Ch6 Series Solutions LE

download Ch6 Series Solutions LE

of 6

Transcript of Ch6 Series Solutions LE

  • 8/9/2019 Ch6 Series Solutions LE

    1/12

    CHAPTER 6

    (Power Series Method)

    Review of Power Series

    •−−−+−+−+=−∑

    =

    2

    210

    0

    )()()(   a xca xcca xcn

    n

    n

    is a power series in power of (x-a),

    where −−−,, 10   cc are real (complex ) constant and “a” is the centre of theseries.

    •−−−+++=∑

    =

    2

    210

    0

     xc xcc xcn

    n

    n

    is a power series in  x with centre at 0 (Maclaurin

    series).

    •   ∑=−=

     N 

    n

    n

    n N    a xc xS 0

    )()(

    is called nth partial sum.

    • If⇒∞

  • 8/9/2019 Ch6 Series Solutions LE

    2/12

    NOTE:  If a series coner!es for  Ra x   −  and for    Ra x   =− , it ma$ coner!e at eer$ point or on

    some points or ma$ not coner!e at all.

    HOW TO FIND RADIUS OF CONVERENCE R *

    R!tio Test:

    +ind L

    c

    c

    a xc

    a xc

    n

    n

    nn

    n

    n

    n

    n

    ==−−   +

    ∞→

    ++

    ∞→

    1

    1

    1

    limlim)(

    )(

    i. %he radius of coner!ence is  L R

      1=

    ii. If  Ra x   =−   then the test is inclusie

    iii. If  Ra x   >−    so series dier!es

    i. If  Ra x  

  • 8/9/2019 Ch6 Series Solutions LE

    3/12

    • 3 function f  is anal$tic at a point a if it can e represented $ a power

    series in )(   a x − with a positie or infinite radius of coner!ence.

    • Ter" wise !dditio# +−∑

    =0

    )(n

    n

    n   a xa ∑∞

    =

    −0

    )(n

    n

    n a xb

    '∑

    =

    −+0

    ))((n

    n

    nn   a xba

    • Ter" wise "$%ti&%i'!tio#

    •−∑∞

    =0

    )(n

    n

    n   a xa ∑∞

    =

    −0

    )(n

    n

    n a xb

    '

    n

    nnn

    n

    n   a xbabababa   )4(5 022110

    0   −+−−−+++   −−∞

    =∑

    • Series !dditio# in order o perform addition+−∑

    =l n

    n

    n   a xc   )( ∑∞

    =

    −k m

    m

    m   a xb   )(

     !ien

    series should satisf$ nmk l    ==  and,

     If the series correspond to a function sa$ 00( ) ( )nn

    n f x c x   x

    == −∑

    • %hen the radius of coner!ence is the distance of the closest sin!ular point

    from the centre of the series.

    "xample

    111

    1

    0

    2 =⇒=−−−+++=−   ∑

    =

     R x x x x   n

    n

    POWER SERIES METHOD

    (!si' "ethod to so%e *DE)

    • 6et a differential e7uation e in standard form

    )   0( ( ) y y P x Q x   y′′ ′+ + =.

    •  3 point “ x0” is called ordinar$ point if P ( x) and Q( x) are anal$tic at “ x0”,

    otherwise the point “ x0” will e called sin!ular (&e!ular, Irre!ular).

    "xamples

    #tandard form  )   0( ( ) y y P x Q x   y′′ ′+ + =  

    1.  88 8   s n   0i x y y ye x+ + =

    2.88 8   ln   0 x y y ye x+ + =

  • 8/9/2019 Ch6 Series Solutions LE

    4/12

    • THEORM 6+,

    E-iste#'e o. &ower series so%$tio#s: 

    If 0 x x =

    is an ordinar$ point of the differential e7uation   0)()(9   =+′+   y xQ y x P  y ,

     e can alwa$s find two linearl$ independent solutions in the form of power

    series centered at x0 that is∑

    =

    −=0

    0 )(n

    n

    n   x xc y

    .

     3 series solution coner!es at least on some interal  R x x  

  • 8/9/2019 Ch6 Series Solutions LE

    5/12

    0

    /

    1

    0,/2

    1

    .

  • 8/9/2019 Ch6 Series Solutions LE

    6/12

    ⇒=++++++ ∑ ∑ ∑∞

    =

    =

    =+   022)1)(2(1.2

    1 1 1

    022

    k k k 

    k    xcckxc xk k cc

    ⇒=++++++   ∑∞

    =

    +   0)22)1)(2((5221

    202

    k k k    xckck k ccc

    0202   022   cccc   −=⇒=+   (1)

    ,...,2,12

    2

    0)22()1)(2(

    2

    2

    =+

    −=

    ⇒=++++

    +

    +

    k ck 

    c

    ck ck k 

    k k 

    k k 

     (2)

    &elation (2) is @nown as &ecurrence +ormula.

    ii. 6et thencand c   01 10   ==  usin! &ecurrence formula

    0A

    2

    >

    1

    >

    1

    0<

    2

    2

    1

    2

    1

    02

    ,1

    1

    2

    11   >21   +−+−=⇒   x x x y

     =ow, letthencand c   10 10   ==  usin! &ecurrence formula, we !et

    2211

  • 8/9/2019 Ch6 Series Solutions LE

    7/12

    [ ]

    ( )   [ ]   ⇒=++++−++++

       

      

     ++++++++++

    0......2

    ...///2

    1...2012>2

    2

    210

    2

    21

    2

    <

    2

    2

     xc xc xcc xc xc xcc

     x x x x xc xc xcc

    [ ]   ⇒=++++−

       

       ++++++

    +++++

    t coefficiencomparin  xc xc xcc

     xccc xccc

     xc xc xcc

    0...

    ...)22

    1()2(

    ...2012>2

    2

    210

    21211

    <

    22

    )(0122

    1

    )(02>

    )(02

    21

    121

    012

    iiicccc

    iicccc

    iccc

    =+++

    =−++=−+

    6et−−−=

    −==⇒==   ,0,

    >

    1,

    2

    101 210   ccccand c

    −−−−+−+=⇒   21>

    1

    2

    11   x x y

     =ow let−−−

    −==−=⇒==   ,

    2

    1,

    >

    1,

    2

    110 210   ccccand c

    −−−−+−+−=⇒  2

    22

    1

    >

    1

    2

    1

     x x x x y

    ?ence, 2211   yC  yC  y   +=

  • 8/9/2019 Ch6 Series Solutions LE

    8/12

    #ection >.2

    #olution aout #in!ular ;oints

    Bien

      )   0( ( ) y y P x Q x   y′′ ′+ + =

     

    • %he point x0 is called re!ular sin!ular   point if the functions p(x) ' (x ! x0) ;( 

    and20( ) (   ))   (" x x x   Q x= −  are oth anal$tic at x = x0.

    Ctherwise irre!ular  sin!ular  point

    De.i#itio#

    3 function, f#x$, is called !#!%/ti' at x= x0 if the %a$lor series for f#x$ aout x= x0has a positie radius of coner!ence (series exist), if x0 ' 0 we hae Maclaurin

    series.

    • %he point x =  x0 is a re!ular sin!ular point if (x ! x0) has at most power 1 in

    the denominator of P ( x) and at most power 2 in the denominator of Q ( x).

    )   0( ( ) y y P x Q x   y′′ ′+ + ="xample

  • 8/9/2019 Ch6 Series Solutions LE

    9/12

    2

    2

    0

    first put the"7.in stander form

    0

    0

    0 poin

    .

    t

     y y y

     y y y

     y y y

     x x

     x

     x

     x

     x x x

     x x

    irreular 

    ′′ ′+ + =

    ′′ ′+ + =

    ′′ ′+ + =

    ⇒ =

    DDDDDDDDDDDDD..

    .int,0

    0)(

     poreular  x

     y y x x

    −=⇒=−′′+

    DDDDDDDDDDDDD.

    iii. irreular  xreular  x

     y x y x y x x

  • 8/9/2019 Ch6 Series Solutions LE

    10/12

    NOTE If r * and r 2 are the roots of indicial e7uation then

    C!se , 2121   r r and r r    −≠ is ne!atie inte!er  then solution will e

      

      

     + 

     

      

     =   ∑∑

      ∞

    =

    =   02

    0

    121

    n

    n

    n

    n

    n

    n

    r  xb xc xa xc y

    C!se 2  2121  r r and r r    −≠

      is a positie inte!er  then solution will e

          +=     =   ∑∑

      ∞

    =

    =   012

    0

    1121 ln

    n

    nn

    n

    nn

    r   xb x xCy yand  xa xc y

     y=c1 y

    1+c

    2 y

    2

    C!se 3 r r r    ==   21 then

       

      +=

    ≠  

      

     =

    ∑∞

    =

    =

    1

    12

    0

    0

    1

    ln

    0,

    n

    n

    n

    n

    n

    n

     xb x x y y

    a xa x y

     y=c1 y

    1+c

    2 y

    2

     =C%" If 1 y

     is @nown, "ethod o. red$'tio# o. order ma$ e used to !et

    ∫ 

      ∫ 

    =

    21

    12  y

    e

     y y

     pdx

    "xample

     0)1()1(   =+′−+′′−   y y x y x xSol+e

    #ol 3ssume

  • 8/9/2019 Ch6 Series Solutions LE

    11/12

    ∑∑  ∞

    =

    +∞

    =

    ==00   n

    r n

    n

    n

    n

    n

    r   xa xa x y

      is a solution.n r 

    n

    n r 

    n

    $ a (x r)x E$ a (n r)(n r )x

    + −

    + −′ = +

    ′′ = + + −∑∑

    *

    2*

    x(x )$ ( x )$ $′′ ′− + − + =* ' * 0

    ∑ ∑∑∑∑

    ⇒=++−++

    −++−−+++−++

    −++

    0)()(

    )1)(()1)((

    1

    1

    r n

    n

    r n

    n

    r n

    n

    r n

    n

    r n

    n

     xa xar n xar n

     xar nr n xar nr n

    { }{ }   )(0)()1)((

    1)()1)((1  , xar nr nr n

     xar nr nr nr n

    n

    r n

    n

    −−−−−−=++−++−+++−++

    ∑∑ −++

     

    { }

    { }   )(0)()1)((

    1)()1)((

    1  , xar nr nr n

     xar nr nr n

    r n

    n

    r n

    n

    −−−−−−=++−++−

    +++−++

    ∑∑

    −+

    +

    Indicial "7uation %a@e n ' 0 and select coefficient (except   na ) of the smallest

     power of  x e et 0)1(   =+−   r r r   the indicial e7uation. &oots of indiciale7uation are r ' 0 , 0 (doule root)

     =ow we need &ecurrence +ormula

    In (3), ta@e r ' 0 ⇒

    { }

    { }   )(0)()1)((

    1)()1)((

    1  , xar nr nr n

     xar nr nr n

    r n

    n

    r n

    n

    −−−−−−=++−++−

    +++−++

    ∑−+

    +

    { } { }   0)()1)((1)()1)((   1 =+−−++−   ∑∑   −nnnn   xannn xannn

    %a@in! n ' @  in 1st term and n -1 ' @ in 2nd term, we !et

  • 8/9/2019 Ch6 Series Solutions LE

    12/12

    { } { }@ @ @ @ (@)(@ ) (@) a x (@ )(@) (@ ) a x∑ ∑ +− + + − + + + =** ' * * * 0@ @ 

    a a a

    a a+= = =−−−−−−= ⇒

    =*

    *0 * 2

    r n

    n$ x a x x ( x x x ) if x

    x∑= = + + + + − − − = <

    −0 2 '

    *

    ** *

    *

     =ow*2 = y

    :se the reduction formula

    ∫   ∫ =−

    2

    1

    12 y

    e y y

     pdx

    x(x )$ ( x )$ $′′ ′− + − + =* ' * 0

    ∫    −=⇒−+=−−

    =

      2

    )1)(ln(1

    21

    )1(

    1

    )(   x x pdx x x x x

     x

     x P 

     x

     xdx

     x x

    dx x x

     x

     xdx

     x

    e

     x y

    e y y

     x x pdx

    =

    =−

    −−

    =

    −−

    =∫ 

    =

    ∫ 

    ∫ ∫ ∫ −−−

    1

    ln1

    1

    1

    )1(

    )1(

    1

    1

    )1(

    11

    12

    2

    2

    )1)(ln(

    2

    1

    12

    2

    2211   yc yc y   +=∴