 days) 6 Nov, 2002

(921 days) 26 Mar,

2004

(1151 days) 11 Nov,

2004

(1451 days) 7 Sep, 2005

(1855 days) 16 Oct, 2006

MR01-ENG PC-1 sec.20

1 1901 174.9 171.4 172.8 172.0 174.7 168.1 168.7 168.5

2 1903 170.6 166.7 163.7 166.5 168.8 164.7 163.8 164.3

3 1906 176.4 175.2 169.1 172.3 175.2 168.8 169.4 168.0

4 1908 179.8 172.0 169.8 174.0 174.2 171.6 170.6 170.6

5 1910 169.1 163.3 164.7 165.5 166.9 162.1 162.9 162.6

MR01-K03 MC-1

1 1.1 6.1 10.2 8.7 11.0 11.0 10.5 11.0 10.8

2 3.4 12.2 9.5 11.7 12.0 12.0 11.6 11.4 11.7

3 5.6 15.0 12.3 10.2 12.4 12.6 12.5 12.4 12.4

4 7.9 13.1 10.2 9.5 11.7 12.3 10.2 11.3 11.6

5 10.1 11.7 10.2 10.2 11.7 10.2 10.2 11.0 11.0

MR01-K03 MC-2

1 1.1 87.2 84.5 80.2 84.9 86.7 84.5 85.6 84.5

2 3.4 82.9 83.1 81.4 82.8 83.8 83.1 83.1 83.5

3 2.1 110.2 108.6 110.8 110.0 110.4 110.8 110.8 109.0

4 4.4 48.2 52.9 53.9 51.6 53.9 51.0 52.8 51.4

MR01-K03 MC-3

1 1.1 100.3 99.1 98.4 101.2 101.6 99.1 100.4 100.2

2 3.4 94.3 90.4 89.7 92.6 92.6 90.8 90.7 91.1

3 5.6 66.8 64.9 65.1 66.3 65.9 64.5 64.1 66.0

4 7.9 71.9 70.7 69.2 70.0 72.6 70.3 71.1 70.7

5 10.1 90.4 88.2 89.7 89.9 90.2 88.4 88.6 88.6

MR01-K03 MC-5

1 1.1 46.2 48.7 45.2 47.4 45.6 46.6 47.1 47.4

2 3.4 44.6 45.9 45.2 44.6 45.1 43.7 44.1 44.5

3 5.6 42.4 36.4 35.7 36.8 35.7 35.0 35.7 35.4

4 7.9 39.4 32.1 31.5 32.4 31.7 31.7 31.4 31.4

5 10.1 23.9 39.8 42.3 40.9 40.8 39.1 39.0 38.7

MR01-K03 PC-3 sec.20

1 1800 97.2 99.1 97.9 98.8 102.8 95.5 98.1 97.7

2 1802 91.2 85.4 84.0 85.3 88.5 84.6 84.5 84.5

3 1804 128.3 131.2 127.5 131.6 137.1 130.8 131.2 129.4

4 1806 131.6 126.8 123.9 127.9 129.3 126.4 128.0 125.7

5 1809 96.8 97.7 99.1 99.1 101.6 97.4 98.4 96.5

Appendix 2-2 Changes in magnetic susceptibility (× 10-5 SI) of sediment cores stored at RT.

69

N. Harada et al.

JAMSTEC Rep. Res. Dev., Volume 15, September 2012, 47_76

App

endi

x 3-

1 C

hang

es in

ligh

tnes

s an

d co

lor

refle

ctan

ce o

f se

dim

ent c

ore

MR

01-E

NG

MC

-1 s

tore

d at

4ど

.

App

endi

x 3-

2 C

hang

es in

ligh

tnes

s an

d co

lor

refle

ctan

ce o

f se

dim

ent c

ore

MR

01-E

NG

PC

-1 s

tore

d at

4ど

.

Sam

ple

IDSa

mpl

e N

o.

Cor

e de

pth

(cm

bsf)

Initi

al v

alue

(0

day)

(

8 M

ay, 2

001)

2nd

(19

days

)(3

1 M

ay, 2

001)

3rd

(114

day

s)(3

Sep

, 200

1)4t

h (1

30 d

ays)

(19

Sep

, 200

1)5t

h (5

28 d

ays)

(7

Nov

, 200

2)6t

h (1

035

days

) (

28 M

ar, 2

004)

7th

(126

5 da

ys)

(13

Nov

, 200

4)8t

h (1

559

days

) (3

Sep

, 200

5)9t

h (1

969

days

)(1

8 O

ct, 2

006)

L*

a*b*

L*

a*b*

L*

a*b*

L*

a*b*

L*

a*b*

L*

a*b*

L*

a*b*

L*

a*b*

L*

a*b*

MR

01-E

NG

11

39.3

3.19

8.85

39.6

3.37

9.82

36.9

3.62

10.7

37.3

3.38

10.2

40.6

2.97

7.91

39.9

3.10

8.53

44.7

2.25

5.77

39.4

2.85

7.90

38.4

3.05

8.13

MC

-1

23

38.0

3.41

9.76

37.7

3.31

9.56

38.6

3.51

10.0

38.2

3.84

11.0

40.0

2.83

7.73

40.8

2.94

7.70

40.2

2.88

7.88

40.3

3.01

8.23

40.2

3.37

9.02

Han

d 3A

35

38.2

3.70

10.1

38.5

3.69

10.6

38.5

4.18

11.8

38.3

3.86

10.8

40.6

3.41

8.86

41.6

3.47

8.53

40.4

3.16

8.28

40.1

3.64

9.12

38.8

3.65

9.72

47

37.4

5.15

12.6

39.2

3.72

9.43

37.8

4.96

12.8

38.7

4.60

11.8

42.9

3.90

8.83

41.4

3.55

8.30

41.0

3.54

8.52

40.8

3.44

8.42

39.7

3.88

9.47

59

36.2

4.76

12.4

38.6

3.97

10.9

37.0

4.34

11.9

38.6

4.52

11.9

41.0

3.92

9.75

40.7

3.39

8.39

41.0

3.48

8.49

39.9

3.34

8.80

39.8

3.70

9.79

611

38.1

4.79

11.4

38.7

5.03

13.1

38.6

5.02

13.0

40.1

4.82

11.9

41.9

3.97

10.7

41.9

4.14

9.42

41.9

3.99

9.31

41.8

4.19

9.45

40.9

4.44

10.6

713

35.8

4.57

11.9

39.1

4.98

12.4

38.6

4.05

12.1

38.7

4.82

12.0

40.7

4.29

9.40

41.2

3.82

8.93

41.2

4.11

9.30

41.1

3.73

7.94

40.0

4.49

10.7

815

37.1

5.48

12.1

36.9

4.90

12.0

35.5

4.73

11.3

38.4

4.80

12.0

40.3

4.10

9.17

40.3

4.39

9.01

40.2

3.61

8.30

40.4

4.08

8.94

38.4

4.52

10.2

917

38.3

4.88

11.0

38.9

5.16

12.2

38.0

4.88

12.0

39.2

5.30

12.4

41.1

4.75

10.1

40.4

4.52

9.64

40.1

4.49

9.52

40.4

4.56

9.52

39.3

4.90

11.0

1019

36.2

4.88

10.5

37.7

5.71

12.9

39.6

4.71

13.3

39.1

5.18

12.5

40.5

4.52

9.38

41.2

4.36

8.85

40.2

4.82

10.1

40.0

4.17

8.86

40.1

4.98

10.5

1121

38.5

5.53

12.2

38.9

5.05

11.4

38.5

5.38

12.2

39.5

5.11

11.3

41.0

4.72

9.55

41.3

4.47

9.05

40.1

4.44

9.39

40.6

4.65

9.77

40.1

4.84

10.3

1223

33.5

4.04

8.26

38.5

5.58

12.2

39.0

4.83

13.1

37.0

4.54

9.53

37.6

4.47

9.28

39.0

4.00

7.42

40.0

4.81

9.54

38.1

4.26

8.29

38.7

4.74

9.11

1325

35.8

4.65

8.72

37.4

5.26

11.1

36.8

5.10

10.6

37.4

5.03

9.61

38.1

4.13

7.42

38.4

4.12

7.40

38.2

3.99

7.47

38.4

4.54

8.53

37.3

4.73

8.56

1427

34.1

3.15

6.13

35.3

5.05

10.3

34.9

4.21

9.63

35.7

4.44

8.31

38.8

2.60

4.94

36.1

2.92

5.69

41.4

2.92

5.06

35.1

3.23

6.35

36.5

3.58

6.41

Sam

ple

IDSa

mpl

e N

o.

Cor

e de

pth

(cm

bsf)

Initi

al v

alue

(0

day)

(8 M

ay, 2

001)

2nd

(19

days

)

(31

May

, 200

1)3r

d (1

14 d

ays)

(3

Sep

, 200

1)4t

h (1

30 d

ays)

(1

9 Se

p, 2

001)

5th

(528

day

s)

(7 N

ov, 2

002)

6th

(103

5 da

ys)

(28

Mar

, 200

4)7t

h (1

265

days

)

(1

3 N

ov, 2

004)

8th

(155

9 da

ys)

(3

Sep

, 200

5)9t

h (1

969

days

)

(1

8 O

ct, 2

006)

L*

a*b*

L*

a*b*

L*

a*b*

L*

a*b*

L*

a*b*

L*

a*b*

L*

a*b*

L*

a*b*

L*

a*b*

PC-0

1A se

c.11

142

.33.

669.

0238

.74.

0611

.039

.53.

9010

.741

.82.

837.

5341

.73.

148.

5740

.83.

689.

8539

.63.

449.

0741

.13.

499.

3339

.33.

8210

.2

PC-0

1A se

c.12

341

.34.

4710

.341

.14.

3110

.339

.24.

7311

.939

.54.

4511

.140

.94.

1710

.242

.14.

029.

6042

.34.

069.

4140

.04.

2310

.740

.24.

4610

.8

PC-0

1A se

c.13

539

.94.

3910

.539

.74.

7212

.239

.24.

8712

.239

.14.

7411

.741

.44.

3710

.242

.33.

859.

0640

.84.

309.

9339

.84.

4510

.740

.74.

3810

.1

PC-0

1A se

c.14

742

.44.

2710

.839

.24.

8912

.038

.25.

0912

.436

.95.

4013

.142

.14.

399.

4442

.44.

179.

3943

.43.

858.

3240

.04.

8111

.039

.34.

7811

.2

PC-0

1A se

c.15

938

.84.

8110

.838

.75.

0711

.838

.55.

2412

.436

.05.

0511

.939

.14.

629.

6440

.94.

609.

7640

.44.

569.

7539

.84.

7410

.439

.74.

7710

.1

PC-0

1A se

c.16

1138

.04.

9910

.437

.55.

1011

.936

.85.

0411

.434

.85.

3812

.337

.54.

428.

7639

.04.

348.

5739

.04.

158.

2938

.24.

449.

2938

.44.

8310

.1

PC-0

1A se

c.17

1335

.14.

227.

9936

.14.

9210

.435

.95.

0910

.931

.05.

0410

.536

.24.

157.

3838

.74.

408.

1637

.23.

827.

2937

.44.

548.

6336

.63.

987.

14

PC-0

1A se

c.18

1532

.73.

496.

2532

.23.

867.

3029

.84.

047.

6329

.84.

027.

8736

.24.

147.

3736

.33.

686.

5437

.74.

207.

5032

.43.

486.

2433

.33.

105.

10

PC-0

1A se

c.19

1738

.15.

0510

.935

.05.

8012

.435

.95.

6912

.235

.55.

5810

.938

.24.

849.

2338

.24.

678.

2737

.34.

187.

1636

.55.

3810

.437

.44.

688.

42

PC-0

1A se

c.110

1934

.04.

247.

2833

.33.

807.

9232

.04.

379.

4030

.14.

598.

7235

.83.

306.

8836

.63.

366.

4436

.33.

095.

9535

.83.

617.

2334

.63.

746.

98

PC-0

1A se

c.111

2139

.72.

348.

9138

.42.

979.

6737

.23.

3711

.336

.33.

6510

.139

.92.

998.

5039

.53.

067.

8638

.23.

146.

8738

.73.

258.

3039

.33.

108.

70

PC-0

1A se

c.112

2337

.72.

348.

4835

.93.

0010

.536

.92.

6610

.137

.82.

749.

2439

.42.

267.

2340

.21.

977.

0540

.62.

157.

2939

.52.

047.

5538

.62.

788.

62

PC-0

1A se

c.113

2539

.42.

9310

.138

.52.

3410

.338

.92.

7410

.839

.62.

889.

3841

.72.

528.

6741

.92.

458.

4341

.52.

808.

3141

.52.

629.

1940

.52.

899.

53

PC-0

1A se

c.114

2738

.22.

228.

8038

.33.

1511

.838

.32.

9711

.239

.02.

879.

8541

.22.

809.

0941

.02.

968.

4540

.72.

767.

7640

.82.

939.

5539

.03.

028.

48

PC-0

1A se

c.115

2941

.53.

2610

.934

.13.

5111

.439

.13.

8113

.138

.42.

5910

.442

.93.

1910

.342

.93.

179.

3042

.52.

548.

6241

.43.

3910

.341

.82.

579.

02

PC-0

1A se

c.116

3139

.33.

2710

.437

.73.

3912

.537

.93.

5012

.138

.93.

2010

.741

.53.

039.

2641

.93.

069.

0741

.92.

538.

0741

.53.

209.

7040

.93.

028.

94

PC-0

1A se

c.117

3339

.92.

599.

6034

.23.

3411

.037

.13.

7411

.837

.23.

199.

5741

.33.

249.

2340

.93.

138.

5843

.33.

309.

8440

.63.

379.

4242

.33.

419.

89

PC-0

1A se

c.118

3536

.62.

687.

7838

.33.

2511

.735

.43.

4110

.936

.13.

119.

8940

.02.

958.

4940

.32.

938.

1239

.02.

657.

0139

.82.

988.

6638

.32.

937.

72

PC-0

1A se

c.119

3741

.73.

1011

.338

.83.

5012

.239

.93.

5112

.340

.82.

6910

.542

.73.

1210

.043

.52.

819.

5343

.22.

228.

6142

.53.

3010

.343

.42.

8710

.5

70

Changes in properties of archived sediment

JAMSTEC Rep. Res. Dev., Volume 15, September 2012, 47_76

Sam

ple

IDSa

mpl

e N

o.

Cor

e de

pth

(cm

bsf)

Initi

al v

alue

(0

day)

(8 M

ay, 2

001)

2nd

(19

days

)

(31

May

, 200

1)3r

d (1

14 d

ays)

(3

Sep

, 200

1)4t

h (1

30 d

ays)

(1

9 Se

p, 2

001)

5th

(528

day

s)

(7 N

ov, 2

002)

6th

(103

5 da

ys)

(28

Mar

, 200

4)7t

h (1

265

days

)

(1

3 N

ov, 2

004)

8th

(155

9 da

ys)

(3

Sep

, 200

5)9t

h (1

969

days

)

(1

8 O

ct, 2

006)

L*

a*b*

L*

a*b*

L*

a*b*

L*

a*b*

L*

a*b*

L*

a*b*

L*

a*b*

L*

a*b*

L*

a*b*

PC-0

1A se

c.120

3938

.82.

7110

.038

.33.

1711

.436

.93.

5211

.438

.53.

3310

.440

.63.

008.

4240

.43.

148.

4940

.93.

038.

0339

.83.

359.

4440

.03.

289.

50PC

-01A

sec.1

2141

36.2

2.95

8.81

35.4

3.14

10.2

35.1

3.41

10.6

35.3

2.88

8.38

39.0

2.74

7.59

39.4

2.78

7.52

40.3

2.96

8.21

38.6

2.96

8.34

37.2

2.84

7.47

PC-0

1A se

c.122

4339

.42.

979.

8141

.42.

9111

.537

.23.

3111

.339

.73.

1210

.641

.11.

758.

2741

.32.

648.

1942

.72.

328.

2340

.62.

839.

1040

.62.

918.

79

PC-0

1A se

c.123

4544

.12.

0411

.142

.62.

6712

.043

.02.

6911

.843

.72.

6010

.645

.32.

7110

.245

.82.

509.

5345

.22.

619.

3145

.52.

5810

.244

.22.

9410

.6

PC-0

1A se

c.124

4745

.32.

8011

.244

.52.

9212

.744

.42.

9512

.744

.02.

6511

.146

.92.

5910

.446

.72.

6010

.046

.12.

439.

7346

.12.

7310

.946

.32.

6510

.3

PC-0

1A se

c.125

4942

.12.

4611

.043

.42.

5111

.742

.62.

6111

.943

.42.

4310

.646

.12.

329.

7246

.12.

208.

9847

.42.

409.

8245

.12.

289.

9745

.12.

329.

72

PC-0

1A se

c.126

5145

.51.

8410

.443

.32.

5612

.243

.12.

6812

.442

.32.

1310

.645

.72.

249.

7946

.12.

5410

.046

.82.

6010

.245

.92.

7911

.245

.72.

5810

.4

PC-0

1A se

c.127

5343

.91.

879.

7242

.51.

8210

.842

.31.

8710

.843

.61.

9910

.445

.11.

638.

8344

.81.

698.

5644

.91.

708.

1944

.31.

769.

1644

.71.

799.

04

PC-0

1A se

c.128

5545

.01.

989.

9044

.92.

1811

.043

.92.

2111

.344

.02.

1210

.346

.91.

919.

0846

.31.

939.

0046

.01.

888.

6546

.02.

059.

7345

.91.

969.

12

PC-0

1A se

c.129

5744

.60.

330

7.21

44.2

1.02

7.37

43.3

1.33

8.38

42.6

1.40

8.19

46.0

1.43

7.19

46.1

1.69

7.94

46.1

1.77

8.53

45.7

1.86

8.47

45.5

1.79

8.22

PC-0

1A se

c.130

5944

.50.

650

6.18

43.2

0.88

07.

1442

.51.

137.

5542

.11.

177.

4445

.91.

437.

1945

.31.

597.

2546

.11.

597.

4945

.11.

637.

9345

.21.

707.

87

PC-0

1A se

c.131

6145

.10.

640

6.86

42.1

1.11

8.37

43.0

1.29

8.38

39.9

1.43

8.59

45.9

1.73

7.92

46.1

1.79

7.89

46.4

1.70

7.79

45.5

2.03

9.19

45.3

2.05

8.73

PC-0

1A se

c.132

6343

.9-0

.050

5.45

42.1

0.98

07.

6042

.21.

097.

2539

.71.

117.

3644

.71.

427.

1944

.71.

537.

2245

.31.

747.

9344

.31.

808.

5643

.41.

617.

91

PC-0

1A se

c.133

6542

.30.

380

5.27

41.4

0.93

06.

9439

.81.

278.

2136

.81.

338.

67-

--

44.6

1.29

6.61

44.1

1.30

6.53

42.8

1.35

7.10

44.0

1.48

7.09

PC-0

1A se

c.234

6737

.10.

310

4.79

41.3

0.88

06.

0839

.01.

217.

2436

.21.

036.

2144

.21.

236.

5745

.91.

084.

8343

.21.

145.

2941

.91.

487.

1041

.21.

235.

65

PC-0

1A se

c.235

6940

.7-0

.290

4.84

39.2

0.75

05.

3239

.31.

347.

8539

.71.

398.

1542

.71.

215.

8343

.71.

386.

3343

.71.

556.

7942

.41.

487.

0343

.61.

637.

08

PC-0

1A se

c.236

7143

.90.

360

5.70

40.8

0.80

06.

1240

.71.

097.

1842

.51.

127.

6343

.81.

276.

2844

.61.

466.

8345

.71.

457.

0843

.91.

617.

8144

.31.

527.

11

PC-0

1A se

c.237

7344

.10.

340

4.87

42.7

0.69

06.

3441

.91.

037.

2043

.81.

247.

9344

.01.

387.

0645

.51.

366.

8545

.51.

346.

4844

.41.

497.

4045

.41.

416.

78

PC-0

1A se

c.238

7539

.8-0

.050

5.73

45.1

1.06

7.21

42.8

1.38

8.59

42.4

1.30

7.95

45.4

0.30

06.

8346

.71.

898.

2446

.21.

827.

9445

.82.

089.

2946

.71.

908.

11

PC-0

1A se

c.239

7742

.20.

150

5.22

43.1

1.12

6.81

42.5

1.06

7.51

40.8

1.15

8.07

46.4

1.65

8.06

46.5

1.75

7.91

45.5

1.63

7.35

44.7

1.67

7.95

45.3

1.70

7.71

PC-0

1A se

c.240

7942

.8-0

.260

5.09

42.5

0.78

07.

0341

.10.

860

7.26

42.6

0.92

07.

1444

.71.

326.

9744

.91.

316.

7645

.11.

186.

5944

.71.

447.

3444

.51.

367.

06

PC-0

1A se

c.241

8142

.90.

320

4.99

42.7

0.84

06.

8242

.31.

067.

3242

.91.

007.

0044

.40.

560

6.21

45.5

1.26

6.90

46.6

1.30

6.78

45.2

1.54

7.96

45.6

1.52

7.35

PC-0

1A se

c.242

8342

.60.

220

4.83

42.7

0.88

06.

5142

.40.

930

6.90

42.3

0.93

06.

7945

.01.

106.

4244

.61.

176.

2845

.01.

196.

2443

.31.

427.

1143

.71.

516.

68

PC-0

1A se

c.243

8542

.2-0

.260

4.99

42.3

0.79

05.

9842

.40.

940

6.82

42.8

1.07

7.35

44.7

0.18

05.

8445

.21.

326.

5244

.81.

226.

3844

.51.

417.

2945

.01.

446.

95

PC-0

1A se

c.244

8744

.50.

360

5.92

43.5

1.06

6.95

43.7

1.28

7.99

43.2

1.39

8.56

44.8

1.13

6.32

46.9

1.69

7.86

47.0

1.71

7.80

46.7

1.77

8.14

46.3

1.89

8.46

PC-0

1A se

c.245

8942

.0-0

.340

4.75

43.7

0.91

5.74

42.4

1.30

7.79

40.2

1.02

7.02

46.9

0.96

07.

7744

.91.

476.

9445

.61.

526.

7744

.31.

547.

3444

.51.

557.

14

PC-0

1A se

c.246

9143

.00.

300

5.03

43.3

0.82

05.

7242

.41.

077.

2142

.31.

278.

1943

.50.

230

5.73

44.5

1.41

7.07

44.8

1.33

6.84

44.7

1.45

7.32

45.1

1.42

6.95

PC-0

1A se

c.247

9342

.50.

380

5.39

42.9

0.85

05.

9142

.61.

087.

1142

.51.

307.

7745

.41.

387.

2546

.21.

416.

5345

.71.

366.

5945

.21.

567.

4544

.81.

536.

99

PC-0

1A se

c.248

9541

.8-0

.120

4.97

42.8

0.86

05.

6441

.51.

077.

4440

.81.

187.

5245

.61.

356.

8143

.51.

256.

1043

.61.

225.

9843

.01.

396.

7343

.91.

366.

55

PC-0

1A se

c.249

9738

.60.

640

3.52

40.4

1.09

7.10

40.2

1.08

6.26

36.4

1.17

6.38

46.7

1.21

5.58

40.2

1.03

3.91

38.9

1.07

4.85

37.5

1.11

3.62

40.2

1.20

5.22

PC-0

1A se

c.250

9936

.90.

400

1.64

34.0

0.98

03.

5832

.80.

990

3.44

37.1

0.46

01.

1641

.00.

880

3.38

35.6

0.95

02.

3333

.40.

970

2.47

33.1

0.93

02.

2033

.60.

990

2.67

PC-0

1A se

c.251

101

43.2

-0.0

205.

2243

.31.

528.

5943

.31.

889.

2640

.31.

608.

0933

.90.

970

2.55

41.8

1.43

5.85

44.1

1.91

7.92

40.9

1.70

6.76

44.6

2.06

8.19

PC-0

1A se

c.252

103

41.5

0.33

04.

8842

.00.

880

6.37

41.3

1.09

6.92

41.7

1.15

7.21

43.8

1.82

8.09

43.6

1.16

5.78

44.3

1.12

5.59

43.2

1.20

6.06

43.6

1.22

5.84

PC-0

1A se

c.253

105

44.6

0.46

05.

7940

.71.

026.

1643

.21.

308.

2744

.21.

659.

0943

.21.

115.

9546

.51.

697.

7045

.11.

406.

3345

.51.

788.

4045

.21.

567.

12

PC-0

1A se

c.254

107

45.2

0.41

05.

8944

.31.

157.

1844

.41.

578.

8642

.91.

458.

7145

.30.

880

6.93

47.1

1.87

8.34

47.4

1.83

8.09

46.9

1.97

8.80

47.3

1.86

8.03

PC-0

1A se

c.255

109

44.6

-0.0

506.

1844

.31.

045.

8343

.01.

549.

1241

.91.

378.

1546

.61.

698.

1346

.21.

697.

7846

.51.

667.

5745

.91.

828.

3846

.51.

948.

36

PC-0

1A se

c.256

111

44.9

0.55

06.

3343

.91.

156.

9044

.71.

508.

9043

.81.

538.

9745

.71.

547.

5846

.61.

727.

7845

.61.

617.

3246

.21.

858.

3647

.01.

858.

13

PC-0

1A se

c.257

113

43.3

0.44

05.

8143

.51.

177.

2344

.01.

509.

0641

.21.

128.

1546

.41.

678.

0846

.21.

748.

1545

.51.

567.

4646

.01.

979.

0146

.21.

838.

15

PC-0

1A se

c.258

115

44.4

0.03

05.

9342

.00.

770

5.45

43.2

1.56

9.12

43.8

2.03

10.9

46.1

1.69

8.33

46.3

1.97

8.77

45.7

1.58

7.45

45.9

2.19

9.68

45.7

1.81

8.16

PC-0

1A se

c.259

117

42.5

0.75

06.

6243

.71.

669.

2742

.82.

2411

.141

.72.

0410

.846

.51.

908.

6445

.82.

219.

0846

.62.

259.

0445

.62.

289.

4546

.32.

459.

67

PC-0

1A se

c.260

119

40.8

1.19

8.89

40.5

1.94

9.92

41.0

1.97

10.1

37.9

3.03

11.2

45.6

2.10

8.98

42.9

2.28

8.26

44.4

2.41

8.72

43.2

2.70

9.85

44.3

2.45

9.10

PC-0

1A se

c.261

121

43.4

-0.4

005.

4038

.92.

669.

0641

.31.

719.

1240

.91.

167.

1643

.02.

127.

9743

.21.

977.

8444

.02.

128.

0644

.12.

199.

1344

.42.

358.

91

App

endi

x 3-

2 (C

ontin

ued)

* -: N

o da

ta

71

N. Harada et al.

JAMSTEC Rep. Res. Dev., Volume 15, September 2012, 47_76

Sam

ple

IDSa

mpl

e N

o.

Cor

e de

pth

(cm

bsf)

Initi

al v

alue

(0

day)

(8 M

ay, 2

001)

2nd

(19

days

)

(31

May

, 200

1)3r

d (1

14 d

ays)

(3

Sep

, 200

1)4t

h (1

30 d

ays)

(1

9 Se

p, 2

001)

5th

(528

day

s)

(7 N

ov, 2

002)

6th

(103

5 da

ys)

(28

Mar

, 200

4)7t

h (1

265

days

)

(1

3 N

ov, 2

004)

8th

(155

9 da

ys)

(3

Sep

, 200

5)9t

h (1

969

days

)

(1

8 O

ct, 2

006)

L*

a*b*

L*

a*b*

L*

a*b*

L*

a*b*

L*

a*b*

L*

a*b*

L*

a*b*

L*

a*b*

L*

a*b*

PC-0

1A se

c.262

123

45.0

-0.3

205.

0542

.90.

870

6.79

42.8

1.14

7.56

43.4

1.21

8.27

44.6

1.89

8.15

45.3

1.50

6.91

45.4

1.49

6.77

45.8

1.77

8.27

44.7

1.57

7.15

PC-0

1A se

c.263

125

46.5

0.69

06.

9744

.20.

960

7.73

45.1

1.29

8.90

45.2

1.49

9.71

45.7

0.87

06.

8647

.01.

788.

4547

.41.

718.

1946

.61.

858.

8747

.01.

878.

69

PC-0

1A se

c.264

127

45.4

0.86

07.

4342

.70.

840

7.26

43.1

1.30

8.43

44.7

1.78

9.93

47.5

1.77

8.70

46.9

1.90

8.55

44.0

1.35

6.75

47.0

2.10

9.61

43.8

1.49

7.12

PC-0

1A se

c.265

129

46.2

0.32

07.

1744

.61.

318.

7544

.31.

649.

3740

.21.

037.

5247

.21.

748.

2847

.81.

988.

7947

.61.

787.

9847

.21.

948.

8047

.22.

008.

49

PC-0

1A se

c.266

131

44.6

0.82

06.

9940

.10.

940

7.42

42.5

1.57

9.53

45.7

2.73

13.1

47.7

1.76

8.25

46.9

1.96

8.82

44.2

1.42

7.26

48.0

2.27

10.0

44.1

1.55

7.67

PC-0

1A se

c.267

133

47.9

2.47

11.2

49.2

2.58

11.2

48.3

2.92

11.8

45.1

2.82

12.3

48.5

2.04

9.29

49.4

3.20

11.9

49.1

3.14

11.6

49.4

3.35

12.4

49.1

3.28

11.7

PC-0

1A se

c.268

135

49.2

2.80

12.7

46.6

2.47

10.4

46.9

3.59

13.6

42.5

2.75

12.1

48.7

2.92

11.6

48.4

3.65

12.2

49.0

3.54

11.8

46.3

3.42

12.0

48.3

3.52

12.1

PC-0

1A se

c.269

137

46.6

2.77

11.0

44.7

3.16

11.8

44.9

3.34

12.9

38.1

2.53

10.4

47.2

3.09

11.1

46.4

2.75

10.2

47.6

3.11

10.7

46.5

3.12

11.2

46.3

3.80

12.3

PC-0

1A se

c.270

139

48.7

2.06

10.2

42.0

2.42

9.26

47.3

3.26

12.3

46.5

2.75

12.3

46.4

2.79

10.6

47.9

3.00

10.8

43.9

2.62

9.01

47.4

3.27

11.4

46.7

3.21

11.0

PC-0

1A se

c.271

141

55.9

2.07

9.73

56.7

2.24

9.15

56.1

2.79

12.3

56.4

2.70

12.0

45.1

2.04

8.67

57.8

2.86

11.3

56.2

2.83

11.0

57.3

2.92

11.8

57.5

2.95

11.4

PC-0

1A se

c.272

143

49.3

1.36

9.63

54.3

1.99

8.92

54.7

2.27

10.1

49.9

2.34

9.56

56.3

2.52

10.3

58.7

2.26

8.09

55.1

3.21

12.4

55.5

3.10

12.4

54.1

3.35

13.1

PC-0

1A se

c.273

145

40.3

0.77

04.

9452

.01.

669.

5149

.91.

6810

.137

.51.

276.

9756

.32.

058.

9349

.51.

638.

6743

.41.

285.

8947

.41.

638.

1844

.21.

366.

20

PC-0

1A se

c.274

147

40.0

1.51

5.12

38.6

1.42

6.81

36.2

1.93

7.57

36.7

2.05

6.89

41.3

1.18

5.02

42.0

1.53

5.93

40.8

1.72

5.75

39.6

2.12

6.58

42.1

1.82

6.00

PC-0

1A se

c.275

149

37.9

2.04

6.83

37.1

2.09

7.16

34.7

2.70

9.41

36.4

2.49

8.30

40.0

1.95

5.52

40.7

2.18

6.00

40.7

2.25

6.26

39.5

2.52

7.20

38.3

2.25

6.15

PC-0

1A se

c.276

151

37.9

1.68

7.05

36.0

2.54

8.74

34.3

2.98

9.72

33.2

3.04

9.90

39.8

2.22

6.09

39.2

2.68

6.87

39.2

2.56

6.90

38.1

2.79

7.50

39.1

2.67

7.12

PC-0

1A se

c.277

153

37.0

2.28

7.24

35.8

2.38

8.51

34.0

2.73

8.78

32.0

2.77

8.68

39.0

2.42

6.92

38.0

2.51

6.43

39.7

2.40

6.77

36.6

2.77

7.08

39.5

2.17

6.53

PC-0

1A se

c.278

155

36.5

1.40

5.95

40.6

0.66

05.

6040

.40.

870

6.86

39.5

0.91

07.

4039

.31.

826.

1043

.21.

056.

2142

.91.

005.

6743

.11.

106.

4943

.31.

146.

29

PC-0

1A se

c.279

157

41.9

0.20

04.

9543

.20.

620

6.43

44.1

0.90

07.

3843

.10.

830

7.28

42.0

0.92

05.

3146

.11.

287.

1945

.91.

216.

8645

.61.

437.

6446

.11.

367.

09

PC-0

1A se

c.280

159

45.6

0.22

05.

3343

.70.

520

5.83

43.9

0.73

06.

5243

.90.

760

6.80

45.8

1.14

6.71

46.2

1.23

6.59

46.4

1.13

5.98

45.7

1.20

6.63

45.4

1.26

6.49

PC-0

1A se

c.281

161

47.1

-0.1

804.

1444

.60.

570

6.05

45.5

0.87

07.

2044

.81.

148.

2245

.91.

036.

1048

.61.

648.

2447

.71.

557.

5948

.21.

839.

1046

.91.

447.

20

PC-0

1A se

c.282

163

46.9

0.45

06.

4145

.50.

980

7.54

44.4

1.27

7.87

42.3

1.28

7.79

48.1

1.62

8.49

46.2

1.44

6.98

45.1

1.58

7.77

44.8

1.71

8.66

44.9

1.56

7.10

PC-0

1A se

c.283

165

45.1

0.12

05.

4944

.11.

329.

1942

.42.

1311

.643

.22.

3111

.045

.81.

367.

0046

.01.

717.

4647

.42.

078.

9542

.72.

329.

4945

.92.

7410

.3

PC-0

1A se

c.284

167

40.7

1.43

10.6

44.2

1.93

9.51

45.5

1.54

6.74

42.9

2.46

9.52

47.0

2.43

9.22

46.1

2.18

8.96

45.5

2.18

9.05

44.7

2.21

9.54

44.7

2.23

8.41

PC-0

1A se

c.285

169

44.4

2.10

8.24

42.0

2.54

9.03

41.5

1.66

5.99

--

--

--

44.7

1.97

6.93

44.5

1.31

4.00

45.5

1.94

6.40

44.0

2.37

8.66

PC-0

1A se

c.386

171

45.0

1.00

3.99

43.0

1.33

4.86

41.6

1.24

5.92

41.9

1.44

5.32

46.0

1.81

5.93

44.1

1.59

6.86

40.8

1.62

6.72

43.7

1.90

8.43

43.0

1.84

7.81

PC-0

1A se

c.387

173

40.3

0.49

04.

2644

.30.

860

4.76

42.1

1.28

6.77

39.9

1.39

7.14

46.9

1.74

5.90

43.0

1.34

5.39

41.2

1.28

4.80

39.8

1.28

4.38

41.1

1.44

5.19

PC-0

1A se

c.388

175

38.9

0.19

04.

0640

.00.

970

4.68

43.1

1.22

7.45

38.9

1.31

7.20

44.2

1.55

6.85

45.3

1.39

6.83

44.5

1.46

7.01

44.6

1.43

7.27

45.3

1.50

7.25

PC-0

1A se

c.389

177

43.4

0.39

05.

1043

.31.

036.

7244

.21.

468.

3642

.71.

478.

3539

.61.

163.

9644

.11.

216.

2145

.91.

527.

1945

.81.

768.

3446

.41.

748.

03

PC-0

1A se

c.390

179

43.4

-0.2

304.

3845

.11.

267.

9546

.11.

799.

4343

.51.

588.

5944

.61.

286.

6547

.71.

958.

6746

.71.

617.

4546

.62.

129.

3747

.22.

159.

06

PC-0

1A se

c.391

181

45.7

0.55

06.

7745

.31.

478.

9645

.72.

4911

.644

.72.

0710

.543

.80.

620

5.96

49.7

2.35

8.99

48.6

2.33

9.55

47.6

2.63

11.1

48.7

2.86

11.4

PC-0

1A se

c.392

183

45.3

0.89

07.

9445

.81.

869.

7845

.42.

7311

.945

.52.

7312

.847

.21.

838.

6249

.12.

659.

6546

.92.

9811

.048

.03.

0812

.047

.03.

1712

.0

PC-0

1A se

c.393

185

42.2

0.48

08.

6947

.51.

708.

2842

.92.

8512

.845

.82.

4310

.948

.52.

188.

9748

.02.

789.

7349

.12.

579.

5745

.83.

2511

.846

.43.

3712

.1

PC-0

1A se

c.394

187

43.4

0.50

07.

3545

.61.

718.

9642

.11.

939.

9244

.72.

7712

.148

.12.

7110

.246

.52.

188.

7944

.01.

938.

3443

.22.

239.

5444

.72.

199.

31

PC-0

1A se

c.395

189

43.4

-0.7

606.

2043

.11.

478.

6940

.11.

527.

3244

.81.

386.

5747

.72.

629.

2844

.51.

677.

2942

.81.

496.

5942

.11.

586.

4841

.81.

536.

52

PC-0

1A se

c.396

191

42.7

0.25

05.

1440

.01.

286.

3341

.21.

597.

5439

.81.

526.

9244

.01.

557.

5146

.01.

586.

2943

.81.

767.

0944

.82.

078.

9243

.31.

807.

29

PC-0

1A se

c.397

193

43.9

0.75

05.

3040

.71.

357.

0844

.51.

849.

5943

.11.

9610

.042

.71.

536.

0046

.91.

858.

1246

.01.

898.

1446

.72.

018.

8146

.72.

098.

97

PC-0

1A se

c.398

195

45.7

0.64

06.

0943

.81.

598.

9944

.82.

1210

.944

.22.

0010

.445

.01.

727.

1348

.62.

109.

0348

.31.

978.

6647

.72.

3310

.348

.22.

329.

83

PC-0

1A se

c.399

197

44.5

-0.1

207.

3744

.81.

639.

7443

.81.

8810

.244

.52.

1211

.147

.01.

858.

1148

.02.

219.

6646

.42.

4110

.447

.32.

3010

.247

.12.

169.

41

PC-0

1A se

c.310

019

943

.10.

580

8.08

44.6

1.45

8.79

41.3

1.46

8.23

43.1

1.85

10.2

48.8

0.59

09.

2647

.21.

657.

4046

.61.

988.

6644

.11.

607.

5945

.62.

019.

07

PC-0

1A se

c.310

120

142

.10.

390

5.08

42.8

1.27

8.06

35.3

1.11

5.28

43.6

1.04

5.91

49.1

1.86

8.05

40.3

0.87

03.

2740

.20.

970

3.22

37.6

1.01

3.83

36.1

0.96

03.

28

PC-0

1A se

c.310

220

336

.10.

190

3.39

35.1

0.74

02.

8144

.71.

599.

0039

.10.

620

2.38

45.1

1.28

6.13

47.8

1.88

8.23

48.3

1.77

7.46

46.4

2.10

9.40

46.9

2.06

9.17

PC-0

1A se

c.310

320

543

.90.

430

6.73

44.3

1.39

8.65

44.5

1.71

9.84

44.4

1.71

9.60

41.4

0.43

04.

4448

.91.

807.

8246

.81.

958.

9146

.72.

229.

7347

.02.

199.

58

App

endi

x 3-

2 (C

ontin

ued)

* -: N

o da

ta

72

Changes in properties of archived sediment

JAMSTEC Rep. Res. Dev., Volume 15, September 2012, 47_76

Sam

ple

IDSa

mpl

e N

o.

Cor

e de

pth

(cm

bsf)

Initi

al v

alue

(0

day)

(8 M

ay, 2

001)

2nd

(19

days

)

(31

May

, 200

1)3r

d (1

14 d

ays)

(3

Sep

, 200

1)4t

h (1

30 d

ays)

(1

9 Se

p, 2

001)

5th

(528

day

s)

(7 N

ov, 2

002)

6th

(103

5 da

ys)

(28

Mar

, 200

4)7t

h (1

265

days

)

(1

3 N

ov, 2

004)

8th

(155

9 da

ys)

(3

Sep

, 200

5)9t

h (1

969

days

)

(1

8 O

ct, 2

006)

L*

a*b*

L*

a*b*

L*

a*b*

L*

a*b*

L*

a*b*

L*

a*b*

L*

a*b*

L*

a*b*

L*

a*b*

PC-0

1A se

c.310

420

743

.60.

480

7.01

43.9

1.43

9.12

41.5

1.86

9.52

42.9

1.76

9.74

48.1

1.58

7.27

47.6

1.85

8.09

46.2

1.94

8.68

45.5

2.08

8.57

45.0

2.12

8.70

PC-0

1A se

c.310

520

943

.60.

650

5.30

42.5

1.46

9.10

40.6

1.63

6.85

41.7

1.85

9.24

47.9

1.01

7.45

43.8

1.75

6.29

43.1

1.92

6.97

42.8

1.83

6.25

42.8

2.00

7.26

PC-0

1A se

c.310

621

140

.1-0

.270

5.53

42.0

1.37

7.06

43.7

1.58

8.65

43.5

1.69

8.35

47.3

1.60

6.49

46.5

1.73

7.82

42.9

1.80

8.62

45.3

1.73

8.51

46.6

1.72

7.47

PC-0

1A se

c.310

721

342

.10.

000

5.90

44.0

1.19

7.70

42.6

1.60

9.14

44.5

1.37

7.56

45.4

1.74

7.29

46.4

1.54

7.21

44.0

1.64

7.21

44.5

1.77

8.32

44.5

1.85

7.91

PC-0

1A se

c.310

821

541

.80.

470

5.82

42.1

1.25

7.85

46.3

1.77

10.5

40.4

1.73

8.47

46.1

1.57

7.44

48.5

1.98

9.18

46.4

2.13

10.2

47.4

2.04

9.76

48.4

2.19

10.1

PC-0

1A se

c.310

921

744

.30.

290

7.31

44.0

1.31

8.32

45.8

1.69

9.92

47.4

1.68

9.41

45.4

1.64

7.68

49.0

1.99

9.47

49.6

1.89

8.76

49.8

1.90

8.71

48.0

2.06

9.76

PC-0

1A se

c.311

021

945

.6-0

.450

6.79

45.6

1.24

8.50

46.9

1.74

9.94

47.4

1.73

9.79

49.3

1.63

7.86

48.8

2.00

9.49

49.3

1.93

9.04

48.6

2.09

9.78

48.8

2.17

9.99

PC-0

1A se

c.311

122

144

.60.

220

7.01

46.1

1.23

8.86

45.8

1.74

9.75

48.5

1.65

8.76

48.7

1.78

8.99

49.3

2.23

9.93

47.9

2.04

9.57

48.2

2.38

10.8

48.9

2.57

11.2

PC-0

1A se

c.311

222

341

.20.

090

7.89

45.1

1.29

8.93

46.4

1.93

10.4

47.5

1.52

8.27

48.5

1.88

9.38

48.5

2.01

9.32

47.6

2.26

9.98

49.0

2.61

11.3

48.7

2.37

10.3

PC-0

1A se

c.311

322

542

.50.

150

7.03

44.9

1.43

9.60

48.3

1.67

8.98

45.3

2.13

11.6

48.7

1.97

9.57

50.1

2.28

10.4

49.9

2.33

10.5

49.1

2.35

11.0

50.0

2.47

11.0

PC-0

1A se

c.311

422

743

.9-0

.110

7.84

48.2

1.19

8.85

46.5

1.78

10.2

46.0

1.89

11.2

50.2

0.42

07.

9749

.72.

049.

4949

.72.

019.

7748

.72.

2410

.649

.42.

2210

.2

PC-0

1A se

c.311

522

945

.6-0

.010

6.95

45.8

1.11

9.01

46.2

1.32

9.10

46.0

1.75

10.5

51.0

2.07

9.51

48.8

1.65

8.36

48.8

1.80

9.06

48.5

1.66

8.81

48.0

1.76

8.98

PC-0

1A se

c.311

623

145

.80.

070

6.16

46.4

1.04

8.31

46.6

1.21

8.25

44.6

1.30

9.12

50.1

1.88

9.07

48.9

1.39

7.39

48.0

1.55

8.25

47.6

1.49

8.06

47.9

1.57

8.12

PC-0

1A se

c.311

723

345

.8-0

.930

4.88

45.7

0.87

07.

1747

.41.

659.

5145

.31.

288.

6048

.11.

478.

1049

.71.

958.

8847

.71.

477.

6948

.61.

838.

4949

.32.

139.

43

PC-0

1A se

c.311

823

547

.50.

270

6.47

46.3

1.26

8.79

46.9

1.74

9.81

45.4

1.83

10.4

48.6

1.29

7.39

50.1

1.84

8.21

48.7

1.95

8.96

48.5

1.97

8.82

49.4

2.17

9.43

PC-0

1A se

c.311

923

746

.80.

350

6.50

46.0

1.40

9.32

46.0

1.49

8.29

45.8

1.67

8.96

49.8

1.82

8.51

48.9

1.79

8.19

48.4

1.78

8.31

48.8

1.87

8.52

47.8

1.95

8.83

PC-0

1A se

c.312

023

945

.40.

360

5.99

46.4

1.05

6.81

47.5

1.69

8.49

45.5

1.59

8.92

50.0

1.75

7.94

48.5

2.05

9.20

48.1

2.06

9.35

47.6

1.95

9.14

48.3

2.19

9.67

PC-0

1A se

c.312

124

145

.8-0

.390

5.63

46.2

1.29

8.21

45.6

1.38

8.07

44.2

1.72

9.70

48.5

1.49

7.18

47.2

1.60

7.61

47.1

1.63

8.05

46.8

1.76

8.60

46.8

1.78

8.58

PC-0

1A se

c.312

224

344

.80.

200

5.78

44.8

1.05

7.70

44.3

1.02

6.05

43.7

1.51

8.85

48.1

1.62

7.71

46.7

1.36

6.55

45.0

1.28

6.25

45.8

1.43

7.20

45.6

1.43

6.88

PC-0

1A se

c.312

324

542

.7-0

.250

5.25

42.4

1.02

7.45

42.1

1.13

7.26

40.9

1.16

7.01

47.1

1.51

7.68

45.7

0.89

04.

0844

.21.

286.

1644

.91.

477.

2544

.31.

386.

49

PC-0

1A se

c.312

424

740

.70.

250

4.57

41.7

0.92

06.

2842

.71.

146.

1738

.71.

176.

7545

.71.

306.

3941

.60.

920

3.72

41.1

1.08

4.51

44.7

1.37

6.77

43.3

1.33

5.70

PC-0

1A se

c.312

524

938

.10.

430

4.04

40.2

1.03

6.16

42.1

1.14

6.52

37.7

1.11

5.89

43.2

1.01

4.67

44.1

1.08

4.94

42.6

1.23

5.90

42.7

1.09

4.99

43.4

1.38

6.41

PC-0

1A se

c.312

625

142

.00.

030

4.58

39.8

0.91

05.

9945

.01.

488.

6943

.51.

307.

4541

.31.

044.

1847

.81.

758.

2646

.51.

537.

4147

.71.

878.

8046

.81.

828.

44

PC-0

1A se

c.312

725

343

.50.

360

6.56

43.4

1.13

8.07

45.3

1.54

8.85

45.6

1.50

8.58

45.7

1.19

5.35

47.7

1.58

7.56

47.4

1.78

8.49

47.7

1.91

8.70

47.4

1.97

8.96

PC-0

1A se

c.312

825

545

.70.

330

6.97

44.8

1.26

8.35

46.6

2.03

10.8

44.6

1.72

9.78

49.5

1.03

7.62

49.3

1.87

8.22

48.0

2.09

9.21

48.4

2.09

9.59

49.4

2.54

10.6

PC-0

1A se

c.312

925

743

.0-0

.110

7.90

46.6

1.73

10.2

46.9

2.26

10.3

45.0

2.37

11.9

48.4

1.60

7.50

49.4

2.51

10.1

49.4

2.64

10.6

49.0

2.76

11.3

49.2

2.78

11.1

PC-0

1A se

c.313

025

943

.30.

940

9.70

45.1

1.87

10.3

46.6

2.35

10.5

45.2

2.75

12.7

49.9

2.44

10.1

50.2

2.80

10.4

49.1

2.67

10.4

49.7

2.77

10.7

49.0

2.90

11.2

PC-0

1A se

c.313

126

144

.31.

259.

5545

.21.

8810

.545

.32.

1110

.845

.42.

5912

.149

.62.

6910

.748

.52.

008.

8647

.52.

109.

5947

.02.

089.

2248

.62.

329.

90

PC-0

1A se

c.313

226

344

.00.

060

7.11

47.8

1.33

7.58

45.6

2.79

11.8

46.5

1.84

8.01

50.0

2.29

9.05

47.8

2.73

10.2

48.4

2.80

10.5

48.7

3.05

11.3

48.7

3.53

12.7

PC-0

1A se

c.313

326

542

.90.

970

7.91

46.0

2.20

9.71

49.8

2.59

8.76

46.7

2.91

11.7

49.7

1.78

7.19

51.9

2.86

8.97

49.2

4.30

13.1

48.9

3.56

12.4

49.5

4.38

13.7

PC-0

1A se

c.313

426

749

.91.

687.

4249

.12.

559.

2949

.44.

2112

.843

.23.

6112

.249

.82.

8410

.252

.54.

1611

.550

.24.

7613

.649

.94.

9915

.049

.65.

2315

.1

PC-0

1A se

c.313

526

946

.01.

888.

3851

.32.

688.

6146

.34.

0810

.539

.74.

0610

.851

.12.

999.

5951

.34.

179.

0051

.33.

939.

3350

.44.

5811

.449

.93.

739.

06

PC-0

1A se

c.313

627

143

.33.

4410

.146

.73.

509.

2247

.44.

4411

.7-

--

50.1

4.72

13.2

53.2

3.62

9.78

50.6

4.35

11.4

49.8

4.31

10.3

48.2

5.20

13.8

PC-0

1A se

c.413

727

346

.24.

8714

.845

.85.

4016

.542

.13.

7312

.648

.44.

4412

.453

.53.

579.

4649

.42.

497.

9048

.52.

557.

4448

.72.

828.

4044

.23.

8211

.8

PC-0

1A se

c.413

827

541

.73.

4911

.542

.03.

7312

.540

.03.

378.

3446

.63.

6010

.951

.52.

358.

3846

.93.

067.

0346

.33.

9210

.743

.83.

688.

3741

.34.

4310

.7

PC-0

1A se

c.413

927

736

.93.

6211

.245

.33.

138.

6844

.11.

198.

1042

.22.

079.

1347

.13.

137.

5245

.71.

397.

4244

.31.

648.

3645

.31.

467.

6545

.21.

477.

76

PC-0

1A se

c.414

027

942

.90.

270

6.04

43.3

1.00

7.82

45.2

1.15

7.79

44.7

1.17

8.20

47.1

0.33

06.

5747

.11.

367.

1545

.81.

437.

4846

.81.

447.

2646

.81.

527.

45

PC-0

1A se

c.414

128

145

.10.

190

5.44

43.7

0.75

06.

7943

.31.

127.

0644

.91.

087.

5046

.91.

307.

2246

.71.

367.

1543

.51.

447.

0645

.91.

377.

0045

.41.

487.

10

PC-0

1A se

c.414

228

343

.10.

420

5.01

41.1

0.82

06.

0740

.11.

516.

5842

.41.

286.

8846

.31.

277.

0942

.91.

535.

6139

.01.

504.

2543

.01.

535.

6143

.11.

555.

87

PC-0

1A se

c.414

328

542

.00.

560

3.58

37.9

1.10

5.06

34.8

1.86

4.36

38.6

1.62

5.13

40.3

1.28

4.85

37.8

1.76

3.73

37.7

1.79

3.79

37.4

1.74

3.51

36.1

1.81

3.49

PC-0

1A se

c.414

428

733

.91.

503.

6834

.81.

754.

7538

.51.

716.

1132

.72.

084.

4237

.31.

763.

6137

.31.

943.

8439

.21.

854.

8038

.01.

934.

4538

.31.

994.

79PC

-01A

sec.4

145

289

37.4

1.30

4.57

33.9

1.93

4.45

38.3

1.85

6.19

38.6

1.65

6.10

39.3

1.85

5.05

40.1

1.64

4.54

40.1

1.69

4.94

39.6

1.70

4.43

39.0

1.82

4.73

App

endi

x 3-

2 (C

ontin

ued)

* -: N

o da

ta

73

N. Harada et al.

JAMSTEC Rep. Res. Dev., Volume 15, September 2012, 47_76

Sam

ple

IDSa

mpl

e N

o.

Cor

e de

pth

(cm

bsf)

Initi

al v

alue

(0

day)

(8 M

ay, 2

001)

2nd

(19

days

)

(31

May

, 200

1)3r

d (1

14 d

ays)

(3

Sep

, 200

1)4t

h (1

30 d

ays)

(1

9 Se

p, 2

001)

5th

(528

day

s)

(7 N

ov, 2

002)

6th

(103

5 da

ys)

(28

Mar

, 200

4)7t

h (1

265

days

)

(1

3 N

ov, 2

004)

8th

(155

9 da

ys)

(3

Sep

, 200

5)9t

h (1

969

days

)

(1

8 O

ct, 2

006)

L*

a*b*

L*

a*b*

L*

a*b*

L*

a*b*

L*

a*b*

L*

a*b*

L*

a*b*

L*

a*b*

L*

a*b*

PC-0

1A se

c.414

629

138

.41.

014.

2437

.31.

405.

3841

.51.

556.

8537

.91.

725.

7739

.81.

754.

7242

.41.

745.

6543

.21.

726.

0743

.51.

615.

9343

.21.

696.

19

PC-0

1A se

c.414

729

341

.60.

800

4.93

40.3

1.28

6.36

37.3

1.15

5.08

38.6

1.68

5.93

39.0

1.66

4.31

40.9

1.64

4.76

39.2

1.68

4.55

38.6

1.67

4.08

38.9

1.75

4.40

PC-0

1A se

c.414

829

539

.10.

890

3.64

37.2

1.48

5.13

38.5

1.54

6.17

36.9

1.74

5.67

39.0

1.64

4.43

39.5

1.66

4.40

39.6

1.62

4.56

42.5

1.62

5.51

39.8

1.68

4.50

PC-0

1A se

c.414

929

738

.21.

084.

5737

.21.

444.

0940

.61.

426.

6740

.51.

516.

7942

.91.

515.

6943

.61.

616.

1443

.11.

515.

8543

.81.

556.

0042

.41.

635.

77

PC-0

1A se

c.415

029

942

.10.

640

4.91

35.6

1.66

4.91

38.2

1.48

5.61

38.4

1.58

5.64

42.9

1.49

5.74

41.9

1.62

5.18

40.5

1.54

4.79

42.0

1.62

5.19

40.5

1.66

4.72

PC-0

1A se

c.415

130

139

.70.

580

4.27

39.6

1.17

3.78

38.9

1.53

6.01

38.1

1.61

5.87

41.2

1.47

4.84

43.2

1.66

6.02

42.8

1.76

6.30

43.0

1.69

6.06

42.0

1.72

5.37

PC-0

1A se

c.415

230

340

.90.

860

4.77

40.6

1.23

5.36

36.8

1.90

5.95

35.1

1.85

5.12

42.6

1.68

6.02

39.8

1.64

4.37

38.5

1.72

4.03

39.8

1.65

4.15

38.9

1.80

4.09

PC-0

1A se

c.415

330

536

.51.

394.

2436

.71.

664.

9637

.81.

325.

4045

.42.

058.

9839

.21.

624.

1242

.41.

525.

2942

.11.

485.

1542

.41.

555.

1241

.81.

585.

10

PC-0

1A se

c.415

430

741

.90.

920

4.50

42.0

1.34

6.54

40.3

1.45

6.28

37.7

1.85

5.82

42.0

1.54

5.37

43.0

1.56

5.59

42.6

1.63

5.87

42.7

1.57

5.63

41.7

1.82

5.77

PC-0

1A se

c.415

530

940

.80.

600

4.61

40.1

1.39

5.87

39.2

1.46

5.94

38.6

1.56

6.09

42.4

1.52

5.41

43.4

1.58

5.70

43.4

1.55

5.68

43.5

1.61

5.71

42.0

1.73

5.32

PC-0

1A se

c.415

631

140

.50.

890

4.49

38.2

1.57

6.15

38.4

1.55

5.53

38.2

1.75

6.10

43.5

1.49

5.72

41.5

1.62

5.01

41.5

1.71

5.07

41.2

1.75

4.79

40.9

1.73

5.15

PC-0

1A se

c.415

731

338

.31.

333.

7940

.21.

514.

3840

.11.

626.

4638

.51.

776.

2339

.41.

654.

3544

.11.

606.

3239

.81.

574.

1739

.31.

564.

1047

.62.

108.

33

PC-0

1A se

c.415

831

545

.20.

430

5.45

47.4

1.37

7.28

39.8

1.59

5.99

38.1

1.66

6.21

40.9

1.67

5.15

40.9

1.50

4.52

40.6

1.43

4.37

40.7

1.60

4.55

45.3

1.83

6.87

PC-0

1A se

c.415

931

743

.20.

910

4.23

46.4

1.47

7.56

34.7

1.75

4.13

38.6

1.79

6.59

40.7

1.53

4.63

38.1

1.69

3.80

37.7

1.68

3.56

37.9

1.79

4.05

41.8

1.75

5.40

PC-0

1A se

c.416

031

939

.41.

242.

9941

.31.

366.

1037

.22.

015.

6635

.51.

944.

2837

.21.

703.

4840

.71.

754.

9942

.41.

635.

3741

.01.

775.

2338

.11.

753.

55

PC-0

1A se

c.416

132

138

.41.

244.

5838

.51.

403.

2537

.41.

704.

8339

.11.

675.

6142

.01.

846.

0343

.01.

626.

5943

.51.

566.

5543

.11.

707.

1339

.81.

774.

51

PC-0

1A se

c.416

232

334

.11.

653.

7741

.21.

233.

9633

.22.

004.

5335

.31.

826.

1643

.71.

476.

7640

.01.

824.

9938

.81.

784.

4639

.51.

814.

7237

.51.

853.

74

PC-0

1A se

c.416

332

537

.41.

454.

1033

.21.

814.

1534

.82.

025.

4334

.32.

096.

1138

.71.

673.

8740

.31.

734.

7039

.71.

754.

4939

.71.

684.

2539

.41.

904.

74

PC-0

1A se

c.416

432

738

.91.

223.

1633

.22.

105.

8935

.81.

874.

4032

.22.

004.

9439

.51.

674.

4039

.31.

744.

1738

.91.

633.

9539

.11.

744.

2537

.41.

763.

53

PC-0

1A se

c.416

532

933

.21.

593.

4332

.41.

975.

0728

.22.

344.

8932

.02.

054.

7338

.01.

654.

1337

.01.

723.

3335

.41.

652.

5636

.21.

712.

7136

.81.

793.

27

PC-0

1A se

c.416

633

136

.61.

403.

6739

.01.

382.

9034

.81.

924.

9830

.52.

023.

7934

.41.

712.

4038

.31.

784.

0739

.81.

904.

9740

.11.

945.

1136

.31.

843.

28

PC-0

1A se

c.416

733

339

.11.

104.

7535

.51.

875.

0738

.71.

736.

1335

.41.

865.

5838

.11.

894.

7342

.21.

695.

4841

.91.

725.

7342

.71.

655.

7640

.71.

935.

14

PC-0

1A se

c.416

833

542

.00.

810

3.81

36.6

1.62

5.00

41.0

1.48

6.69

39.5

1.62

6.53

42.0

1.73

5.78

44.5

1.63

6.54

42.6

1.54

5.58

45.0

1.64

6.53

40.8

1.62

4.48

PC-0

1A se

c.416

933

741

.10.

990

4.86

35.6

1.58

5.53

40.7

1.45

6.74

38.1

1.88

6.82

42.4

1.23

6.09

44.3

1.47

6.19

43.8

1.71

6.41

44.8

1.56

6.21

42.6

1.78

5.83

PC-0

1A se

c.417

033

941

.60.

960

4.51

37.9

1.85

6.46

40.5

1.40

6.12

40.6

1.49

7.03

43.1

1.49

5.72

44.7

1.53

6.56

40.1

1.68

4.49

44.4

1.64

6.69

41.8

1.75

5.13

PC-0

1A se

c.417

134

141

.10.

920

4.46

41.3

1.27

6.39

40.5

1.36

6.34

40.2

1.41

6.14

41.3

1.58

5.44

44.8

1.51

6.54

42.8

1.61

5.55

45.0

1.55

6.66

41.8

1.69

5.17

PC-0

1A se

c.417

234

343

.30.

690

4.41

37.8

1.51

5.86

41.5

1.30

6.76

40.4

1.44

6.53

43.4

1.21

6.04

45.4

1.45

6.82

43.5

1.51

6.00

44.4

1.57

6.91

43.5

1.69

6.01

PC-0

1A se

c.417

334

542

.60.

850

4.28

41.4

1.04

6.13

40.7

1.36

5.97

40.2

1.40

6.35

44.3

1.46

6.69

44.7

1.54

6.42

42.9

1.47

5.33

45.0

1.57

7.00

42.7

1.62

5.60

PC-0

1A se

c.417

434

741

.90.

790

4.74

40.3

1.17

5.77

42.0

1.45

7.08

41.4

1.42

6.88

44.3

1.43

6.15

46.0

1.55

7.13

45.0

1.60

7.10

46.2

1.58

7.04

44.1

1.65

6.32

PC-0

1A se

c.417

534

942

.80.

930

3.66

40.8

1.20

5.88

38.3

1.83

5.80

39.7

1.73

7.03

47.5

1.36

6.38

45.8

1.68

7.43

43.3

1.69

6.01

45.8

1.69

7.42

42.4

1.79

5.55

PC-0

1A se

c.417

635

134

.71.

704.

4840

.71.

655.

3534

.12.

165.

2534

.41.

994.

9347

.71.

284.

4445

.51.

607.

0941

.21.

765.

2544

.41.

766.

9441

.11.

815.

18

PC-0

1A se

c.417

735

340

.60.

990

5.14

39.6

1.65

3.85

39.1

1.83

6.63

39.0

1.58

5.38

44.7

1.52

6.29

44.0

1.66

6.02

40.3

1.49

3.92

42.5

1.59

5.04

40.8

1.77

4.91

PC-0

1A se

c.417

835

540

.30.

940

4.68

38.5

1.49

6.32

40.0

1.48

5.65

43.9

1.32

4.83

44.1

1.54

5.75

43.5

1.50

5.16

41.8

1.56

5.31

41.0

1.60

5.00

43.2

1.75

6.01

PC-0

1A se

c.417

935

741

.60.

800

4.98

39.4

1.25

5.60

42.9

1.22

6.61

40.2

1.50

6.37

46.4

1.24

4.09

44.8

1.60

5.20

44.1

1.55

6.41

43.9

1.65

6.61

42.7

1.69

5.81

PC-0

1A se

c.418

035

943

.40.

650

5.12

41.7

0.91

06.

1342

.91.

216.

6241

.71.

267.

4144

.41.

343.

8244

.01.

666.

1744

.41.

626.

1943

.71.

626.

0244

.81.

546.

43

PC-0

1A se

c.418

136

142

.70.

660

5.07

42.3

0.95

06.

2142

.31.

456.

7541

.71.

416.

9844

.01.

166.

0245

.41.

575.

8043

.31.

635.

8543

.31.

595.

3344

.41.

716.

44

PC-0

1A se

c.418

236

343

.11.

125.

2243

.50.

810

5.74

45.4

1.79

8.11

42.2

1.81

7.71

39.1

1.68

3.96

48.5

2.11

8.22

49.4

2.11

8.43

49.2

2.14

8.43

45.9

1.94

6.92

PC-0

1A se

c.418

336

554

.70.

940

4.47

44.9

1.28

5.67

53.1

1.50

6.46

46.0

2.06

10.0

48.0

2.06

8.01

58.9

1.79

7.68

59.4

1.63

7.41

56.9

1.97

8.26

48.1

2.01

7.07

PC-0

1A se

c.418

436

756

.00.

930

6.47

48.7

1.17

5.03

50.0

1.52

7.98

62.3

1.29

6.71

60.9

1.53

6.27

58.4

1.61

7.59

59.0

1.65

7.82

56.4

1.71

7.74

51.7

1.95

8.46

PC-0

1A se

c.418

536

947

.20.

660

7.27

50.5

1.61

7.61

40.6

1.58

6.13

48.1

1.78

9.47

53.4

1.40

7.78

47.0

1.87

7.42

46.2

2.11

7.48

45.9

2.07

7.03

46.7

1.61

4.39

* -: N

o da

ta

App

endi

x 3-

2 (C

ontin

ued)

74

Changes in properties of archived sediment

JAMSTEC Rep. Res. Dev., Volume 15, September 2012, 47_76

Sam

ple

IDSa

mpl

e N

o.D

epth

(c

m)

Initi

al v

alue

(0

day)

(12

Aug

, 200

0)

2nd

(18

days

) (3

0 A

ug, 2

000)

3rd

(60

days

) (

12 O

ct, 2

000)

4th

(89

days

)(1

0 N

ov, 2

000)

5th

(156

day

s)

(16

Jan

, 200

1)6t

h (1

78 d

ays)

(7 F

eb, 2

001)

7th

(212

day

s)(1

3 M

ar, 2

001)

TC

TN

OC

TC

TN

OC

TC

TN

OC

TC

TN

OC

TC

TN

OC

TC

TN

OC

TC

TN

OC

MR

00-E

NG

PL-1

Han

d1

W u

nder

4 ど

stor

e

11

2.70

0.

290

2.37

2.

67

0.28

0 2.

38

2.75

0.29

0 2.

412.

690.

300

2.37

2.94

0.

320

2.52

2.

940.

310

2.53

--

-2

32.

77

0.30

0 2.

42

2.76

0.

290

2.44

-

--

2.65

0.29

02.

312.

84

0.30

0 1.

64

--

-2.

680.

290

2.27

35

2.85

0.

310

2.46

2.

67

0.28

0 2.

36

--

--

--

2.82

0.

300

2.35

2.

930.

290

2.38

2.94

0.31

02.

504

72.

79

0.29

0 2.

25

2.12

0.

220

1.83

-

--

--

-2.

74

0.28

0 2.

26

2.76

0.28

02.

332.

950.

310

2.43

59

2.75

0.

280

2.29

2.

39

0.25

0 2.

06

--

--

--

2.76

0.

280

2.29

2.

690.

280

2.28

2.80

0.29

02.

376

10-

--

--

--

--

--

--

--

--

--

--

715

--

--

--

--

--

--

--

--

--

--

-8

20-

--

--

--

--

--

--

--

--

--

--

927

--

--

--

--

--

--

--

--

--

--

-10

292.

710.

260

2.14

2.

600.

250

2.15

2.63

0.25

2.12

--

-3.

000.

270

2.27

3.06

0.28

02.

302.

980.

270

2.29

MR

00-E

NG

PL-1

Han

d2

W u

nder

-20 ど

stor

e

11

2.60

0.

280

2.30

2.54

0.28

02.

282.

900.

310

2.52

2.86

0.32

02.

502.

930.

320

2.54

2.96

0.31

02.

562.

840.

300

2.41

23

2.85

0.

300

2.48

2.68

0.29

02.

45-

--

2.65

0.29

02.

292.

920.

320

2.53

3.04

0.32

02.

592.

990.

310

2.55

35

2.95

0.

300

2.47

2.81

0.31

02.

48-

--

--

-2.

900.

310

2.45

2.91

0.30

02.

452.

920.

300

2.44

47

3.12

0.

320

2.59

2.62

0.29

02.

29-

--

--

-3.

100.

320

2.57

3.13

0.32

02.

592.

90.

290

2.44

59

2.05

0.

310

2.55

2.79

0.30

02.

40-

--

--

-2.

780.

290

2.32

2.92

0.28

02.

312.

830.

290

2.37

610

--

--

--

--

--

--

--

--

--

--

-7

192.

830.

280

2.25

2.60

0.26

02.

232.

810.

280

2.30

--

-2.

710.

280

2.26

2.80

0.27

02.

292.

820.

270

2.27

829

2.75

0.27

02.

212.

560.

270

2.21

2.67

0.26

02.

19-

--

2.82

0.27

02.

212.

850.

270

2.23

--

-

Sam

ple

IDSa

mpl

e N

o.D

epth

(c

m)

8th

(240

day

s)

(10

Apr

, 200

1)9t

h (3

88 d

ays)

(5

Sep

, 200

1)10

th (

961

days

) (

1 A

pr, 2

003)

11th

(13

21 d

ays)

(

27 M

ar, 2

004)

12th

(15

41 d

ays)

(12

Nov

, 200

4)13

th (

2272

day

s) (

13, 2

1 N

ov, 2

006)

TC

TN

OC

TC

TN

OC

TC

TN

OC

TC

TN

OC

TC

TN

OC

TC

TN

OC

MR

00-E

NG

PL-1

Han

d1

W u

nder

4 ど

stor

e

11

--

--

--

--

--

--

--

--

--

23

2.73

0.29

02.

372.

850.

310

2.43

2.81

0.30

02.

46-

--

--

--

--

35

2.67

0.28

02.

332.

760.

290

2.39

2.79

0.30

02.

44-

--

--

--

--

47

2.75

0.29

02.

332.

830.

290

2.38

2.83

0.29

02.

362.

730.

300

2.31

2.67

0.30

02.

24-

--

59

2.69

0.28

02.

252.

640.

270

2.24

2.64

0.27

02.

202.

640.

290

2.20

2.64

0.29

02.

21-

--

610

--

--

--

--

--

--

--

-2.

10.

230

1.73

715

--

--

--

--

-2.

410.

260

2.02

2.36

0.26

01.

902.

280.

240

1.92

820

--

--

--

--

-2.

950.

310

2.46

2.94

0.32

02.

422.

730.

280

2.27

927

--

--

--

--

-2.

720.

270

2.21

2.74

0.29

02.

222.

540.

270

2.12

1029

2.79

0.27

02.

212.

640.

260

2.15

2.83

0.27

02.

23-

--

--

-2.

580.

260

2.09

MR

00-E

NG

PL-1

Han

d2

W u

nder

-20 ど

stor

e

11

2.66

0.28

02.

362.

870.

300

2.54

2.92

0.31

02.

553.

030.

330

2.66

2.99

0.32

02.

612.

840.

300

2.49

23

2.87

0.30

02.

513.

030.

320

2.58

2.96

0.32

02.

542.

980.

330

2.62

2.96

0.31

02.

532.

770.

290

2.41

35

2.81

0.29

02.

412.

860.

290

2.43

2.98

0.31

02.

512.

920.

320

2.52

2.88

0.31

02.

472.

790.

290

2.41

47

2.79

0.29

02.

373.

140.

310

2.60

2.90

0.30

02.

442.

670.

290

2.29

2.62

0.26

02.

232.

480.

250

2.14

59

2.46

0.25

02.

022.

730.

280

2.35

2.53

0.30

02.

162.

770.

290

2.34

2.71

0.27

02.

27-

--

610

--

--

--

--

--

--

--

-2.

810.

280

2.39

719

2.79

0.27

02.

25-

--

--

--

--

--

--

--

829

--

--

--

--

--

--

--

--

--

App

endi

x 4-

1 C

hang

es in

tota

l car

bon

(TC

), o

rgan

ic c

arbo

n (O

C),

and

tota

l nitr

ogen

(T

N)

cont

ents

of

coas

tal s

edim

ent c

ore

MR

00-E

NG

PL

-01

stor

ed a

t 4ど

an

d –2

0 ど.

75

N. Harada et al.

JAMSTEC Rep. Res. Dev., Volume 15, September 2012, 47_76

Sam

ple

IDSa

mpl

e N

o.

Cor

e de

pth

(cm

bsf)

Initi

al v

alue

(0

day)

(8 M

ay, 2

001)

2n

d (2

3 da

ys)

(3

1 M

ay, 2

001)

3rd

(120

day

s)(5

Sep

, 200

1)4t

h (1

67 d

ays)

(22

Oct

, 200

1)5t

h (2

17 d

ays)

(16

Jan,

200

1)6t

h (2

83 d

ays)

(7

Feb

, 200

1)7t

h (4

04 d

ays)

(13

Mar

, 200

1)8t

h (7

60 d

ays)

(10

Apr

, 200

1)9t

h (9

90 d

ays)

(5

Sep

, 200

1)10

th (

1722

day

s)(1

Apr

, 200

3)

TC

TN

OC

TC

TN

OC

TC

TN

OC

TC

TN

OC

TC

TN

OC

TC

TN

OC

TC

TN

OC

TC

TN

OC

TC

TN

OC

TC

TN

OC

MR

01-E

NG

MC

-1 H

and

4 W

und

er20

-25 ど

stor

e

11

0.54

0 0.

073

0.51

4 0.

598

0.07

0 0.

607

0.49

20.

065

0.48

1-

--

--

--

--

--

--

--

--

--

--

22

0.49

0 0.

068

0.47

3 0.

601

0.07

1 0.

492

--

-0.

462

0.06

10.

456

--

--

--

--

--

--

--

--

--

33

0.44

9 0.

065

0.42

5 0.

543

0.06

0 0.

436

--

--

--

0.42

9 0.

053

0.41

6 -

--

--

--

--

--

-0.

427

0.05

30.

403

44

0.45

4 0.

064

0.42

5 0.

456

0.06

0 0.

495

--

--

--

--

-0.

396

0.05

50.

408

--

--

--

--

--

--

55

0.45

0 0.

065

0.42

4 0.

436

0.05

6 0.

423

--

--

--

--

--

--

0.45

20.

057

0.41

40.

374

0.05

40.

372

0.41

20.

063

0.39

7-

--

66

0.40

0 0.

059

0.38

2 0.

400

0.05

9 0.

407

0.41

30.

058

0.04

0-

--

--

--

--

--

--

--

--

--

--

77

0.35

2 0.

052

0.34

0 0.

393

0.04

9 0.

382

--

-0.

368

0.05

70.

357

--

--

--

--

--

--

--

--

--

88

0.31

0 0.

047

0.30

2 0.

316

0.05

2 0.

394

--

--

--

0.34

90.

046

0.33

6-

--

--

--

--

--

-0.

335

0.04

30.

333

99

0.38

5 0.

061

0.36

2 0.

367

0.05

1 0.

354

--

--

--

--

-0.

339

0.05

40.

348

--

--

--

--

--

--

1010

0.38

4 0.

062

0.36

7 0.

324

0.05

1 0.

322

--

--

--

--

--

--

0.32

30.

044

0.34

70.

388

0.05

70.

348

0.36

10.

056

0.35

2-

--

1111

0.35

8 0.

064

0.36

6 0.

344

0.04

9 0.

348

0.32

30.

055

0.39

2-

--

--

--

--

--

--

--

--

--

--

1212

0.36

0 0.

059

0.35

7 0.

314

0.05

1 0.

318

--

-0.

340

0.05

10.

349

--

--

--

--

--

--

--

--

--

1313

0.37

1 0.

053

0.35

3 0.

339

0.04

9 0.

336

--

--

--

0.41

10.

054

0.40

3-

--

--

--

--

--

-0.

317

0.04

00.

310

1414

0.33

5 0.

057

0.32

9 0.

337

0.05

4 0.

311

--

--

--

--

-0.

347

0.05

60.

341

--

--

--

--

--

--

1515

0.35

6 0.

054

0.34

5 0.

349

0.04

7 0.

328

--

--

--

--

--

--

0.36

80.

045

0.31

40.

369

0.06

00.

367

0.36

80.

054

0.34

6-

--

1616

0.34

9 0.

050

0.35

6 0.

318

0.04

9 0.

332

0.34

60.

055

0.39

15-

--

--

--

--

--

--

--

--

--

--

1717

0.35

3 0.

052

0.34

7 0.

338

0.04

5 0.

315

--

-0.

320

0.06

10.

331

--

--

--

--

--

--

--

--

--

1818

0.33

2 0.

047

0.31

5 0.

308

0.04

9 0.

307

--

--

--

0.28

70.

040

0.27

6-

--

--

--

--

--

-0.

300

0.04

50.

293

1919

0.30

8 0.

049

0.31

4 0.

331

0.04

7 0.

325

--

--

--

--

-0.

287

0.04

90.

281

--

--

--

--

--

--

2020

0.29

2 0.

044

0.29

2 0.

295

0.04

6 0.

299

--

--

--

--

--

--

0.29

30.

041

0.28

60.

315

0.04

90.

282

0.26

40.

046

0.25

4-

--

2121

0.26

6 0.

056

0.23

9 0.

273

0.04

1 0.

259

0.24

70.

047

0.23

6-

--

--

--

--

--

--

--

--

--

--

2222

0.27

2 0.

054

0.25

7 0.

206

0.03

6 0.

209

--

-0.

250

0.04

10.

253

--

--

--

--

--

--

--

--

--

2323

0.27

2 0.

050

0.26

9 0.

246

0.03

8 0.

236

--

--

--

0.29

20.

042

0.29

0-

--

--

--

--

--

-0.

251

0.04

10.

250

2424

0.28

5 0.

056

0.27

5 0.

283

0.04

3 0.

285

--

--

--

--

-0.

276

0.04

40.

269

--

--

--

--

--

--

2525

0.25

4 0.

045

0.24

9 0.

291

0.04

2 0.

272

--

--

--

--

--

--

0.25

70.

043

0.25

20.

276

0.05

20.

253

0.27

50.

039

0.23

5-

--

2626

0.25

4 0.

045

0.24

5 0.

246

0.04

0 0.

209

0.23

50.

041

0.21

9-

--

--

--

--

--

--

--

--

--

--

2727

0.23

4 0.

041

0.23

2 0.

239

0.04

0 0.

233

--

-0.

234

0.04

60.

241

--

--

--

--

--

--

--

--

--

2828

0.23

7 0.

041

0.23

7 0.

220

0.03

8 0.

221

--

--

--

0.23

60.

029

0.22

4-

--

--

--

--

--

--

--

2929

--

-0.

258

0.03

8 0.

243

--

--

--

--

-0.

224

0.03

70.

211

--

--

--

--

--

--

MR

01-E

NG

MC

-1 H

and

4 W

und

er4 ど stor

e

11

com

mon

as

abov

e da

ta

0.48

20.

062

0.46

1-

--

--

--

--

--

--

--

--

--

--

22

--

-0.

482

0.06

50.

479

--

--

--

--

--

--

--

--

--

33

--

--

--

0.39

70.

052

0.38

3-

--

--

--

--

--

--

--

44

--

--

--

--

-0.

441

0.06

0.44

0-

--

--

--

--

0.46

30.

049

0.45

35

5-

--

--

--

--

--

-0.

438

0.06

0.43

10.

372

0.06

80.

359

0.45

00.

062

0.44

9-

--

66

0.38

90.

058

0.38

0-

--

--

--

--

--

--

--

--

--

--

77

--

-0.

333

0.04

60.

322

--

--

--

--

--

--

--

--

--

88

--

--

--

0.32

50.

045

0.31

0-

--

--

--

--

--

--

--

99

--

--

--

--

-0.

325

0.04

80.

313

--

--

--

--

-0.

318

0.04

90.

322

1010

--

--

--

--

--

--

0.37

60.

058

0.36

40.

476

0.06

40.

328

0.37

20.

049

0.33

0-

--

1111

0.32

30.

048

0.32

0-

--

--

--

--

--

--

--

--

--

--

1212

--

-0.

355

0.05

80.

358

--

--

--

--

--

--

--

--

--

1313

--

--

--

0.37

40.

048

0.33

0-

--

--

--

--

--

--

--

1414

--

--

--

--

-0.

318

0.04

90.

322

--

--

--

--

-0.

330.

045

0.32

915

15-

--

--

--

--

--

-0.

343

0.04

90.

361

0.32

60.

061

0.31

50.

335

0.06

10.

315

--

-16

160.

297

0.04

80.

294

--

--

--

--

--

--

--

--

--

--

-17

17-

--

0.25

40.

037

0.25

0-

--

--

--

--

--

--

--

--

-18

18-

--

--

-0.

295

0.03

50.

280

--

--

--

--

--

--

--

-19

19-

--

--

--

--

0.28

70.

044

0.27

7-

--

--

--

--

0.31

20.

045

0.27

920

20-

--

--

--

--

--

-0.

300

0.03

90.

330

0.29

80.

056

0.26

50.

297

0.05

60.

282

--

-21

210.

254

0.04

10.

244

--

--

--

--

--

--

--

--

--

--

-22

22-

--

0.25

70.

049

0.25

8-

--

--

--

--

--

--

--

--

-23

23-

--

--

-0.

264

0.03

80.

262

--

--

--

--

--

--

--

-24

24-

--

--

--

--

0.25

20.

040

0.24

3-

--

--

--

--

0.27

40.

044

0.25

625

25-

--

--

--

--

--

-0.

273

0.04

20.

306

0.28

40.

058

0.25

60.

260.

042

0.25

3-

--

2626

0.21

80.

036

0.20

4-

--

--

--

--

--

--

--

--

--

--

2727

--

-0.

305

0.04

40.

273

--

--

--

--

--

--

--

--

--

2828

--

--

--

0.27

70.

036

0.25

5-

--

--

--

--

--

--

--

2929

--

--

--

--

-0.

269

0.04

00.

237

--

--

--

--

--

--

App

endi

x 4-

2 C

hang

es in

TC

, OC

, and

TN

con

tent

s of

hem

ipel

agic

sed

imen

t cor

e M

R01

-EN

G M

C-0

1 st

ored

at R

T a

nd 4ど

.

76

Changes in properties of archived sediment

JAMSTEC Rep. Res. Dev., Volume 15, September 2012, 47_76

App

endi

x 4-

3 C

hang

es in

TC

, OC

, and

TN

con

tent

s of

coa

stal

sed

imen

t cor

e M

R01

-EN

G P

L-0

1 st

ored

at 4ど

with

and

with

out A

r ga

s.

Sam

ple

IDSa

mpl

e N

o.

Cor

e de

pth

(cm

bsf)

Initi

al v

alue

(0

day)

(1

0 D

ec, 2

001)

2nd

(280

day

s)(1

2 Fe

b, 2

002)

3rd

(694

day

s)(1

Apr

, 200

3)4t

h (

1057

day

s)

(27

Mar

, 200

4)5t

h (1

287

days

) (

12 N

ov, 2

004)

6th

(201

8 da

ys)

(21

Nov

, 200

6)

TC

TN

OC

TC

TN

OC

TC

TN

OC

TC

TN

OC

TC

TN

OC

TC

TN

OC

MR

01-E

NG

PL

-1 H

and

3 W

und

er4 ど

and

no A

r

12

0.74

4 0.

096

0.75

0 0.

778

0.09

4 0.

778

0.74

70.

120

0.73

0.70

10.

093

0.67

90.

67

0.08

7 0.

64

--

-

23

--

--

--

--

-0.

728

0.09

20.

707

35

0.78

1 0.

103

0.78

7 0.

894

0.09

1 0.

867

--

--

--

--

--

--

47

--

--

--

--

-0.

813

0.10

30.

808

58

0.91

4 0.

113

0.92

3 0.

895

0.10

5 0.

890

0.92

30.

146

0.89

70.

796

0.09

8-

0.76

0.

091

0.73

-

--

611

0.40

7 0.

063

0.41

6 0.

380

0.04

7 0.

388

--

--

--

--

--

--

713

--

--

--

--

-0.

362

0.05

60.

353

814

0.35

3 0.

056

0.36

0 0.

363

0.04

8 0.

366

0.39

10.

085

0.35

80.

377

0.05

70.

369

0.37

0.06

50.

371

--

-

917

0.32

8 0.

056

0.33

5 0.

336

0.04

5 0.

335

--

--

--

--

--

--

1019

--

--

--

--

-0.

311

0.04

70.

30

1120

0.33

3 0.

054

0.33

9 0.

300

0.04

8 0.

308

0.32

70.

081

0.30

50.

336

0.05

10.

310.

327

0.05

40.

319

--

-

1223

0.29

5 0.

048

0.29

5 0.

271

0.04

0 0.

278

--

--

--

--

--

--

1325

--

--

--

--

-0.

306

0.04

70.

296

1426

0.28

8 0.

047

0.29

7 0.

281

0.04

4 0.

290

0.30

20.

043

0.26

60.

324

0.05

10.

310.

310.

053

0.29

8-

--

1529

0.26

6 0.

045

0.26

4 0.

224

0.03

2 0.

227

--

--

--

--

--

--

1632

0.24

8 0.

041

0.24

2 -

--

--

--

--

--

--

--

MR

01-E

NG

PL

-1 H

and

3 A

und

er4 ど

with

Ar

12

0.81

00.

090

0.80

30.

744

0.12

20.

709

--

--

--

--

-

23

--

--

--

--

--

--

0.53

80.

067

0.52

6

35

0.87

80.

095

0.86

7-

--

0.75

30.

091

0.71

60.

779

0.10

40.

766

--

-

48

0.40

80.

054

0.40

30.

409

0.1

0.38

0.45

50.

065

0.44

20.

513

0.08

60.

503

0.42

10.

054

0.41

511

0.35

10.

046

0.34

7-

--

--

--

--

--

-

614

0.31

00.

045

0.30

30.

341

0.08

90.

298

0.36

60.

059

0.35

30.

322

0.06

60.

328

0.31

20.

045

0.30

6

717

0.28

90.

042

0.28

4-

--

--

--

--

--

-

820

0.34

00.

049

0.32

50.

292

0.08

30.

266

0.32

50.

052

0.30

30.

298

0.05

40.

293

0.31

10.

040.

304

923

0.27

10.

040

0.26

5-

--

--

--

--

--

-

1026

0.31

70.

043

0.25

90.

260.

083

0.22

20.

307

0.04

70.

281

0.27

0.04

70.

278

0.27

0.04

0.25

7

1129

0.20

40.

033

0.19

8-

--

--

--

--

--

-

1232

--

--

--

--

--

--

--

-