Chance constraints and distributionally robust …...Chance constraints and distributionally robust...

22
Chance constraints and distributionally robust optimization chance constraints approximations to chance constraints distributional robustness EE364b, Stanford University

Transcript of Chance constraints and distributionally robust …...Chance constraints and distributionally robust...

Page 1: Chance constraints and distributionally robust …...Chance constraints and distributionally robust optimization • chance constraints • approximations to chance constraints •

Chance constraints and

distributionally robust optimization

• chance constraints

• approximations to chance constraints

• distributional robustness

EE364b, Stanford University

Page 2: Chance constraints and distributionally robust …...Chance constraints and distributionally robust optimization • chance constraints • approximations to chance constraints •

Chance constraints

non-convex problem

minimize f0(x)

subject to Prob(fi(x, U) > 0) ≤ ǫ, i = 1, . . . ,m

safe approximation: find convex gi : Rn → R such that

gi(x) ≤ 0 implies Prob(fi(x, U) > 0) ≤ ǫ

• sufficient condition: find set U such that

Prob(U ∈ U) ≥ 1− ǫ set gi(x) = supu∈U

fi(x, u)

EE364b, Stanford University 1

Page 3: Chance constraints and distributionally robust …...Chance constraints and distributionally robust optimization • chance constraints • approximations to chance constraints •

Bounds on probability of error

• sometimes useful to directly bound Prob(fi(x, U) > 0) instead ofProb(U ∈ U)

• Value at risk of random Z is

VaR(Z; ǫ) = inf {γ | Prob(Z ≤ γ) ≥ 1− ǫ} = inf {γ | Prob(Z > γ) ≤ ǫ}

• equivalence of VaR and deviation:

VaR(Z; ǫ) ≤ 0 if and only if Prob(Z > 0) ≤ ǫ

EE364b, Stanford University 2

Page 4: Chance constraints and distributionally robust …...Chance constraints and distributionally robust optimization • chance constraints • approximations to chance constraints •

• Gaussians: if U ∼ N (µ,Σ) then xTU − γ ∼ N (µTx− γ, xTΣx) and

Prob(xTU ≤ γ) = Φ

(

γ − xTU√xTΣx

)

so

VaR(UTx− γ; ǫ) ≤ 0 iff γ ≥ µTx+Φ−1(1− ǫ)∥

∥Σ1/2x

2

convex iff ǫ ≤ 1/2

EE364b, Stanford University 3

Page 5: Chance constraints and distributionally robust …...Chance constraints and distributionally robust optimization • chance constraints • approximations to chance constraints •

Convex bounds on probability of error

• sometimes more usable idea: convex upper bounds on probability oferror

• simple observation: if φ : R → R is non-negative, non-decreasing

1 (z ≥ 0) ≤ φ(z)

• consequence: for all α > 0,

Prob(Z ≥ 0) ≤ Eφ(α−1Z),

• so ifEφ(α−1Z) ≤ ǫ, then Prob(Z ≥ 0) ≤ ǫ

EE364b, Stanford University 4

Page 6: Chance constraints and distributionally robust …...Chance constraints and distributionally robust optimization • chance constraints • approximations to chance constraints •

Perspective transforms and convex bounds

• perspective transform of function f : Rn → R is

fper(x, λ) = λf(x

λ

)

• jointly convex in (x, λ) ∈ Rn × R+ when f convex

• so for φ(·) ≥ 1 (·), better convex constraint (valid for all α > 0)

αEφ

(

f(x, U)

α

)

≤ αǫ

is convex in x, α if f is

EE364b, Stanford University 5

Page 7: Chance constraints and distributionally robust …...Chance constraints and distributionally robust optimization • chance constraints • approximations to chance constraints •

• optimize this bound,

infα≥0

{

αEφ

(

f(x, U)

α

)

− αǫ

}

≤ 0

• convex constraint satisfied implies that

Prob(f(x, U) > 0) ≤ ǫ

EE364b, Stanford University 6

Page 8: Chance constraints and distributionally robust …...Chance constraints and distributionally robust optimization • chance constraints • approximations to chance constraints •

Tightest convex relaxation

• set φ(z) = [1 + z]+, where [x]+ = max{x, 0}

infα≥0

{

αE

[

f(x, U)

α+ 1

]

+

− αǫ

}

= infα≥0

{

E [f(x, U) + α]+ − αǫ}

• conditional value at risk is

CVaR(Z; ǫ) = infα

{

1

ǫE [Z − α]+ + α

}

,

• key inequalities:

Prob(Z ≥ 0)− ǫ ≤ ǫCVaR(Z; ǫ)

EE364b, Stanford University 7

Page 9: Chance constraints and distributionally robust …...Chance constraints and distributionally robust optimization • chance constraints • approximations to chance constraints •

Interpretation of conditional value at risk

• minimize out α and find

0 =∂

∂α

{

α+1

ǫE [Z − α]+

}

= 1−1

ǫE1 (Z ≥ α) = 1−1

ǫProb(Z ≥ α).

• value at risk plus upward deviations: set α⋆ s.t. ǫ = Prob(Z ≥ α⋆),

CVaR(Z; ǫ) =1

ǫE [Z − α⋆]+ + α⋆ =

1

ǫE [Z − α⋆]+ +VaR(Z; ǫ)

• conditional expectation version:

E[Z | Z ≥ α⋆] = E[α⋆ + (Z − α⋆) | Z ≥ α⋆]

= α⋆ +E [Z − α⋆]+

Prob(Z ≥ α⋆)= α⋆ +

E [Z − α⋆]+ǫ

= CVaR(Z; ǫ).

EE364b, Stanford University 8

Page 10: Chance constraints and distributionally robust …...Chance constraints and distributionally robust optimization • chance constraints • approximations to chance constraints •

Benefits and drawbacks of CVaR

• easy to simulate, approximate well

• typically hard to evaluate exactly; not very tractable bounds

• e.g. f(x, U) = UTx and U ∼ Uniform{−1, 1}n gives combinatorial sum

• if available, analytic approximations using moment generating function(MGF) can give better behavior (notes)

EE364b, Stanford University 9

Page 11: Chance constraints and distributionally robust …...Chance constraints and distributionally robust optimization • chance constraints • approximations to chance constraints •

Portfolio optimization example

• n assets i = 1, . . . , n, random multiplicative return Ri withE[Ri] = µi ≥ 1, µ1 ≥ µ2 ≥ · · · ≥ µn

• asset i return varies in range Ri ∈ [µi − ui, µi + ui]

• data µi = 1.05 + 3(n−i)10n , uncertainty |ui| ≤ ui = .05 + n−i

2n and un = 0

• moment generating function approximation to VaR(RTx− t; ǫ) ≤ 0 is

t− µTx+

1

2log

1

ǫ‖diag(u)x‖2 ≤ 0

EE364b, Stanford University 10

Page 12: Chance constraints and distributionally robust …...Chance constraints and distributionally robust optimization • chance constraints • approximations to chance constraints •

1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14 1.16 1.180.0

0.04

0.08

0.12

0.16

0.2

0.24

RTx⋆an

RTx⋆mc

t⋆an t⋆mc

Monte-Carlo CVaR solution x⋆mc vs. analytic (MGF) approximation x⋆

an

EE364b, Stanford University 11

Page 13: Chance constraints and distributionally robust …...Chance constraints and distributionally robust optimization • chance constraints • approximations to chance constraints •

Distributionally robust optimization

stochastic optimization problems:

minimizex

EPf(x, S) =

f(x, s)dP (s)

distributionally robust formulation:

minimizex

supP∈P

EPf(x, S) = supP∈P

f(x, s)dP (s)

new question: how should we choose P?

EE364b, Stanford University 12

Page 14: Chance constraints and distributionally robust …...Chance constraints and distributionally robust optimization • chance constraints • approximations to chance constraints •

Choices of uncertainty sets

• moment-based conditions, e.g.

P = {P | EP [hi(S)] � bi}

for function hi : S → Rni

• “nonparametric” sets, using divergence-like quantities, e.g.

P = {P | Dkl (P ||P0) ≤ ρ}

• often estimate these based on sample S1, . . . , Sm

EE364b, Stanford University 13

Page 15: Chance constraints and distributionally robust …...Chance constraints and distributionally robust optimization • chance constraints • approximations to chance constraints •

Moment-based uncertainty

• general moment constraints: let Ki ⊂ Rni be convex cones,i = 1, . . . ,m, hi : S → Rni, and

P =

{

P |∫

hi(s)dP (s) �Kibi

}

• under constraint qualification (Rockafellar 1970, Isii 1963, Shapiro2001, Delage & Ye 2010)

supP∈P

f(s)dP (s) = infr,t,z

{

r +∑

i ti s.t. r ≥ f(s), zi ∈ K∗i

ti ≥ zTi bi − zTi hi(s), all s ∈ S

}

EE364b, Stanford University 14

Page 16: Chance constraints and distributionally robust …...Chance constraints and distributionally robust optimization • chance constraints • approximations to chance constraints •

Uncertainty from central limit theorems

• typical idea: start with some probabilistic understanding, work to getuncertainty set

• central limit theorem: for Si ∈ R, drawn i.i.d., Φ Gaussian CDF

Prob

(

1

m

m∑

i=1

Si ≥ ES +1√m

Var(S)t

)

→ Φ(−t)

• empirical confidence set: let Uρ = {u ∈ Rm | 1Tu = 0, ‖u‖2 ≤ ρ}

{

1

m

m∑

i=1

Si +1

m

m∑

i=1

uiSi | u ∈ Uρ

}

=

Sm ± ρ√m

1

m

m∑

i=1

(Si − Sm)2

EE364b, Stanford University 15

Page 17: Chance constraints and distributionally robust …...Chance constraints and distributionally robust optimization • chance constraints • approximations to chance constraints •

• slight extension of CLT implies

Prob

(

Sm − ρ√m

Varm(S) ≤ ES ≤ Sm +ρ√m

Varm(S)

)

= Prob(

ES ∈{

Sm + uTS/m | u ∈ Uρ

})

→ Prob(−ρ ≤ N (0, 1) ≤ ρ) = Φ(ρ)− Φ(−ρ)

• natural confidence set for distributionally robust optimization:

Pm,ρ ={

p ∈ Rn | 1Tp = 1, ‖p− 1/m‖2 ≤ ρ/m}

and

supp∈Pm,ρ

m∑

i=1

pif(x, Si)

EE364b, Stanford University 16

Page 18: Chance constraints and distributionally robust …...Chance constraints and distributionally robust optimization • chance constraints • approximations to chance constraints •

Divergence-based confidence sets

• general form of robustness set: φ-divergences

Dφ (P ||Q) =

φ

(

p(s)

q(s)

)

q(s)

where φ : R+ → R is convex, φ(1) = 0

• uncertainty set for Pm = 1m

∑mi=1 δSi

(empirical distribution)

Pm = {P : Dφ (P ||Pm) ≤ ρ/m}

• examples: φ(t) = (t− 1)2, φ(t) = t log t, φ(t) = − log t

EE364b, Stanford University 17

Page 19: Chance constraints and distributionally robust …...Chance constraints and distributionally robust optimization • chance constraints • approximations to chance constraints •

• can show (Duchi, Glynn, Namkoong) that for φ with φ′′(0) = 2 that forS1, . . . , Sm ∼ P0,

Prob

(

supP∈Pm

EPf(x, S) ≤ EP0f(x, S)

)

→ Φ(−ρ)

(and versions uniform in x too)

EE364b, Stanford University 18

Page 20: Chance constraints and distributionally robust …...Chance constraints and distributionally robust optimization • chance constraints • approximations to chance constraints •

Dual representation of divergence-based confidence sets

ifP = {P | Dφ (P ||P0) ≤ ρ}

then

supP∈P

EPZ = infα≥0,η

{

αEφ∗

(

Z − η

α

)

+ ρα+ η

}

• example: φ(t) = 12t

2 − 1 has

φ∗(u) =1

2(u)2+ + 1

so

supP∈P

EPf(x, S) = infη

{

1 + ρ(EP0(f(x, S)− η)2+)1/2 + η

}

EE364b, Stanford University 19

Page 21: Chance constraints and distributionally robust …...Chance constraints and distributionally robust optimization • chance constraints • approximations to chance constraints •

Portfolio optimization revisited

• returns R ∈ Rn, n = 20, domainX = {x ∈ Rn | 1Tx = 1, x ∈ [−10, 10]} (leveraging allowed)

• returns R ∼ N (µ,Σ)

• within simulation, µ, Σ chosen randomly

• recall Markowitz portfolio problem to

maximize1

m

m∑

i=1

RTi x−

ρ/m√

xTΣmx

where Σm = 1m

i(Ri −Rm)(Ri −Rm)T is empirical covariance

EE364b, Stanford University 20

Page 22: Chance constraints and distributionally robust …...Chance constraints and distributionally robust optimization • chance constraints • approximations to chance constraints •

20 40 60 80 1e2 2e2 4e2 6e2 8e2 1e3 2e3 3e3 4e3 5e3 6e3 7e3 8e3 9e3 1e4Number of Sample

−200

−150

−100

−50

0

50Portfolio: Coverage

SAAMarkowitzELNormal

compare returns of robust/empirical likelihood method, Markowitzportfolio, true gaussian results, sample average, 95% confidence

EE364b, Stanford University 21