Ch.46. I. Animal reproduction A. Asexual reproduction – mitotic division, no fertilization 1....

24
Ch.46

Transcript of Ch.46. I. Animal reproduction A. Asexual reproduction – mitotic division, no fertilization 1....

Page 1: Ch.46. I. Animal reproduction A. Asexual reproduction – mitotic division, no fertilization 1. Fission- separation of parent into two or more individuals.

Ch.46

Page 2: Ch.46. I. Animal reproduction A. Asexual reproduction – mitotic division, no fertilization 1. Fission- separation of parent into two or more individuals.
Page 3: Ch.46. I. Animal reproduction A. Asexual reproduction – mitotic division, no fertilization 1. Fission- separation of parent into two or more individuals.

• I.              Animal reproduction

• A.      Asexual reproduction – mitotic division, no fertilization

• 1.     Fission- separation of parent into two or more individuals of the same size.

• 2.     Budding new individual splits off original (Cnidaria).

• 3.     Fragmentation – breaking of the body into several pieces which will develop into new individuals.(sponges,cnidaria,annelids and tunicates).

• 4.     Allows for production of offspring without mates.

• 5.     Allows for reproduction in a short time.

Page 4: Ch.46. I. Animal reproduction A. Asexual reproduction – mitotic division, no fertilization 1. Fission- separation of parent into two or more individuals.
Page 5: Ch.46. I. Animal reproduction A. Asexual reproduction – mitotic division, no fertilization 1. Fission- separation of parent into two or more individuals.

• B.      Sexual reproduction – Fusion of gametes forming a diploid zygote.• C.      Reproductive cycles• 1.     Usually animals have seasonal cycles• a.     Conservation of resources and energy• b.     Allows for reproduction under favorable conditions• c.     Controlled by hormones and environment• 2.     Animals have various reproductive patterns – may be sexual or asexual or

alternating.• a.     Parthogenesis – egg develops without fertilization• b.     Daphnia switches between asexual and sexual depending on conditions.• c.     Male honey bees are produced by parthenogenesis, females develop from

fertilized eggs.• d.     Hermaphrodites – each individual has both functional male and female

reproductive parts. Most mate, each producing cross-fertilized eggs.• e.     Sequential hermaphroditism – reverses sex during lifetime.

Page 6: Ch.46. I. Animal reproduction A. Asexual reproduction – mitotic division, no fertilization 1. Fission- separation of parent into two or more individuals.
Page 7: Ch.46. I. Animal reproduction A. Asexual reproduction – mitotic division, no fertilization 1. Fission- separation of parent into two or more individuals.

• II.            Mechanisms of sexual reproduction• A.      Fertilization• 1.     Internal – sperm deposited in or near the female reproductive tract and

fertilization occurs inside the female body.• 2.     External – Eggs are shed and fertilized outside the body.• 3.     Pheromones – Chemical signals between organisms of the same species.• B.      Internal fertilization usually produces fewer offspring but survival

through development is greater due to protection and care of offspring.• C.      Complex systems• 1.     Some systems do not have gonads• 2.     Parasitic flatworms are have very complex reproductive systems.• 3.     Believe it or not insects have testis(male) and vagina(female).

Page 8: Ch.46. I. Animal reproduction A. Asexual reproduction – mitotic division, no fertilization 1. Fission- separation of parent into two or more individuals.

• III.          Mammalian reproduction

• A.      Human reproduction

• 1.     Male anatomy

• a.     Testes develop in abdomen and descend into scrotum before birth – this keeps the sperm 2 degrees below body temp.

• b.     Seminiferous tubules in the testes is where sperm is produced.

• c.     The sperm pass to the epididymus

• d.     At ejaculation sperm enter the vas deferens then the urethra and out.

• e.     Glands called the seminal vesicles secrete mucus, amino acids, fructose (energy), and prostaglandins.  Prostate secretes milky alkaline fluid which balances the acidity of the vagina.  Bulbourethral gland – secrete clear mucus right before ejaculation.

Page 9: Ch.46. I. Animal reproduction A. Asexual reproduction – mitotic division, no fertilization 1. Fission- separation of parent into two or more individuals.
Page 10: Ch.46. I. Animal reproduction A. Asexual reproduction – mitotic division, no fertilization 1. Fission- separation of parent into two or more individuals.
Page 11: Ch.46. I. Animal reproduction A. Asexual reproduction – mitotic division, no fertilization 1. Fission- separation of parent into two or more individuals.

• 2.     Female anatomy• a.     Ovaries – contains many follicles all formed at birth. One follicle a

month will mature after puberty• b.     During ovulation the egg is expelled leaving the corpus luteum which

secrete progesterone and additional estrogen• c.     If the egg is not fertilized the corpus luteum degenerates.• d.     The egg cell travels through the oviduct to the uterus• e.     Cervix – neck of the uterus, open to the vagina• f.      Vagina – repository for semen and birth canal.• g.     Hymen – covers vaginal opening until ruptured.• h.     Clitoris – small hood of skin• i.      Bartholin’s glands – secrete mucus to lubricate vagina.• j.      Mammary glands – small sacs of epithelial tissue that secrete milk.

Page 12: Ch.46. I. Animal reproduction A. Asexual reproduction – mitotic division, no fertilization 1. Fission- separation of parent into two or more individuals.
Page 13: Ch.46. I. Animal reproduction A. Asexual reproduction – mitotic division, no fertilization 1. Fission- separation of parent into two or more individuals.
Page 14: Ch.46. I. Animal reproduction A. Asexual reproduction – mitotic division, no fertilization 1. Fission- separation of parent into two or more individuals.

• B.      Spermatogenesis/oogenesis• 1.     Spermatogenesis is continuous in adult males (100-600 million per

ejaculation)• 2.     Occurs in seminiferous tubules of testes• 3.     Oogenesis is the development of the ova.• a.     begins in embryo• b.     all potential ova present at birth• c.     After puberty FSH stimulates follicle to enlarge and completion of

meiosis• d.     LH triggers ovulation• 4.     Differences • a.     All four cells produced during meiosis during spermatogenesis become

sperm, in oogenesis only one of the four will become a mature ova• b.     Spermatogenesis is continuous throughout adult life, oogenesis happens

only before birth• c.     Spermatogenesis is uninterrupted oogenesis has “resting periods”

Page 15: Ch.46. I. Animal reproduction A. Asexual reproduction – mitotic division, no fertilization 1. Fission- separation of parent into two or more individuals.
Page 16: Ch.46. I. Animal reproduction A. Asexual reproduction – mitotic division, no fertilization 1. Fission- separation of parent into two or more individuals.
Page 17: Ch.46. I. Animal reproduction A. Asexual reproduction – mitotic division, no fertilization 1. Fission- separation of parent into two or more individuals.

• C.      Hormone regulation• 1.     Male pattern• a.     Testosterone is the most important androgen

which is responsible for male development.• b.     GnRH from hypothalamus stimulates

pituitary to release LH (for androgen production) and FSH (increases sperm production)

Page 18: Ch.46. I. Animal reproduction A. Asexual reproduction – mitotic division, no fertilization 1. Fission- separation of parent into two or more individuals.

• 2.     Female patterns• a.     Estrous cycle – non-primate mammals• i.               Ovulation after the endometrium thickens• ii.             No pregnancy,endometrium reabsorbed• iii.            Affected by behavior and seasonal changes• iv.            Estrus is the only time copulation occurs• b.     Menstral cycle- primate mammals• i.               Ovulation as in estrous• ii.             No pregnancy, endometrium is shed- menstral flow• iii.            In humans ranges from 20-40 days(menstral flow = day 1)• iv.            Proliferative phase – regeneration of endometrium, 1- 2 weeks• v.             Secretory phase – 2 weeks, further thickening of endometrium• vi.            Ovarian cycle parallels menstral cycle• vii.          Follicular phase- follicles in ovaries begin to grow, egg is expelled• viii.         Luteal phase – after ovulation, left over follicular tissue becomes

corpus luteum which secretes hormones

Page 19: Ch.46. I. Animal reproduction A. Asexual reproduction – mitotic division, no fertilization 1. Fission- separation of parent into two or more individuals.
Page 20: Ch.46. I. Animal reproduction A. Asexual reproduction – mitotic division, no fertilization 1. Fission- separation of parent into two or more individuals.

• c.     Hormones• i.               GnRH from hypothalamus stimulates pituitary• ii.             FSH  from pituitary stimulate the follicles to grow and produce

estrogen• iii.            Estrogen stimulates hypothalamus to increase production of GnRH

(positive feedback) which increases FSH and LH• iv.            LH stimulates final maturation of follicle and ovulation• v.             Corpus luteum secretes progesterone which along with estrogen

inhibits GnRH production• vi.            LH declines and corpus luteum atrophies• vii.          Estrogen and progesterone levels drop and GnRH is produced –

process begins again• viii.         Menopause – ovaries lose responsiveness to LH and FSH•  

Page 21: Ch.46. I. Animal reproduction A. Asexual reproduction – mitotic division, no fertilization 1. Fission- separation of parent into two or more individuals.
Page 22: Ch.46. I. Animal reproduction A. Asexual reproduction – mitotic division, no fertilization 1. Fission- separation of parent into two or more individuals.
Page 23: Ch.46. I. Animal reproduction A. Asexual reproduction – mitotic division, no fertilization 1. Fission- separation of parent into two or more individuals.
Page 24: Ch.46. I. Animal reproduction A. Asexual reproduction – mitotic division, no fertilization 1. Fission- separation of parent into two or more individuals.