Ch3 Semiconductor Science and Light Emitting...

24
1 901 37500 光電導論 Chapter 3 Semiconductor Science and Light Emitting Diodes 2 901 37500 光電導論 Outline 3.1 Semiconductor Concepts and Energy Bands 3.2 Direct and Indirect Bandgap Semiconductor 3.3 pn Junction Principles 3.4 The pn Junction Band Diagram 3.5 Light Emitting Diodes 3.6 LED Materials 3.7 Heterojunction High Intensity LEDs 3.8 LED Characteristics 3.9 LEDs for Optical Fiber Communications 3 901 37500 光電導論 3-1 Semiconductor Concepts and Energy Bands 4 901 37500 光電導論 2 s Band Overlapping energy bands Electrons 2 s 2 p 3 s 3 p 1 s 1 s SOLID ATOM E = 0 Free electron Electron Energy, E 2 p Band 3s Band Vacuum level In a metal the various energy bands overlap to give a single band of energies that is only partially full of electrons. There are states with energies up to the vacuum level where the electron is free. ?1999 S.O. Kasap, Optoelectronics (Prentice Hall) A. Energy Band Diagrams Li : 3 e - (10 23 Li atoms) Metal: partially filled band

Transcript of Ch3 Semiconductor Science and Light Emitting...

  • 1

    901 37500 光電導論

    Chapter 3 Semiconductor Science and

    Light Emitting Diodes

    2

    901 37500 光電導論

    Outline3.1 Semiconductor Concepts and Energy Bands3.2 Direct and Indirect Bandgap Semiconductor3.3 pn Junction Principles3.4 The pn Junction Band Diagram3.5 Light Emitting Diodes3.6 LED Materials3.7 Heterojunction High Intensity LEDs3.8 LED Characteristics3.9 LEDs for Optical Fiber Communications

    3

    901 37500 光電導論

    3-1 Semiconductor Concepts and Energy Bands

    4

    901 37500 光電導論

    2 s Band

    Overlapping energybands

    Electrons2 s2 p

    3 s3 p

    1 s 1sSOLIDATOM

    E = 0

    Free electronElectron Energy, E

    2 p Band

    3s BandVacuum

    level

    In a metal the various energy bands overlap to give a single bandof energies that is only partially full of electrons. There are stateswith energies up to the vacuum level where the electron is free.?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

    A. Energy Band Diagrams

    Li : 3 e- (1023 Li atoms)

    Metal: partially filled band

  • 5

    901 37500 光電導論

    Electron energy, E

    Conduction Band (CB)Empty of electrons at 0 K.

    Valence Band (VB)Full of electrons at 0 K.

    Ec

    Ev

    0

    Ec+χ

    (b)

    Band gap = Eg

    (a)

    Covalent bond Si ion core (+4e)

    (a) A simplified two dimensional view of a region of the Si crystalshowing covalent bonds. (b) The energy band diagram of electrons in theSi crystal at absolute zero of temperature.

    SemiconductorValence band (VB)Conduction band (CB)Electron affinity χBandgap (Eg)

    6

    901 37500 光電導論

    e–hole

    CB

    VB

    Ec

    Ev

    0

    Ec+χ

    EgFree e–hυ > Eg

    Hole h+

    Electron energy, E

    (a) A photon with an energy greater than Eg can excite an electron from the VB to the CB.(b) Each line between Si-Si atoms is a valence electron in a bond. When a photon breaks aSi-Si bond, a free electron and a hole in the Si-Si bond is created.

    (a) (b)

    Effective mass:Electron in CB: me*Hole in VB: mh*

    (take into account the e- in the CB interacts with a “periodic potential” as it movers through the crystal)

    viewed as free carriers with an effective mass

    7

    901 37500 光電導論

    B. Semiconductor Statistics

    ( )21

    =FEf However, there may be no state.

    1( )1 exp F

    B

    f EE E

    k T

    =⎛ ⎞−

    + ⎜ ⎟⎝ ⎠

    (1)Probability of finding e- with energy E(Fermi-Dirac function)

    Density of States (DOS) ( ) 21)( cCB EEEg −∝

    Probability of finding h+ with energy E )(1 Ef−

    eVEF =Δ (2)Electric work input or output per e-

    In equilibrium, no applied field, under dark environment:

    FE( : uniform)0=Δ FE

    Under applied potential V:

    (# of e- states per unit energy per unit volume)

    8

    901 37500 光電導論

    E

    g(E) fE)

    EF

    nE(E) or pE(E)

    E E

    Forelectrons

    For holes

    [1–f(E)]

    nE(E)

    pE(E)

    Area = p

    Area = � nE(E)dE = n

    Ec

    EvEv

    Ec

    0

    Ec+χ

    EF

    VB

    CB

    (a) (b) (c) (d)g(E) ∝ (E–Ec)

    1/2

    (a) Energy band diagram. (b) Density of states (number of states per unit energy perunit volume). (c) Fermi-Dirac probability function (probability of occupancy of astate). (d) The product of g(E) and f(E) is the energy density of electrons in the CB(number of electrons per unit energy per unit volume). The area under nE(E) vs. E isthe electron concentration.

    ∫ == ndEEnArea E )(

  • 9

    901 37500 光電導論

    ( ) ( ) ( ) StatisticsBoltzmann exp ⎟⎠⎞

    ⎜⎝⎛ −−≈→>>− Tk

    EEEfTkEEB

    fBfc

    g ( ) ( )cc

    E

    CBEn E f E dE

    χ+= ∫ (3)

    Electron concentration in CB

    exp c FcB

    E En Nk T

    ⎡ ⎤−= −⎢ ⎥

    ⎣ ⎦(4)

    [ ] 2/32* /22 hTkmN Bec π=Effective DOS at the CB edge

    Non-degenerate Semiconductor(# of e-h+ from Ed (B- site) into VB

    at room temperature

  • 13

    901 37500 光電導論

    e hen epσ μ μ= +2i

    d e h d ed

    neN e eNN

    σ μ μ μ⎛ ⎞

    = + ≈⎜ ⎟⎝ ⎠

    (8)

    (9)

    C. Extrinic Semiconductorsn-type semiconductor: add pentavalent impurity.Donor impurity: e.g. As in Si, --> As+ +e-Nd>>ni

    2

    , idnn N pn

    ≈ =

    Semiconductor conductivityn-type conductivity

    P-type semiconductor: add trivalent impurityAcceptor impurity: e.g. B in Si, --> B- +h+Na>>ni

    pnnNp ia

    2

    , ==p-type conductivity haeN μσ ≈

    Electrons: majority carrier; Holes: minority carrier

    nono ppnn == ,

    ,po pon n p p= =

    (in equilibrium)

    (in equilibrium)

    14

    901 37500 光電導論

    Ec

    Ev

    EFi

    CB

    EFp

    EFnEc

    Ev

    Ec

    EvVB

    (a) (c)(b)

    Energy band diagrams for (a) intrinsic (b) n-type and (c) p-typesemiconductors. In all cases, np = ni2. Note that donor and acceptorenergy levels are not shown.

    ?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

    The level of EF determines the electron and hole concentrations.

    ⎥⎦

    ⎤⎢⎣

    ⎡ −−=

    TkEENn

    B

    FnCC exp ⎥

    ⎤⎢⎣

    ⎡ −−=

    TkEE

    NpB

    VFpV exp

    1 1 ln2 2

    cFi v g

    v

    NE E E kTN

    ⎛ ⎞= + − ⎜ ⎟

    ⎝ ⎠

    (quasi-Fermi level: EFn & EFp)

    exp Fn FiiB

    E En nk T

    ⎡ ⎤−= ⎢ ⎥

    ⎣ ⎦exp Fi Fpi

    B

    E Ep p

    k T−⎡ ⎤

    = ⎢ ⎥⎣ ⎦

    ni

    15

    901 37500 光電導論

    D. Compensation Doping

    Doping of semiconductor with both donors and acceptors to control the properties.

    Electrons (from donors) recombine with holes (from acceptors)

    nnp

    nNNn

    i

    iad2

    =

    >>−=

    pnn

    nNNp

    i

    ida2

    =

    >>−=

    p-type n-type n-type p-type

    n p => recombination

    Finally, 2inp n=

    16

    901 37500 光電導論

    CB

    g(E)

    E

    Impuritiesforming a band

    (a) (b)

    EFp

    Ev

    EcEFn

    Ev

    Ec

    CB

    VB

    (a) Degenerate n-type semiconductor. Large number of donors form aband that overlaps the CB. (b) Degenerate p-type semiconductor.

    E. Degenerate and Non-degenerate SemiconductorsNon-degenerate semiconductor:

    The electron statistics ~the Boltzmann statistics (4)Pauli exclusion principle can be neglected.

    vc NpNn

  • 17

    901 37500 光電導論

    In degenerate semiconductor:n ≠ Ndp ≠ Nanp ≠ ni2

    When dopant concentration is large

    dopants interact with each other

    not all dopants can become ionized

    Saturation of carrier concentration ~ 1020/cm3

    For Si:

    (heavy doping)

    18

    901 37500 光電導論

    F. Energy BandDiagrams in an Applied Field

    V

    n-Type Semiconductor

    Ec

    EF − eV

    A

    B

    V(x), PE (x)

    x

    PE (x) = � eV

    Energy band diagram of an n-type semiconductor connected to avoltage supply of V volts. The whole energy diagram tilts becausethe electron now has an electrostatic potential energy as well

    EElectron Energy

    Ec − eV

    Ev− eV

    V(x)

    EF

    Ev

    -eV(potential energy of e-)

    EF uniform ΔEF=0

    Applied field ΔEFe- concentration uniform⇒EC-EV constant⇒CB, VB, and EF bend

    by the same amount

    19

    901 37500 光電導論

    Example 3.1.1 Fermi levels in semiconductors(1) n-type doping of Si wafer: 1016/cm3 antimony (Sb) atoms

    Find: Fermi energy w. r. t. Fermi energy EFi in the intrinsic Si

    (2) Compensated doping of Si wafer: 1016/cm3 antimony (Sb) atoms (n-type) and 2×1017/cm3 boron (B) atoms (p-type)

    Find: (a) Fermi energy w. r. t. Fermi energy EFi in the intrinsic Si at room temperature (300K)

    (b) Fermi energy w. r. t. Fermi energy in the n-type case in (1)

    20

    901 37500 光電導論

    (1) n-type doping of Si wafer: 1016/cm3 antimony (Sb) atomsFind: Fermi energy w. r. t. Fermi energy EFi in the intrinsic Si

    ( )

    ( )[ ]( )[ ]

    ( )[ ]( ) ( ) ( ) eVeVnNTkEE

    TkEEnNNTkEENn

    TkEENncmNn

    cmnNcmN

    idBFiFn

    BFiFnid

    dBFncc

    BFicci

    d

    id

    d

    348.01045.1/10ln0259.0/ln

    /exp/

    /exp/exp

    10

    1045.1

    ,10

    1016

    316

    310

    316

    =×==−

    −=

    =−−=−−=

    ==

    ×=>>

    =

    exp Fn FiiB

    E En nk T

    ⎡ ⎤−= ⎢ ⎥

    ⎣ ⎦

  • 21

    901 37500 光電導論

    (2) Compensated doping of Si wafer: 1016/cm3 antimony (Sb) atoms (n-type) and 2×1017/cm3 boron (B) atoms (p-type)

    Find: (a) Fermi energy w. r. t. Fermi energy EFi in the intrinsic Si at room temp. (b) Fermi energy w. r. t. Fermi energy in the n-type case in (1)

    ( )( )[ ]

    ( )[ ]( )[ ]

    ( ) ( ) ( ) eVeVnpTkEETkEEnp

    NNTkEENpTkEENnp

    cmNNpcmNcmN

    iBFiFp

    BFiFpi

    daBvFpv

    BvFivi

    da

    da

    424.01045.1/109.1ln0259.0/ln

    /exp/

    /exp

    /exp109.110102

    10102

    1017

    3171617

    316317

    −=××−=−=−

    −−=

    −=−−=

    −−==×=−×=−=

    =>×=−

    −− (P-type)

    exp Fi FpiB

    E Ep n

    k T−⎡ ⎤

    = ⎢ ⎥⎣ ⎦

    22

    901 37500 光電導論

    Example 3.1.2 ConductivityGiven: (a) N-type Si crystal with doping 1016/cm3 phosphorus (P)

    (b) Drift mobility of electrons is ~ 1350 cm2V-1s-1

    Find: conductivity of the n-type Si

    • Since

    • The electron concentration

    • We can neglect the hole concentration

    • Thus

    ( )

    ( )( )( ) 1111231619

    2

    310316

    16.21350100.1106.1

    ,/

    1045.110

    −−−−−−

    −−

    Ω=××==

  • 25

    901 37500 光電導論

    r

    PE(r)PE of the electron around anisolated atom

    When N atoms are arranged to formthe crystal then there is an overlapof individual electron PE functions.

    x

    V(x)

    x = Lx = 0 a 2a 3a

    0aa

    Surface SurfaceCrystal

    PE of the electron, V(x), insidethe crystal is periodic with aperiod a.

    The electron potential energy (PE), V(x), inside the crystal is periodic with the sameperiodicity as that of the crystal, a. Far away outside the crystal, by choice, V = 0 (theelectron is free and PE = 0).

    ?1999 S O Kasap Optoelectronics (Prentice Hall)

    26

    901 37500 光電導論

    0)]([2 222

    =−+ ψxVEmdxψd e

    ( ) ( ) ; 1 , 2 , 3 ,V x V x ma m= + =

    (1)

    ( ) ( ) exp( )k kx U x jkxψ =

    (2)(3)

    Schrodinger Equation

    Periodic Potential

    Bloch Wavefunctions

    The electron in a crystal

    ( ) wavetraveling)(

    )(on dependfunction periodic

    →⋅

    →− Etjjkx

    k

    ee

    xVxU

    , ( , ) exp( / ) ( )nn k n kx t jE t xψ ψ= −Overall electron wavefunction

    kn: a state in Ek

    nkCrystal momentum:( ) / extd k dt F=

    27

    901 37500 光電導論

    Ek

    kš /a–š /a

    Ec

    Ev

    ConductionBand (CB)

    Ec

    Ev

    CB

    The E-k Diagram The Energy BandDiagram

    Empty ψk

    Occupied ψkh+

    e-

    Eg

    e-

    h+

    VB

    ValenceBand (VB)

    The E-k diagram of a direct bandgap semiconductor such as GaAs. The E-kcurve consists of many discrete points with each point corresponding to apossible state, wavefunction ψk(x), that is allowed to exist in the crystal.The points are so close that we normally draw the E-k relationship as acontinuous curve. In the energy range Ev to Ec there are no points (ψk(x)solutions).

    E-k Diagram = 0K, all fill the lower states> 0K, from VB to CB (thermal)

    -π/a π/a

    kCrystal momentumof a electron:

    ( ) / extd k dt F=

    many discrete points=> continuous curve

    Bandgap: no solution

    28

    901 37500 光電導論

    E

    CB

    k–k

    Direct Bandgap

    (a) GaAs

    E

    CB

    VB

    Indirect Bandgap, Eg

    k–k

    kcb

    (b) Si

    E

    k–k

    Phonon

    (c) Si with a recombination center

    EgEc

    EvEc

    Evkvb VB

    CB

    ErEc

    Ev

    Photon

    VB

    (a) In GaAs the minimum of the CB is directly above the maximum of the VB. GaAs istherefore a direct bandgap semiconductor. (b) In Si, the minimum of the CB is displaced fromthe maximum of the VB and Si is an indirect bandgap semiconductor. (c) Recombination ofan electron and a hole in Si involves a recombination center .

    ?1999 S O K O l (P i H ll)

    Direct bandgap semiconductor: e.g. GaAs

    Indirect bandgap semiconductor: e.g. Sirecombination via a recombination center: defect or impurityphonons (lattice vibrations, quantized, waves)

    photon momentum: negligible as compared with electron momentum

    kcrystal momentum:

    ( ) / extd k dt F=

    Conservation: energy + momentum

    (defects or impurities)

  • 29

    901 37500 光電導論

    3-3 pn Junction Principles

    30

    901 37500 光電導論

    nno

    xx = 0

    pno

    ppo

    npo

    log(n), log(p)

    -eNa

    eNd

    M

    x

    E (x)

    B-

    h+

    p n

    M

    As+

    e–

    Wp Wn

    Neutral n-regionNeutral p-region

    Space charge region Vo

    V(x)

    x

    PE(x)

    Electron PE(x)

    Metallurgical Junction

    (a)

    (b)

    (c)

    (e)

    (f)

    x

    –WpWn

    (d)

    0

    eVo

    x (g)

    –eVo

    Hole PE(x)

    –Eo

    Eo

    M

    ρnet

    M

    Wn–Wp

    ni

    A. Open circuit

    (abrupt discontinuity)

    NdNa

    NdNa

    2inp n=

    no applied fieldor photoexcitation

    equilibrium

    concentration gradient=> diffusion I

    electrical field=> drift I

    Equilibrium: diffusion I = drift I

    ndpa WNWN =charge neutrality

    (Depletion region)(layer)

    (SCL)

    Banddiagram

    31

    901 37500 光電導論

    ndpa WNWN = (1)

    (2)21

    2 2 ( )a d o

    o o oa d

    eN N WV E WN Nε

    = − =+ (3)

    Depletion widths

    Built-in field

    Built-in potential

    2lna dB

    oi

    N Nk TVe n

    ⎛ ⎞= ⎜ ⎟

    ⎝ ⎠

    (4)

    (5)

    (6)

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛=

    po

    noBo n

    nlneTkV

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛=

    no

    poBo p

    peTkV ln

    Build-in potential

    ( )ε

    ρ xdx

    dE net=

    dxdVE −=

    ( )TkeVpp Bopono −= exp

    ( )TkeVnn Bonopo −= expMinority/majority

    ( ) energy potential is where,exp 121

    2 ETk

    EEnn

    B⎥⎦

    ⎤⎢⎣

    ⎡ −−=

    By Boltzmann statistics

    εεpand WeNWeNE −=−=0

    2exp( )gc v iB

    Enp N N n

    k T= − =

    32

    901 37500 光電導論

    Neutral n-regionNeutral p-regionEo – E

    Log (carrier concentration)

    Holediffusion

    Electrondiffusion

    np(0)

    Minute increase

    pn(0)

    pnonpo

    pponno

    V

    Excess holes

    Excess electrons

    x′x

    (a)

    W

    e(Vo–V)eVo M

    x

    Wo

    Hole PE(x)

    (b)

    SCL

    Forward biased pn junction and the injection of minority carriers (a) Carrierconcentration profiles across the device under forward bias. (b). The holepotential energy with and without an applied bias. W is the width of the SCLwith forward bias

    B. Forward BiasVoltage drop across SCL or depletion region W

    Reduce the built-in potential against diffusion Result in the injection of excess minority carrier and small increase in the majority carrier

    (charge neutrality)

    Banddiagram

  • 33

    901 37500 光電導論

    (0 ) ex pn n oB

    eVp pk T

    ⎡ ⎤= ⎢ ⎥

    ⎣ ⎦ (8)Law of the junction(just outside Wn)

    ( )(0 ) ex p on p oB

    e V Vp pk T

    ⎡ ⎤− −= ⎢ ⎥

    ⎣ ⎦(7)Excess holes at x’=0

    (0 ) ex pp p oB

    eVn nk T

    ⎛ ⎞= ⎜ ⎟

    ⎝ ⎠ (9)Law of the junction(just outside Wp)

    ( ') (0 ) ex p ( '/ )n n hp x p x LΔ = Δ − (10)Excess minority carrier concentration, : diffusion coefficient

    : mean hole recomb. lifetimeh h h h

    h

    L D Dττ

    =Hole diffusion length

    (due to reduction in built-in potential barrier)

    2 12 1 exp

    B

    E En nk T

    ⎛ ⎞−= −⎜ ⎟

    ⎝ ⎠

    V=0 =>

    e-

    e-h+ e

    -

    (p and n-regions are longer than diffusion length of minority carriers)

    34

    901 37500 光電導論

    Jelec

    x

    n-region

    J = Jelec + Jhole

    SCL

    Minority carrier diffusioncurrent

    Majority carrier diffusionand drift current

    Total current

    Jhole

    Wn–Wp

    p-region

    J

    The total currentanywhere in the device isconstant. Just outside thedepletion region it is dueto the diffusion ofminority carriers.

    ?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

    e-

    e-h+ e

    -

    35

    901 37500 光電導論

    ,( ') ( ')

    ' 'n n

    D hole h hdp x d p xJ eD eD

    dx dxΔ

    = − = −

    ,'(0) exphD hole n

    h h

    eD xJ pL L

    ⎛ ⎞ ⎛ ⎞= ⋅ Δ −⎜ ⎟ ⎜ ⎟

    ⎝ ⎠ ⎝ ⎠(11)

    2, , exp 1h eD hole D elec i

    h d e a B

    eD eD eVJ J J nL N L N k T

    ⎡ ⎤⎛ ⎞ ⎛ ⎞= + = + −⎢ ⎥⎜ ⎟ ⎜ ⎟

    ⎝ ⎠⎝ ⎠ ⎣ ⎦

    exp 1soB

    eVJ Jk T

    ⎡ ⎤⎛ ⎞= −⎢ ⎥⎜ ⎟

    ⎝ ⎠⎣ ⎦(12)or

    Hole diffusion current density

    Assume electron and hole currents don’t change across the SCL.

    Shockley diode equation

    ⎥⎦

    ⎤⎢⎣

    ⎡−⎟⎟

    ⎞⎜⎜⎝

    ⎛⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛= 1

    2

    TkeVexp

    NLneDJ

    Bdh

    ihhole,DAt x’=0

    At x’=0

    Jso: reverse saturation current densitysoBr JJmVeTkV −=≈>− ),25/( :bias reverse

    (0 ) ex pn n oB

    eVp pk T

    ⎡ ⎤= ⎢ ⎥

    ⎣ ⎦

    The total current density

    (narrow junction and neglect e-h recombination)

    36

    901 37500 光電導論

    C

    WnWp

    Log (carrier concentration)

    np(0)pnonpo

    ppo nno

    V

    x

    p-sideSCL

    pn(0)

    pM

    M

    nM

    n-side

    B

    HolesElectrons

    A D

    Forward biased pn junction and the injection ofcarriers and their recombination in the SCL.

    Some of the minority carriers will recombine in the depletion region.

    a symmetrical pn junction, at the junction C MM np =

  • 37

    901 37500 光電導論

    exp2M i B

    eVp nk T

    ⎛ ⎞= ⎜ ⎟

    ⎝ ⎠

    exp2 2

    pi nrecom

    e h B

    Wen W eVJk Tτ τ

    ⎡ ⎤ ⎛ ⎞= + ⎜ ⎟⎢ ⎥

    ⎝ ⎠⎣ ⎦

    exp 1oB

    eVI Ik Tη

    ⎡ ⎤⎛ ⎞= −⎢ ⎥⎜ ⎟

    ⎝ ⎠⎣ ⎦

    (14)

    (15)

    1 12 2p M n M

    recome h

    e W n e W pJ

    τ τ≈ + (13)

    Diode Equation

    Recombination current

    Consider a symmetrical pn junction, at the junction C,Electrons recombine in Wp and holes recombine in Wn.

    MM np =

    n, pWin ion timerecombinat (electron) holemean :e h,τdt

    dQJ =

    η=1, diffusion controlledη=2, SCL recombination controlled

    ⎥⎦

    ⎤⎢⎣

    ⎡−⎟⎟

    ⎞⎜⎜⎝

    ⎛= 1

    2exp

    TkeVJJ

    Brorecom

    Diode ideality factor

    (Vo-V)/2 at M

    38

    901 37500 光電導論

    nA

    I

    Shockley equation

    Space charge layergeneration.

    V

    mAReverse I-V characteristics of apn junction (the positive andnegative current axes havedifferent scales)

    I = Io[exp(eV/ηkBT) − 1]

    exp 1oB

    eVI Ik Tη

    ⎡ ⎤⎛ ⎞= −⎢ ⎥⎜ ⎟

    ⎝ ⎠⎣ ⎦Diode Equation η=1, diffusion controlled

    η=2, SCL recombination controlled

    ⎥⎦

    ⎤⎢⎣

    ⎡−⎟⎟

    ⎞⎜⎜⎝

    ⎛= 1

    2exp

    TkeVJJ

    Brorecomexp 1diffusion so

    B

    eVJ Jk T

    ⎡ ⎤⎛ ⎞= −⎢ ⎥⎜ ⎟

    ⎝ ⎠⎣ ⎦

    39

    901 37500 光電導論

    WoWo

    Neutral n-regionNeutral p-region

    x

    W

    HolesElectrons

    DiffusionDrift

    x

    (a)(b)

    ThermallygeneratedEHP

    pnonpo

    Vr

    Eo+E

    Minority CarrierConcentration

    e(Vo+Vr)eVo

    W(V = –Vr)

    MHole PE(x)

    Reverse biased pn junction. (a) Minority carrier profiles and the origin of thereverse current. (b) Hole PE across the junction under reverse bias

    ?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

    C. Reversed Bias

    Banddiagram

    40

    901 37500 光電導論

    g

    ii

    ae

    e

    dh

    h eWnnNL

    eDNL

    eDJτ

    +⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛+= 2rev (17)

    Total Reverse Current

    g

    ieWnJτ

    =gen (16)EHP thermal generation in SCL

    :gτ mean thermal generation time

    Shockley diode equation

    direction reverse:""

    2

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛+−=−=

    in

    NLeD

    NLeDJJ

    ae

    e

    dh

    hso

    exp 1soB

    eVJ Jk T

    ⎡ ⎤⎛ ⎞= −⎢ ⎥⎜ ⎟

    ⎝ ⎠⎣ ⎦soBr JJmVeTkV −=≈>>− ),25/( :bias reverse

    (indep. of Vr)reverse saturation current density

    (cf. photodetectors and solar cells: EHP generation also by photons )

    (J

  • 41

    901 37500 光電導論

    nA

    I

    Shockley equation

    Space charge layergeneration.

    V

    mAReverse I-V characteristics of apn junction (the positive andnegative current axes havedifferent scales)

    I = Io[exp(eV/ηkBT) − 1]

    g

    ii

    ae

    e

    dh

    h eWnnNL

    eDNL

    eDJτ

    +⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛+= 2rev

    exp 1oB

    eVI Ik Tη

    ⎡ ⎤⎛ ⎞= −⎢ ⎥⎜ ⎟

    ⎝ ⎠⎣ ⎦Diode Equation η=1, diffusion controlled

    η=2, SCL recombination controlled

    ⎥⎦

    ⎤⎢⎣

    ⎡−⎟⎟

    ⎞⎜⎜⎝

    ⎛= 1

    2exp

    TkeVJJ

    Brorecomexp 1diffusion so

    B

    eVJ Jk T

    ⎡ ⎤⎛ ⎞= −⎢ ⎥⎜ ⎟

    ⎝ ⎠⎣ ⎦

    42

    901 37500 光電導論

    0.002 0.004 0.006 0.0081/Temperature (1/K)

    10 -16

    10 -14

    10 -12

    10 -10

    10 -8

    10 -6

    10 -4

    Reverse diode current (A) at V = −5 V

    Ge Photodiode323 K

    238 K0.33 eV

    0.63 eV

    Reverse diode current in a Ge pnjunction as a function of temperature ina ln( Irev ) vs. 1/ T plot. Above 238 K, Irevis controlled by ni2 and below 238 K itis controlled by ni. The vertical axis isa logarithmic scale with actual currentvalues. (From D. Scansen and S.O.Kasap, Cnd. J. Physics. 70 , 1070-1075,1992.)

    ?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

    ( )

    ( )

    2

    238 K1ln v.s. 0.63 eV~ 0.66 eV ,

    238 K11ln v.s. 0.33 eV~2

    rev g rev i

    rev g rev i

    T

    I E I nTT

    I E I nT

    >

    = = → ∝

    <

    = → ∝

    exp( )2

    gi c v

    B

    En N N

    k T= −

    ⎥⎥⎦

    ⎢⎢⎣

    ⎡+⎟⎟

    ⎞⎜⎜⎝

    ⎛+=

    g

    ii

    ae

    e

    dh

    h eWnnNL

    eDNL

    eDAIτ

    2rev

    43

    901 37500 光電導論

    1/ 2

    1/ 2

    ( )( ) 2( )

    a ddep

    o a d

    e N NA ACW V V N N

    εε ⎡ ⎤= = ⎢ ⎥− +⎣ ⎦

    (20)

    D. Depletion Layer Capacitance

    d e pd QCd V

    = (18)Depletion Layer Capacitance

    1/ 22 ( )( )a d o

    a d

    N N V VWeN N

    ε⎡ ⎤+ −= ⎢ ⎥

    ⎣ ⎦(19)SCL width

    and voltage

    212 2 ( )

    a d oo o o

    a d

    eN N WV E WN Nε

    = − =+ (3)

    pF

    44

    901 37500 光電導論

    /p p p thermaln t Bn p G∂Δ ∂ = − +

    ( )p p p po pon

    B n p n pt

    ∂Δ= − −

    ∂p p

    e

    n nt τ

    ∂Δ Δ= −

    /p a pn t BN n∂Δ ∂ = − Δ

    (21)

    (22)

    (23)

    (24)

    E. Recombination Lifetime

    1/e aBNτ =

    2/ ( )p p p pn t B p n B n∂Δ ∂ = Δ Δ = Δ

    (25)

    (26)

    B: direct recombination capture coefficient

    Rate of change due to recombination

    Excess minority carrier recombination time (lifetime)

    In weak injection, apoppppop Nppnnpn ≈≈Δ≈→Δ

    majority ) (

    minority

    ppppop

    ppop

    npnppnnn

    Δ=ΔΔ+=

    Δ+=Forward bias

    steady state

    Banddiagram

  • 45

    901 37500 光電導論

    Example 3.3.1: A direct bandgap pn junctionSymmetric GaAs pn junction with a cross section A = 1 mm2, given

    (1) Na (p-side doping) = Nd (n-side doping) = 1023 m-3

    (2) B = 7.21 x 10-16 m3s-1

    (3) ni = 1.8 x 1012 m-3

    (4) εr = 13.2(5) μh (in the n-side) = 250 cm2V-1s-1

    (6) μe (in the p-side) = 5000 cm2V-1s-1

    (7) Diffusion coefficients (Einstein relation)Dh = μhkBT/e & De = μekBT/e

    (8) Forward voltage = 1 V

    Find: (a) diode current due to the minority carrier diffusion at 300K

    (assume direct recombination)(b) Estimate the recombination component of the current

    (if the mean minority carrier recombination time in the depletion region is ~ 10ns) 46

    901 37500 光電導論

    • Assuming weak injection, we can readily calculate the recombination times τe and τh for electrons and holes recombining in the neutral p and n-regions.

    ( )( )( )( )( )( )

    [ ] ( )( )[ ][ ] ( )( )[ ]

    ( ) ( )( ) ( )( ) ( )( )

    ( ) AV

    VATk

    eVII

    A

    msm

    msm

    enNL

    DNL

    DAI

    mssmDL

    mssmDL

    smeTkDsmeTkD

    smsmBN

    VeTk

    Bsodiff

    iae

    e

    dh

    hso

    eee

    hhh

    Bee

    Bhh

    aeh

    B

    421

    21

    21219235

    122

    236

    1246

    2

    55.081225.0

    65.081245.0

    1224

    1244

    83231316

    109.302585.0

    0.1exp1013.6exp

    1013.6

    108.1106.1101034.1

    1029.1101000.3

    1046.610

    1034.11039.11029.1

    1000.31039.11046.6

    1029.11050002585.0/

    1046.6102502585.0/

    1039.1100.11021.7

    1102585.0/

    −−

    −−

    −−

    −−−

    −−−−

    −−−−

    −−−

    −−−

    −−−−

    ×=⎟⎠⎞

    ⎜⎝⎛×=⎟⎟

    ⎞⎜⎜⎝

    ⎛=

    ×=

    ××⎥⎦

    ⎤⎢⎣

    ⎡××

    +××

    =

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛+=

    ×=××==

    ×=××==

    ×=×==

    ×=×==

    ×=××

    ===

    =

    τ

    τ

    μ

    μ

    ττ

    47

    901 37500 光電導論

    ( ) ( )( )( )

    ( )( )( )( )( )( )

    ( )( )( )

    ( ) ( ) AVVA

    TkeVII

    ACWAenWWAenI

    nsWWW

    mmmmC

    VmFm

    NeNVVNNW

    VVnNN

    eTkV

    Brorecom

    r

    i

    h

    n

    e

    piro

    rhe

    np

    da

    oda

    i

    daBo

    412

    129

    812196

    85.0

    32332319

    32323112

    5.0

    212

    2323

    2

    103.302585.02

    0.1exp103.12

    exp

    103.11010109

    2108.1106.110

    22

    10

    5.0

    09.0100.91010106.1

    128.110101085.82.132

    2

    28.1108.11010ln02585.0ln

    −−

    −−

    −−−

    −−−−

    −−−

    ×=⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛×=⎟⎟

    ⎞⎜⎜⎝

    ⎛=

    ×=⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛××××

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛=⎟⎟

    ⎞⎜⎜⎝

    ⎛+=

    ≈==

    ==

    =×=⎥⎦

    ⎤⎢⎣

    ⎡×

    −+××=

    ⎥⎦

    ⎤⎢⎣

    ⎡ −+=

    =⎟⎟⎠

    ⎞⎜⎜⎝

    ×=⎟⎟

    ⎞⎜⎜⎝

    ⎛=

    τττ

    τττ

    μ

    ε

    In this example, the diffusion and recombination components are about the same order of magnitude.

    48

    901 37500 光電導論

    3-4 The pn Junction Band Diagram

  • 49

    901 37500 光電導論

    EcEv

    Ec

    EFp

    M

    EFn

    eVo

    p nEo

    Evnp

    (a)

    VI

    np

    Eo–E

    e(Vo–V)

    eV

    EcEFn

    Ev

    Ev

    Ec

    EFp

    (b)

    (c)

    Vr

    np

    e(Vo+Vr)

    EcEFn

    Ev

    Ev

    Ec

    EFp

    Eo+E (d)

    I = Very SmallVr

    np

    Thermalgeneration Ec

    EFnEv

    Ec

    EFp

    Ev

    e(Vo+Vr)

    Eo+E

    Energy band diagrams for a pn junction under (a) open circuit, (b) forwardbias and (c) reverse bias conditions. (d) Thermal generation of electron holepairs in the depletion region results in a small reverse current.

    SCLdiffusion efor

    eV barrier potentialpotentialin -built variationh and e

    :bended is Banduniform is

    -0

    -

    +

    FE( )

    TkeV

    Be

    VVe

    current forwardionconcentratcarrier minority

    barrier potential 0

    ( )

    current reversesmallEHP of generation thermalthin carrier wiminority small

    barrier potential

    or

    0

    →+

    +

    he

    r

    LVVe

    50

    901 37500 光電導論 Introduction of optoelectronics 50

    Forward bias

    hhhhhhh hh h

    Apply positive bias at lefthand side

    hhhhhhh hh h

    hhhhhhh h

    h hhhhhh hhhh

    +V

    V0

    ⎥⎦

    ⎤⎢⎣

    ⎡−⎟⎟

    ⎞⎜⎜⎝

    ⎛=⎥

    ⎤⎢⎣

    ⎡−⎟⎟

    ⎞⎜⎜⎝

    ⎛⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛+ 1exp1exp~ 2

    TkeVJ

    TkeVn

    NLeD

    NLeDJ

    Bso

    Bi

    ae

    e

    dh

    h

    If electron and hole do not recombine (Si), the current can be expressed as :

    lifetimeion recombinat : t coefficiendiffusion :

    ττ DDL =

    51

    901 37500 光電導論 Introduction of optoelectronics 51

    hhhhhhh hh h h hhhhhh hhhh

    +V

    1 12 2p M n M

    recome h

    e W n e W pJ

    τ τ≈ +

    Recombination Current

    Consider a symmetrical pn junction, at the junction C,Electrons recombine in Wp and holes recombine in Wn.

    MM np =

    dtdQJ =

    n, pWin ion timerecombinat (electron) holemean :e h,τ

    V0-V

    52

    901 37500 光電導論 Introduction of optoelectronics 52

    Reverse bias

    hhhhhhh hh hhhhhh h hhhhhhhh hh hhhhh hhh-VR

    h

    g

    ieWnJτ

    =gen

    EHP thermal generation in SCL

    g

    ii

    ae

    e

    dh

    h eWnnNL

    eDNL

    eDJτ

    +⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛+= 2rev

    Total Reverse Current

    h

    1exp , and 0when

    ~1exp~ 22

  • 53

    901 37500 光電導論

    53

    3-5 Light Emitting Diodes

    54

    901 37500 光電導論

    Introduction of optoelectronics 54

    An actual configuration of a LED

    55

    901 37500 光電導論

    LED = 半導體?什麼是半導體?導電性介於導體與非導體之間

    半導體的組成

    週期表上第四族,三五或二六族化合物週期性排列的結構

    依據參入不同特定之雜質又分為p型與 n型半導體

    (a) (b) (c)

    帶電的載子n型 – electronp型 – hole

    55 56901 37500 光電導論

    半導體如何發光?

    • Absorption

    • Electron transition

    • Light emission

    56

  • 57

    901 37500 光電導論

    57

    hυ - Eg

    Eg (b)

    V

    (a)

    p n+

    EgeVo

    EF

    p n+

    Electron in CBHole in VB

    Ec

    Ev

    Ec

    Ev

    EF

    eVo

    Electron energy

    Distance into device

    (a) The energy band diagram of a p-n+ (heavily n-type doped) junction without any bias.Built-in potential Vo prevents electrons from diffusing from n+ to p side. (b) The appliedbias reduces Vo and thereby allows electrons to diffuse, be injected, into the p-side.Recombination around the junction and within the diffusion length of the electrons in thep-side leads to photon emission.?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

    LED: pn junction diodedirect band gap semiconductor, e.g. GaAsEHP recombination photon emission (injection electroluminescence)

    spontaneous emission in active region (SCL & within Le in p region)

    A. Principles

    (Random directions)

    58

    901 37500 光電導論

    58

    Light output

    Insulator (oxide)p

    n+Epitaxial layer

    A schematic illustration of typical planar surface emitting LED devices. (a) p-layergrown epitaxially on an n+ substrate. (b) First n+ is epitaxially grown and then p regionis formed by dopant diffusion into the epitaxial layer.

    Light output

    pEpitaxial layers

    (a) (b )

    n+

    Substrate Substrate

    n+

    n+

    Metal electrode

    B. Device Structuresn+ region: heavily doped, electron injection

    photon absorbed or reflectionp region: light emitting, narrow (a few microns) to avoid photon absorption

    Epitaxial (a) or diffused (b) junction planar LED Substrate-n+ region: Lattice matching

    Lattice mismatch radiationless EHP recombination

    59

    901 37500 光電導論

    59

    Light output

    p

    Electrodes

    LightPlastic dome

    Electrodes

    Domedsemiconductor

    pn Junction

    (a) (b) (c)

    n+n+

    (a) Some light suffers total internal reflection and cannot escape. (b) Internal reflectionscan be reduced and hence more light can be collected by shaping the semiconductor into adome so that the angles of incidence at the semiconductor-air surface are smaller than thecritical angle. (b) An economic method of allowing more light to escape from the LED isto encapsulate it in a transparent plastic dome.

    Substrate

    ?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

    TIR low e.g. GaAs-air, θc~16o

    Domed semiconductorDifficult process in fabrication

    Plastic Domeinexpensive and widely used

    Cf. overcome TIR by roughness and photonic crystals

    60

    901 37500 光電導論

    60

    3-6 LED Materials

  • 61

    901 37500 光電導論

    什麼材料 - 發什麼光1λ

    ‧藍綠光: 氮化銦鎵

    ‧紅黃光: 磷化鋁銦鎵 (四元)

    61

    InGaN

    AlInGaP

    62

    901 37500 光電導論

    Introduction of optoelectronics 62

    The Material Properties – Zinc Blend structure

    63

    901 37500 光電導論

    Introduction of optoelectronics 63

    Wurtzite Nitrides

    Wu et. Al. Solid State Comm., 127:411-414, 2003.

    The bandgap of nitrides cover the whole visible light spectrum.

    64

    901 37500 光電導論

    64

    Ec

    Ev

    EN

    (b) N doped GaP

    Eg

    (a) GaAs1-yPyy < 0.45

    (a) Photon emission in a direct bandgap semiconductor. (b). GaP is anindirect bandgap semiconductor. When doped with nitrogen there is anelectron trap at EN. Direct recombination between a trapped electron at ENand a hole emits a photon. (c) In Al doped SiC, EHP recombination isthrough an acceptor level like Ea.

    Ec

    EvEa

    (c) Al doped SiC

    ?1999 S O Kasap Optoelectronics (Prentice Hall)

    Direct bandgap:

    Indirect Bandgap:

    1

    1

    0.49 0.51

    1 1

    0.45, 630)

    0.43, 640)0.17)

    ( 3.4 )

    (0 870 nm

    (0 870 nm (0.058

    y y

    x x

    x x

    x x y y

    g

    GaAs P yAl Ga As xIn Al Ga P xIn Ga As PGaN E eV

    λ

    λ−

    − −

    ≤ < > >

    ≤ < > >

    ≤ <

    =

    ternary (3 elements)

    AlSNyPGaAs yy

    with doped , iC with doped ),45.0( 1 >−

    (isoelectronic impurities,nucleus of N is less shielded)

    acceptor type localized energy level

    quarternary (4 elements)(High intensity)

    (Optical communication)

    (EHP recomb. thrurecomb. centers and Involve lattice vibrations)

    GaAs1-yPyN doped indirect Egwidely used in inexpensive green, yellow, and orangeLEDs

    Blue LED: InGaN (Eg = 2.7 eV)

    (GaN, Eg = 3.4 eV)Al-SiCZnSe

  • 65

    901 37500 光電導論

    65

    0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6λ

    1.7Infrared

    GaAs1-yPy

    InP

    In1-xGaxAs1-yPyAlxGa1-xAs

    x = 0.43

    Indirectbandgap

    Free space wavelength coverage by different LED materials from the visible spectrum to theinfrared including wavelengths used in optical communications. Hatched region and dashedlines are indirect Eg materials.

    In0.49AlxGa0.51-xP

    ?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

    = internal efficiency of radiative recombination process and photon extraction

    (Generally, ext. efficiency < 1% for indirect Eg materials)

    ( ) 100%outexternalP optical

    IVη = ×External efficiency

    66

    901 37500 光電導論

    66

    , 100%out opticalexternal internal extractionP

    IVη η η= ⋅ = ⋅

    67

    901 37500 光電導論

    67

    3-7 Heterojunction High Intensity LEDs and Quantum

    Well LEDs

    68

    901 37500 光電導論

    68

    2 eV

    2 eVeVo

    Holes in VB

    Electrons in CB1.4 eV

    No bias

    Withforwardbias

    Ec

    EvEc

    Ev

    EFEF

    (a)

    (b)

    (c)

    (d)

    pn+ p

    ΔEc

    GaAs AlGaAsAlGaAs

    ppn+

    ~ 0.2 μm

    AlGaAsAlGaAs

    (a) A doubleheterostructure diode hastwo junctions which arebetween two differentbandgap semiconductors(GaAs and AlGaAs)

    (b) A simplified energyband diagram withexaggerated features. EFmust be uniform.

    (c) Forward biasedsimplified energy banddiagram.

    (d) Forward biased LED.Schematic illustration ofphotons escapingreabsorption in theAlGaAs layer and beingemitted from the device.

    ?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

    GaAs

    Homojunction: narrow p region EHP recombine through surface defectslong p region re-absorption of photons increases

    Heterojunction: a junction between two diff. Eg semiconductors

    Double heterojunction device:Thin p-GaAs layer between p and nAlGaAs layers: a confining layer

    Photon will not be absorbed with the wide bandgapmaterial AlGaAs.

    ∆Ec: potential energy barrier against electron in CB (p-GaAs)to CB of p-AlGaSa

    Additional advantage of AlGaAs/GaAs hetero-junction:small lattice mismatch between two crystal materials

    negligible strain induced defects(Homo-junction: defects at the surface )

    large nsmall n small n

  • 69

    901 37500 光電導論 Introduction of optoelectronics 69

    Double Heterojunction LEDsHomojunction: narrow p region EHP recombine through surface defects

    long p region re-absorption of photons increasesHeterojunction: a junction between two diff. Eg semiconductors

    Eg1 Eg2

    Heterojunction

    Type I semiconductor

    Eg1Eg2

    Type II

    Eg1

    Eg2

    Type IIIvaccum

    70

    901 37500 光電導論 Introduction of optoelectronics 70

    Alloy -> Using two materials with different composition to change the bandgap.

    GaAsInAs

    InxGa1-xAs

    ( ) ( )( ) ( )xInGaExGaAsEAsGaInE ggxxg +−− 1~1

    ( ) ( ) ( )InAsmx

    GaAsmx

    AsGaInm xx**

    1*

    1~1 +−

    71

    901 37500 光電導論 Introduction of optoelectronics 71

    Double Heterojunction LEDs

    Eg1 Eg2 Eg1

    ~0.1-0.2um

    Eg1

    Eg1

    n

    Eg2hhhhhhh hh hhhhh hhhhhhh hhhhhhhh

    p

    Eg2 Eg1

    p

    Eg1n

    +v

    hhhhhh h

    hhh

    hhh

    hhh

    h

    hhh

    hh

    h

    hh

    72

    901 37500 光電導論 Introduction of optoelectronics 72

    Band diagrams of different designs of Band diagrams of different designs of heterojunctionsheterojunctions

  • 73

    901 37500 光電導論

    Carrier loss in double Carrier loss in double heterostructuresheterostructures

    Leakage increases exponentially with temperatureRadiative recombination decreases with the increase of temperature.

    74

    901 37500 光電導論 Introduction of optoelectronics 74

    Eg2 Eg1

    p

    Eg1n

    +v

    hhhhhh h

    hhh

    hhh

    hhh

    h

    hhh

    hh

    h

    hh

    1. Due to the potential barrier, carrier is much harder to overflow.2. Weaker carrier reabsorption. The material on both with larger bandgap will not re-absorb the emitted light.

    1. The active layer is still to thick that the electron and hole are still free to move. electron might concentrate at left side while hole might accumulate at right hand side

    75

    901 37500 光電導論 Introduction of optoelectronics 75

    Quantum Well LED A electron or a hole is a wave, and the typical wave length of electron or hole wave in the semiconductor is around 1nm~10nm

    3nm~20nm

    e

    h

    1. Electron and hole are confined in the quantum well and cannot move freely. Electron and hole are staying in the quantum well and enhance radiative recombination chance.

    2. Since the quantum well is very thin, it cannot hold to many electrons and holes, not good for high current cases.

    76

    901 37500 光電導論 Introduction of optoelectronics 76

    The confined electric wave will have corresponding eigenEnergy level, where the effective band gap will change.

    Quantum Well LED

    W

    Effective bandgap

    2*

    222

    2*

    222

    22~ effective

    Wmn

    WmnEE

    hegg

    ππ++

    By changing the quantum well width, we can fine tune the effective bandgap.

  • 77

    901 37500 光電導論 Introduction of optoelectronics 77

    Multiple Quantum Well LED e

    h

    1. Ef1. n-type

    1. i-type

    1. p-type

    1. Blocking layer for electron

    Opt

    ical

    pow

    ercurrent

    1 well

    3wells2wells

    + ++ ++-- - -- - - --

    78

    901 37500 光電導論 Introduction of optoelectronics 78

    Multiple Quantum Well LED e

    h

    eee eee

    hhh h h h

    1. Using a multiple quantum well, the total carrier staying in the active layer will enhance.

    2. More quantum well, the total internal resistant from the barrier between two quantum wells will increase, so the electron may not be able to the last quantum well. So the numbers of quantum well is limited.

    79

    901 37500 光電導論 Introduction of optoelectronics 79

    Optical emission with different number of quantum wellsOptical emission with different number of quantum wells

    80

    901 37500 光電導論 Introduction of optoelectronics 80

    Electron blocking layerElectron blocking layer

  • 81

    901 37500 光電導論

    81

    3-8 LED Characteristics

    5/07/2009

    82

    901 37500 光電導論

    82

    E

    Ec

    Ev

    Carrier concentrationper unit energy

    Electrons in CB

    Holes in VBhυ

    1

    0

    Eg

    hυ1

    hυ2

    hυ3

    CB

    VBλ

    Relative intensity

    1

    3

    ΔλΔhυ

    Relative intensity

    (a) (b) (c) (d)

    Eg + kBT

    (2.5-3)kBT

    1/2kBT

    Eg1 2 3

    2kBT

    (a) Energy band diagram with possible recombination paths. (b) Energy distribution ofelectrons in the CB and holes in the VB. The highest electron concentration is (1/2)kBT aboveEc . (c) The relative light intensity as a function of photon energy based on (b). (d) Relativeintensity as a function of wavelength in the output spectrum based on (b) and (c).

    Wavelengths of photon emission depends on the e- and h+ distribution.The min. photon energy = EgThe max. emission at photon energy ~ Eg+kBT= Eg+0.5kBT+0.5kBTThe linewidth ~ 2.5-3 kBT

    For heavily doped semiconductor narrow impurity band overlaps CBthe minimum photon energy < Eg

    83

    901 37500 光電導論

    83

    V

    2

    1

    (c)

    0 20 40I (mA)0

    (a)

    600 650 7000

    0.5

    1.0

    λ

    Relativeintensity

    24 nm

    Δλ

    655nm

    (b)

    0 20 40I (mA)0

    Relative light intensity

    (a) A typical output spectrum (relative intensity vs wavelength) from a red GaAsP LED.(b) Typical output light power vs. forward current. (c) Typical I-V characteristics of ared LED. The turn-on voltage is around 1.5V.

    Example: GaAsP LED (center at 655 nm)- Spectrum: less asymmetric than ideal spectrum- Linewidth ~24 nm (2.7kBT)- The output light power is not linear with LED current as in (b)- The turn-on or the cut-in voltage ~ 1.5V (depends on material, and increases as Eg increases e.g. blue 3.5~4.5V, yellow ~2V)

    84

    901 37500 光電導論

    84

    Example 3.8.1: LED output spectrumGiven: the width of the relative light intensity vs. photon energy spectrum of an

    LED is ~ 3kBTFind: the linewidth Δλ1/2 in the output spectrum in terms of wavelength?

    ( )

    nmnmnmnm

    nmnmhc

    TkTkhvE

    EEhc

    dEd

    EEhc

    dEd

    Ehcvc

    ph

    phph

    phphphph

    ph

    149,1550105,1300

    47,870

    3,3

    ,

    //

    2

    2

    2

    =Δ==Δ=

    =Δ=

    ≈Δ≈Δ=Δ

    Δ≈Δ

    ≈ΔΔ

    −=

    ==

    λλλλ

    λλ

    λλ

    λ

    λλλ

    λ

    BB

    We note that the emitted wavelength λ is related to the photon energy Eph by

    The linewidths are typical values and the exact values depend on the LED structure.

  • 85

    901 37500 光電導論

    85

    Example 3.8.2: GaAs LED output wavelength variationsGiven: GaAs Eg (300K) = 1.42 eV

    dEg / dT = -4.5 x 10-4 eV K-1 (decreases with temp.)Find: the change in the emitting wavelength if the temperature change is 10°C

    ( )( )( ) ( )

    ( )( ) nmKmnKTdTd

    nmKormKdTd

    dTdE

    Ehc

    dTd

    Ehctaking

    TkNeglecting

    g

    g

    g

    B

    87.210277.0

    .277.0,1077.2

    106.1105.4106.142.1

    10310626.6

    /

    1

    1110

    194219

    834

    2

    ≈=Δ=Δ

    ×=

    ×××−××

    ××−=⎟⎟

    ⎞⎜⎜⎝

    ⎛−=

    =

    −−−

    −−

    λλ

    λ

    λ

    λ

    The wavelength increases with temperature. This calculated change is within 10% of typical values for GaAs LEDs quoted in data books.

    86

    901 37500 光電導論

    86

    Example 3.8.3: InGaAsP on InP substrateBackground: ternary alloy In1-xGaxAsyP1-y on InP substrate

    for infrared wavelength LED and laser diodeRequirement: InGaAsP is lattice matched to In P

    (avoid crystal defects in InGaAsP)y ≈ 2.2 x

    Given: Eg of the ternary alloy (empirical relationship)Eg ≈ 1.35 – 0.72y + 0.12 y2 0 ≤ x ≤ 0.47

    Find: the compositions of InGaAsP ternary alloys for peak emission at a wavelength of 1.3 μm

    87

    901 37500 光電導論

    87

    • We first note that we need the required bandgap Eg at the wavelength of interest. The photon energy at peak emission is hc/λ=Eg+kBT. Then in electron volts,

    ( )( )( )( )

    34.066.03.07.0

    2

    619

    348

    6

    3.02.2/66.066.0

    12.072.035.1928.0

    928.00259.0103.1106.110626.6103

    300,103.1

    /

    PAsGaInxy

    yy

    eVeVE

    KTm

    eTkehcE

    g

    Bg

    ⇒==

    =+−=

    =−××××

    =

    =×=

    −=

    −−

    −λ

    λ

    88

    901 37500 光電導論

    88

    3-9 LED for Optical Fiber Communications

  • 89

    901 37500 光電導論

    89

    (a) Surface emitting LED (b) Edge emitting LED

    Doubleheterostructure

    Light

    Light

    ?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

    Short haul communication: use LEDsimpler to drive, more economic, longer lifetime, wider output spectrum

    Long haul and wide bandwidth communication: use LDnarrow linewidth, high output power, higher signal BW capacity

    Surface emitting LED (SLED)Edge emitting LED (ELED)

    90

    901 37500 光電導論

    90

    ElectrodeSiO2 (insulator)

    Electrode

    Fiber (multimode)

    Epoxy resin

    Etched wellDouble heterostructure

    Light is coupled from a surface emitting LEDinto a multimode fiber using an index matchingepoxy. The fiber is bonded to the LEDstructure.

    (a)

    Fiber

    A microlens focuses diverging light from a surfaceemitting LED into a multimode optical fiber.

    Microlens (Ti2O3:SiO2 glass)

    (b)

    ?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

    Burrus type device

    Coupling of SLED to a fiber

    91

    901 37500 光電導論

    91

    Schematic illustration of the the structure of a double heterojunction stripecontact edge emitting LED

    InsulationStripe electrode

    SubstrateElectrode

    Active region (emission region)

    p+-InP (Eg = 1.35 eV, Cladding layer)

    n+-InP (Eg = 1.35 eV, Cladding/Substrate)

    n-InGaAs (Eg = 0.83 eV, Active layer)

    Currentpaths

    L

    60-70 μm

    Light beam

    p+-InGaAsP (Eg = 1 eV, Confining layer)

    n+-InGaAsP (Eg = 1 eV, Confining layer) 12 3200-300 μm

    © 1999 S.O. Kasap, Optoelectronics (Prentice Hall)

    InGaAs: active regionInGaAsP: confining layerInP: cladding layer

    Edge emitting LED: greater light intensity, more collimated beam

    Op. @ 1.5μm

    92

    901 37500 光電導論

    92

    Multimode fiberLens

    (a)

    ELED

    Active layer

    Light from an edge emitting LED is coupled into a fiber typically by using a lens or aGRIN rod lens.

    GRIN-rod lens

    (b)

    Single mode fiberELED

    ?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

    Coupling of ELED to a fiber

    Output spectra from SLED and ELED are not necessarily the samebecause (a) different doping levels,

    (b) self-absorption guided along active layer in ELED

    Typical linewidth of ELED < linewidth of SLEDe.g. InGaAsP operated at 1300 nm

    linewidth (ELED) = 75 nm linewidth (SLED) = 125 nm

  • 93

    901 37500 光電導論

    94

    901 37500 光電導論

    95

    901 37500 光電導論