Ch.02 Rotation Kinematics

50
HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong 02. Rotation Kinematics Robotics 2.01 Rotation Kinematics

description

Robotics

Transcript of Ch.02 Rotation Kinematics

Page 1: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

02. Rotation Kinematics

Robotics 2.01 Rotation Kinematics

Page 2: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

โ€ข Consider a rigid body ๐‘ฉ with a fixed point ๐‘ถ โŸน Rotation about the fixed

point ๐‘ถ is the only possible motion of the body ๐‘ฉ

โ€ข Consider

- local coordinate frame ๐‘‚๐‘ฅ๐‘ฆ๐‘ง

attaches to the rigid body ๐‘ฉ

- global coordinate frame ๐‘‚๐‘๐‘Œ๐‘

โ€ข Determine

- Transformation matrices for

point ๐‘ท between two coordinates

โ€ข Point ๐‘ถ of the body ๐‘ฉ is fixed to the ground ๐‘ฎ and is the origin of both

coordinate frames

๐‘ถ

Robotics 2.02 Rotation Kinematics

Page 3: Ch.02 Rotation Kinematics

I. ROTATION ABOUT GLOBAL CARTESIAN AXES

โ€ข Rigid body ๐‘ฉ rotates ๐›ผ degrees about the ๐‘-axis of the global coordinate

โ€ข ๐‘ท2 has local coordinate: ๐’“2๐ต =

๐‘ฅ2๐‘ฆ2๐‘ง2

and global coordinate: ๐’“2๐บ =

๐‘‹2๐‘Œ2๐‘2

โŸน Relation between the two coordinates:

๐‘‹2๐‘Œ2๐‘2

=๐‘๐‘œ๐‘ ๐›ผ โˆ’๐‘ ๐‘–๐‘›๐›ผ 0๐‘ ๐‘–๐‘›๐›ผ ๐‘๐‘œ๐‘ ๐›ผ 00 0 1

๐‘ฅ2๐‘ฆ2๐‘ง2

or ๐’“2๐บ = ๐‘ธ๐‘,๐›ผ ๐’“2

๐ต (2.1)

where ๐‘ธ๐‘,๐›ผ is the ๐’-rotation matrix

๐‘ธ๐‘,๐›ผ =๐‘๐‘œ๐‘ ๐›ผ โˆ’๐‘ ๐‘–๐‘›๐›ผ 0๐‘ ๐‘–๐‘›๐›ผ ๐‘๐‘œ๐‘ ๐›ผ 00 0 1

(2.3)

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

Robotics 2.03 Rotation Kinematics

Page 4: Ch.02 Rotation Kinematics

I. ROTATION ABOUT GLOBAL CARTESIAN AXES

โ€ข Similarly, rotation ๐›ฝ degrees about the ๐‘Œ-axis, and ฮณ degrees about the

๐‘‹-axis of the global frame relate the local and global coordinates of point

๐‘ท by the following equations

๐’“๐บ = ๐‘ธ๐‘Œ,๐›ฝ ๐’“๐ต (2.4)

๐’“๐บ = ๐‘ธ๐‘‹,๐›พ ๐’“๐ต (2.5)

Where ๐‘ธ๐‘Œ,๐›ฝ is the ๐’€-rotation matrix

๐‘ธ๐‘Œ,๐›ฝ =๐‘๐‘œ๐‘ ๐›ฝ 0 ๐‘ ๐‘–๐‘›๐›ฝ0 1 0

โˆ’๐‘ ๐‘–๐‘›๐›ฝ 0 ๐‘๐‘œ๐‘ ๐›ฝ (2.6)

and ๐‘ธ๐‘‹,๐›พ is the ๐‘ฟ-rotation matrix

๐‘ธ๐‘‹,๐›พ =1 0 00 ๐‘๐‘œ๐‘ ๐›พ โˆ’๐‘ ๐‘–๐‘›๐›พ0 ๐‘ ๐‘–๐‘›๐›พ ๐‘๐‘œ๐‘ ๐›พ

(2.7)

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

Robotics 2.04 Rotation Kinematics

Page 5: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

I. ROTATION ABOUT GLOBAL CARTESIAN AXES

โ€ข Example 3 (Successive rotation about global axes)

The corner ๐‘ท(5,30,10) of the slab rotates 300 about

the ๐‘-axis, then 300 about the ๐‘‹-axis, and 900

about the ๐‘Œ-axis โŸน Find the final position of ๐‘ท ?

The new global position of ๐‘ท after first rotation

After the second rotation

And after the last rotation

Robotics 2.05 Rotation Kinematics

Page 6: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

I. ROTATION ABOUT GLOBAL CARTESIAN AXES

The slab and the point ๐‘ท in first, second, third, and fourth positions

Robotics 2.06 Rotation Kinematics

Page 7: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

I. ROTATION ABOUT GLOBAL CARTESIAN AXES

โ€ข Example 4 (Time dependent global rotation)

A rigid body ๐‘ฉ continuously turns about ๐‘Œ-axis of ๐‘ฎ at a rate of 0.3๐‘Ÿ๐‘Ž๐‘‘/๐‘ 

โŸน Find the global position and global velocity of the body point ๐‘ท?

The rotation transformation matrix of the body is

๐‘ธ๐ต๐บ =

๐‘๐‘œ๐‘ 0.3๐‘ก 0 ๐‘ ๐‘–๐‘›0.3๐‘ก0 1 0

โˆ’๐‘ ๐‘–๐‘›0.3๐‘ก 0 ๐‘๐‘œ๐‘ 0.3๐‘ก

Any point of ๐‘ฉ will move on a circle with radius ๐‘… = ๐‘‹2 + ๐‘2 parallel

to (๐‘‹, ๐‘)-plane

๐‘‹๐‘Œ๐‘

=๐‘๐‘œ๐‘ 0.3๐‘ก 0 ๐‘ ๐‘–๐‘›0.3๐‘ก

0 1 0โˆ’๐‘ ๐‘–๐‘›0.3๐‘ก 0 ๐‘๐‘œ๐‘ 0.3๐‘ก

๐‘ฅ๐‘ฆ๐‘ง

=๐‘ฅ๐‘๐‘œ๐‘ 0.3๐‘ก + ๐‘ง๐‘ ๐‘–๐‘›0.3๐‘ก

๐‘ฆ๐‘ง๐‘๐‘œ๐‘ 0.3๐‘ก โˆ’ ๐‘ฅ๐‘ ๐‘–๐‘›0.3๐‘ก

๐‘‹2 + ๐‘2 = (๐‘ฅ๐‘๐‘œ๐‘ 0.3๐‘ก + ๐‘ง๐‘ ๐‘–๐‘›0.3๐‘ก)2+(๐‘ง๐‘๐‘œ๐‘ 0.3๐‘ก โˆ’ ๐‘ฅ๐‘ ๐‘–๐‘›0.3๐‘ก)2

= ๐‘ฅ2 + ๐‘ง2 = ๐‘…2

Robotics 2.07 Rotation Kinematics

Page 8: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

I. ROTATION ABOUT GLOBAL CARTESIAN AXES

After ๐‘ก = 1๐‘ , the point ๐’“๐ต = 1 0 0 ๐‘‡ will be seen at

๐‘‹๐‘Œ๐‘

=cos 0.3 0 sin 0.30 1 0

โˆ’ sin 0.3 0 cos 0.3

100

=0.9550

โˆ’0.295

After ๐‘ก = 2๐‘ , the point ๐’“๐ต = 1 0 0 ๐‘‡ will be seen at

๐‘‹๐‘Œ๐‘

=๐‘๐‘œ๐‘ 0.6 0 sin 0.60 1 0

โˆ’ sin 0.6 0 cos 0.6

100

=0.8250

โˆ’0.564

Taking a time derivative of ๐’“๐‘ƒ ๐บ = ๐‘ธ๐‘Œ,๐›ฝ ๐’“๐‘ƒ

๐ต to get the global velocity

vector of any point ๐‘ท

๐’—๐‘ƒ ๐บ = ๐‘ธ ๐‘Œ,๐›ฝ ๐’“๐‘ƒ

๐ต

= 0.3๐‘ง๐‘๐‘œ๐‘ 0.3๐‘ก โˆ’ ๐‘ฅ๐‘ ๐‘–๐‘›0.3๐‘ก

0โˆ’๐‘ฅ๐‘๐‘œ๐‘ 0.3๐‘ก โˆ’ ๐‘ง๐‘ ๐‘–๐‘›0.3๐‘ก

Robotics 2.08 Rotation Kinematics

Page 9: Ch.02 Rotation Kinematics

I. ROTATION ABOUT GLOBAL CARTESIAN AXES

โ€ข Example 5 (Global rotation, local position)

A point ๐‘ท moved to ๐’“2 ๐บ = [4,3,2]๐‘‡ after rotating 600 about ๐‘-axis

โŸน Find local position of ๐‘ท in the local coordinate?

๐’“2 ๐ต = ๐‘ธ๐‘,60

โˆ’1 ๐’“2 ๐บ

โŸน

๐‘ฅ2๐‘ฆ2๐‘ง2

=๐‘๐‘œ๐‘ 60 โˆ’๐‘ ๐‘–๐‘›60 0๐‘ ๐‘–๐‘›60 ๐‘๐‘œ๐‘ 60 00 0 1

โˆ’1 432

=4.5981โˆ’1.9641

2.0

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

Robotics 2.09 Rotation Kinematics

Page 10: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

II. SUCCESSIVE ROTATION ABOUT GLOBAL CARTESIAN AXES

โ€ข The final global position of a point ๐‘ท ( ๐’“๐บ ) in a rigid body ๐‘ฉ with position

vector ๐’“๐ต , after a sequence of rotations ๐‘ธ1, ๐‘ธ2, ๐‘ธ3, โ€ฆ , ๐‘ธ๐‘› about the

global axes can be found by

๐’“๐บ = ๐‘ธ๐ต ๐บ ๐’“๐ต (2.35)

Where the global rotation matrix

๐‘ธ๐ต ๐บ = ๐‘ธ๐‘› โ€ฆ๐‘ธ3๐‘ธ2๐‘ธ1 (2.36)

A rotation matrix is orthogonal

๐‘ธ๐‘‡ = ๐‘ธโˆ’1 (2.37)

Robotics 2.10 Rotation Kinematics

Page 11: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

II. SUCCESSIVE ROTATION ABOUT GLOBAL CARTESIAN AXES

โ€ข Example 6 (Successive global rotation matrix)

The global rotation matrix after a rotation ๐‘ธ๐‘,๐›ผ followed by ๐‘ธ๐‘Œ,๐›ฝ and

then ๐‘ธ๐‘‹,๐›พ is

๐‘ธ๐ต ๐บ = ๐‘ธ๐‘‹,๐›พ๐‘ธ๐‘Œ,๐›ฝ๐‘ธ๐‘,๐›ผ (2.38)

=1 0 00 ๐‘๐‘œ๐‘ ๐›พ โˆ’๐‘ ๐‘–๐‘›๐›พ0 ๐‘ ๐‘–๐‘›๐›พ ๐‘๐‘œ๐‘ ๐›พ

๐‘๐‘œ๐‘ ๐›ฝ 0 ๐‘ ๐‘–๐‘›๐›ฝ0 1 0

โˆ’๐‘ ๐‘–๐‘›๐›ฝ 0 ๐‘๐‘œ๐‘ ๐›ฝ

๐‘๐‘œ๐‘ ๐›ผ โˆ’๐‘ ๐‘–๐‘›๐›ผ 0๐‘ ๐‘–๐‘›๐›ผ ๐‘๐‘œ๐‘ ๐›ผ 00 0 1

=

๐‘๐›ผ๐‘๐›ฝ โˆ’๐‘๐›ฝ๐‘ ๐›ผ ๐‘ ๐›ฝ๐‘๐›พ๐‘ ๐›ผ + ๐‘๐›ผ๐‘ ๐›ฝ๐‘ ๐›พ ๐‘๐›ผ๐‘๐›พ โˆ’ ๐‘ ๐›ผ๐‘ ๐›ฝ๐‘ ๐›พ โˆ’๐‘๐›ฝ๐‘ ๐›พ๐‘ ๐›ผ๐‘ ๐›พ โˆ’ ๐‘๐›ผ๐‘๐›พ๐‘ ๐›ฝ ๐‘๐›ผ๐‘ ๐›พ + ๐‘๐›พ๐‘ ๐›ผ๐‘ ๐›ฝ ๐‘๐›ฝ๐‘๐›พ

Robotics 2.11 Rotation Kinematics

Page 12: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

II. SUCCESSIVE ROTATION ABOUT GLOBAL CARTESIAN AXES

โ€ข Example 7 (Successive global rotations, global position)

The end point ๐‘ท of the arm is located at

๐‘‹1๐‘Œ1๐‘1

=0

๐‘™๐‘๐‘œ๐‘ ๐œƒ๐‘™๐‘ ๐‘–๐‘›๐œƒ

=0

1๐‘๐‘œ๐‘ 750

1๐‘ ๐‘–๐‘›750=

0.000.260.97

(2.39)

The rotation matrix to find the new position of

the end point ๐‘ท: rotate โˆ’290 about ๐‘‹-axis, then

300 about ๐‘-axis, and 1320 about ๐‘‹-axis is

๐‘ธ๐ต๐บ = ๐‘ธ๐‘‹,132๐‘ธ๐‘,30๐‘ธ๐‘‹,โˆ’29 =

0.87 โˆ’0.44 โˆ’0.24โˆ’0.33 โˆ’0.15 โˆ’0.930.37 0.89 โˆ’0.27

(2.40)

and

๐‘‹2๐‘Œ2๐‘2

=0.87 โˆ’0.44 โˆ’0.24โˆ’0.33 โˆ’0.15 โˆ’0.930.37 0.89 โˆ’0.27

0.000.260.97

=โˆ’0.3472โˆ’0.9411โˆ’0.0305

(2.41)

Robotics 2.12 Rotation Kinematics

Page 13: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

II. SUCCESSIVE ROTATION ABOUT GLOBAL CARTESIAN AXES

โ€ข Example 8 (Twelve independent triple global rotations)

There are 12 different independent combinations of triple rotations about

the global axes which transform a rigid body coordinate frame ๐‘ฉ from the

coincident position with a global frame ๐‘ฎ to any final orientation by only

three rotations about the global axes provided that no two

consequence rotations are about the same axis:

๐‘ธ๐‘‹,๐›พ๐‘ธ๐‘Œ,๐›ฝ๐‘ธ๐‘,๐›ผ ๐‘ธ๐‘,๐›พ๐‘ธ๐‘Œ,๐›ฝ๐‘ธ๐‘‹,๐›ผ ๐‘ธ๐‘‹,๐›พ๐‘ธ๐‘Œ,๐›ฝ๐‘ธ๐‘‹,๐›ผ ๐‘ธ๐‘‹,๐›พ๐‘ธ๐‘,๐›ฝ๐‘ธ๐‘‹,๐›ผ

๐‘ธ๐‘Œ,๐›พ๐‘ธ๐‘,๐›ฝ๐‘ธ๐‘‹,๐›ผ ๐‘ธ๐‘Œ,๐›พ๐‘ธ๐‘‹,๐›ฝ๐‘ธ๐‘,๐›ผ ๐‘ธ๐‘Œ,๐›พ๐‘ธ๐‘,๐›ฝ๐‘ธ๐‘Œ,๐›ผ ๐‘ธ๐‘Œ,๐›พ๐‘ธ๐‘‹,๐›ฝ๐‘ธ๐‘Œ,๐›ผ

๐‘ธ๐‘,๐›พ๐‘ธ๐‘‹,๐›ฝ๐‘ธ๐‘Œ,๐›ผ ๐‘ธ๐‘‹,๐›พ๐‘ธ๐‘,๐›ฝ๐‘ธ๐‘Œ,๐›ผ ๐‘ธ๐‘,๐›พ๐‘ธ๐‘‹,๐›ฝ๐‘ธ๐‘,๐›ผ ๐‘ธ๐‘,๐›พ๐‘ธ๐‘Œ,๐›ฝ๐‘ธ๐‘,๐›ผ

Robotics 2.13 Rotation Kinematics

Page 14: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

II. SUCCESSIVE ROTATION ABOUT GLOBAL CARTESIAN AXES

โ€ข Example 9 (Order of rotation, and order of matrix multiplication)

Changing the order of global rotation matrices is equivalent to

changing the order of rotations. The position of a point ๐‘ท of a rigid

body ๐‘ฉ is located at ๐’“๐‘ƒ = 1 2 3 ๐‘‡๐ต

Its global position after rotation 300 about ๐‘‹-axis and then 450 about ๐‘Œ-

axis is at

๐’“๐‘ƒ๐บ

1 = ๐‘ธ๐‘Œ,45๐‘ธ๐‘‹,30 ๐’“๐‘ƒ =0.53 โˆ’0.84 0.130.0 0.15 0.99

โˆ’0.85 โˆ’0.52 0.081

123

๐ต =โˆ’0.763.27โˆ’1.64

And if we change the order of rotation then its position would be at:

๐’“๐‘ƒ๐บ

2 = ๐‘ธ๐‘‹,30๐‘ธ๐‘Œ,45 ๐’“๐‘ƒ =0.53 0.0 0.85โˆ’0.84 0.15 0.52โˆ’0.13 โˆ’0.99 0.081

123

=3.081.02โˆ’1.86

๐ต

These two final positions of ๐‘ท are ๐‘‘ = ๐’“๐‘ƒ๐บ

1 โˆ’ ๐’“๐‘ƒ๐บ

2 = 4.456 apart

Robotics 2.14 Rotation Kinematics

Page 15: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

III. GLOBAL ROLL-PITCH-YAW ANGLES

โ€ข The rotation about the ๐‘‹-axis of the global coordinate frame is called a

roll, the rotation about the ๐‘Œ-axis of the global coordinate frame is called

a pitch, and the rotation about the ๐‘-axis of the global coordinate frame is

called a yaw

โ€ข This figure illustrates 450 roll, pitch, and yaw rotation about the axes of a

global coordinate frame

Robotics 2.15 Rotation Kinematics

Page 16: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

III. GLOBAL ROLL-PITCH-YAW ANGLES

โ€ข Given the roll, pitch, and yaw angles, we can compute the overall

rotation matrix

โ€ข The global roll-pitch-yaw rotation matrix is

๐‘ธ๐ต = ๐‘ธ๐‘,๐›พ๐‘ธ๐‘Œ,๐›ฝ๐‘ธ๐‘‹,๐›ผ ๐บ

=

๐‘๐›ฝ๐‘๐›พ โˆ’๐‘๐›ผ๐‘ ๐›พ + ๐‘๐›พ๐‘ ๐›ผ๐‘ ๐›ฝ ๐‘ ๐›ผ๐‘ ๐›พ + ๐‘๐›ผ๐‘๐›พ๐‘ ๐›ฝ๐‘๐›ฝ๐‘ ๐›พ ๐‘๐›ผ๐‘๐›พ + ๐‘ ๐›ผ๐‘ ๐›ฝ๐‘ ๐›พ โˆ’๐‘๐›พ๐‘ ๐›ผ + ๐‘๐›ผ๐‘ ๐›ฝ๐‘ ๐›พโˆ’๐‘ ๐›ฝ ๐‘๐›ฝ๐‘ ๐›ผ ๐‘๐›ผ๐‘๐›ฝ

(2.55)

Robotics 2.16 Rotation Kinematics

Page 17: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

III. GLOBAL ROLL-PITCH-YAW ANGLES

โ€ข Also we are able to compute the equivalent roll, pitch, and yaw angles

when a rotation matrix is given. Suppose that ๐‘Ÿ๐‘–๐‘— indicates the element of

row ๐‘– and column ๐‘— of the roll-pitch-yaw rotation matrix (2.55)

โ€ข Then the roll angle is

๐›ผ = ๐‘ก๐‘Ž๐‘›โˆ’1๐‘Ÿ32

๐‘Ÿ33

and the pitch angle is

๐›ฝ = โˆ’๐‘ ๐‘–๐‘›โˆ’1 ๐‘Ÿ31

and the yaw angle is

๐›พ = ๐‘ก๐‘Ž๐‘›โˆ’1๐‘Ÿ21๐‘Ÿ11

Robotics 2.17 Rotation Kinematics

Page 18: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

III. GLOBAL ROLL-PITCH-YAW ANGLES

โ€ข Example 11 (Determination of roll-pitch-yaw angles)

Determine the required roll-pitch-yaw angles to make the ๐‘ฅ-axis of the

body coordinate ๐‘ฉ parallel to ๐’– = ๐‘ฐ + 2๐‘ฑ + 3๐‘ฒ , while ๐‘ฆ-axis remains in

(๐‘‹, ๐‘Œ)-plane?

We have

๐’Š =๐’–

๐’–=

1

14๐‘ฐ +

2

14๐‘ฑ +

3

14๐‘ฒ ๐บ

๐’‹ = ๐‘ฐ โˆ™ ๐’‹ ๐‘ฐ + ๐‘ฑ โˆ™ ๐’‹ ๐‘ฑ = ๐‘๐‘œ๐‘ ๐œƒ๐‘ฐ ๐บ + ๐‘ ๐‘–๐‘›๐œƒ๐‘ฑ

The axes ๐’Š ๐บ and ๐’‹ ๐บ must be orthogonal, therefore

1/ 14

2/ 14

3/ 14

โˆ™๐‘๐‘œ๐‘ ๐œƒ๐‘ ๐‘–๐‘›๐œƒ0

= 0 โ‡’ ๐œƒ = โˆ’26.560

Robotics 2.18 Rotation Kinematics

Page 19: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

III. GLOBAL ROLL-PITCH-YAW ANGLES

Find ๐’Œ ๐บ by a cross product: ๐’Œ = ๐’Š ร— ๐’‹ =

1/ 14

2/ 14

3/ 14

ร—0.894โˆ’0.447

0=

0.3580.717โˆ’0.597

๐บ๐บ๐บ

Hence, the transformation matrix ๐‘ธ๐ต๐บ is

๐‘ธ๐ต =

๐‘ฐ โˆ™ ๐’Š ๐‘ฐ โˆ™ ๐’‹ ๐‘ฐ โˆ™ ๐’Œ

๐‘ฑ โˆ™ ๐’Š ๐‘ฑ โˆ™ ๐’‹ ๐‘ฑ โˆ™ ๐’Œ

๐‘ฒ โˆ™ ๐’Š ๐‘ฒ โˆ™ ๐’‹ ๐‘ฒ โˆ™ ๐’Œ

=

1/ 14 0.894 0.358

2/ 14 โˆ’0.447 0.717

3/ 14 0 โˆ’0.597

๐บ

Now it is possible to determine the required roll-pitch-yaw angles

๐›ผ = ๐‘ก๐‘Ž๐‘›โˆ’1๐‘Ÿ32๐‘Ÿ33

= ๐‘ก๐‘Ž๐‘›โˆ’10

โˆ’0.597= 0

๐›ฝ = โˆ’๐‘ ๐‘–๐‘›โˆ’1 ๐‘Ÿ31 = โˆ’๐‘ ๐‘–๐‘›โˆ’13

14โ‰ˆ โˆ’0.93 rad

๐›พ = ๐‘ก๐‘Ž๐‘›โˆ’1๐‘Ÿ21๐‘Ÿ11

= ๐‘ก๐‘Ž๐‘›โˆ’12/ 14

1/ 14โ‰ˆ 1.1071 rad

Robotics 2.19 Rotation Kinematics

Page 20: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

IV. ROTATION ABOUT LOCAL CARTESIAN AXES

โ€ข The rigid body ๐‘ฉ undergoes a rotation ๐œ‘ about the ๐‘ง-axis of its local

coordinate frame

โ€ข Coordinates of any point ๐‘ท of the rigid body in local and global

coordinates frame are related by the following equation

๐’“2 = ๐‘จ๐‘ง,๐œ‘ ๐’“2๐บ๐ต

The vector ๐’“2 = ๐‘‹2 ๐‘Œ2 ๐‘2๐‘‡๐บ and

๐’“2 = ๐‘ฅ2 ๐‘ฆ2 ๐‘ง2 ๐‘‡๐ต are the position

vectors of the point in local and

global frames respectively

๐‘จ๐‘ง,๐œ‘ is ๐’›-rotation matrix

๐‘จ๐‘ง,๐œ‘ =๐‘๐‘œ๐‘ ๐œ‘ ๐‘ ๐‘–๐‘›๐œ‘ 0โˆ’๐‘ ๐‘–๐‘›๐œ‘ ๐‘๐‘œ๐‘ ๐œ‘ 00 0 1

Robotics 2.20 Rotation Kinematics

0

Page 21: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

IV. ROTATION ABOUT LOCAL CARTESIAN AXES

โ€ข Similarly, rotation ๐œƒ about the ๐‘ฆ-axis and rotation ๐œ“ about the ๐‘ฅ-axis are

described by the ๐’š-rotation matrix ๐‘จ๐‘ฆ,๐œƒ and the ๐’™-rotation matrix ๐‘จ๐‘ฅ,๐œ“

respectively

๐‘จ๐‘ฆ,๐œƒ =๐‘๐‘œ๐‘ ๐œƒ 0 โˆ’๐‘ ๐‘–๐‘›๐œƒ0 1 0

๐‘ ๐‘–๐‘›๐œƒ 0 ๐‘๐‘œ๐‘ ๐œƒ

๐‘จ๐‘ฅ,๐œ“ =1 0 00 ๐‘๐‘œ๐‘ ๐œ“ ๐‘ ๐‘–๐‘›๐œ“0 โˆ’๐‘ ๐‘–๐‘›๐œ“ ๐‘๐‘œ๐‘ ๐œ“

Robotics 2.21 Rotation Kinematics

Page 22: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

IV. ROTATION ABOUT LOCAL CARTESIAN AXES

โ€ข Example 12 (Local rotation, local position)

If a local coordinate frame ๐‘‚๐‘ฅ๐‘ฆ๐‘ง has been rotated 600 about the ๐‘ง-axis

and a point ๐‘ท in the global coordinate frame ๐‘‚๐‘‹๐‘Œ๐‘ is at 4 3 2

Its coordinates in the local coordinate frame ๐‘‚๐‘ฅ๐‘ฆ๐‘ง are

๐‘ฅ๐‘ฆ๐‘ง

=๐‘๐‘œ๐‘ 60 ๐‘ ๐‘–๐‘›60 0โˆ’๐‘ ๐‘–๐‘›60 ๐‘๐‘œ๐‘ 60 0

0 0 1

432

=4.60โˆ’1.972.0

Robotics 2.22 Rotation Kinematics

Page 23: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

Robotics 2.23 Rotation Kinematics

IV. ROTATION ABOUT LOCAL CARTESIAN AXES

โ€ข Example 13 (Local rotation, global position)

If a local coordinate frame ๐‘‚๐‘ฅ๐‘ฆ๐‘ง has been rotated 600 about the ๐‘ง-axis

and a point ๐‘ท in the local coordinate frame ๐‘‚๐‘ฅ๐‘ฆ๐‘ง is at 4 3 2

Its position in the global coordinate frame ๐‘‚๐‘‹๐‘Œ๐‘ is at

๐‘‹๐‘Œ๐‘

=๐‘๐‘œ๐‘ 60 ๐‘ ๐‘–๐‘›60 0โˆ’๐‘ ๐‘–๐‘›60 ๐‘๐‘œ๐‘ 60 0

0 0 1

๐‘‡ 432

=โˆ’0.604.962.0

Page 24: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

IV. ROTATION ABOUT LOCAL CARTESIAN AXES

โ€ข Example 14 (Successive local rotation, global position)

The arm shown in Fig 2.11 has two actuators. The first actuator rotates

the arm โˆ’900 about ๐‘ฆ-axis and then the second actuator rotates the arm

900 about ๐‘ฅ-axis. If the end point ๐‘ท is at

๐’“๐‘ƒ = 9.5 โˆ’10.1 10.1 ๐‘‡๐ต

Then its position in the global coordinate frame is at

๐’“2 = ๐‘จ๐‘ฅ,90๐‘จ๐‘ฆ,โˆ’90โˆ’1

๐’“๐‘ƒ = ๐‘จ๐‘ฆ,โˆ’90โˆ’1 ๐‘จ๐‘ฅ,90

โˆ’1 ๐’“๐‘ƒ๐ต๐ต๐บ

= ๐‘จ๐‘ฆ,โˆ’90๐‘‡ ๐‘จ๐‘ฅ,90

๐‘‡ ๐’“๐‘ƒ๐ต =

10.1โˆ’10.19.5

Robotics 2.24 Rotation Kinematics

Page 25: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

V. SUCCESSIVE ROTATION ABOUT LOCAL CARTESIAN AXES

โ€ข The final global position of a point ๐‘ท in a rigid body ๐‘ฉ with position

vector ๐’“, after some rotation ๐‘จ1, ๐‘จ2, ๐‘จ3, โ‹ฏ , ๐‘จ๐‘› about the local axes, can

be found by

๐’“๐ต = ๐‘จ๐บ ๐’“๐บ๐ต

where

๐‘จ๐บ = ๐‘จ๐‘›โ‹ฏ๐‘จ3๐‘จ2๐‘จ1๐ต

โ€ข ๐‘จ๐บ๐ต is called the local rotation matrix and it maps the global

coordinates to their corresponding local coordinates

โ€ข Rotation about the local coordinate axis is conceptually interesting

because in a sequence of rotations, each rotation is about one of the axes

of the local coordinate frame, which has been moved to its new global

position during the last rotation

Robotics 2.25 Rotation Kinematics

Page 26: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

V. SUCCESSIVE ROTATION ABOUT LOCAL CARTESIAN AXES

โ€ข Example 15 (Successive local rotation, local position)

A local coordinate frame ๐‘ฉ(๐‘‚๐‘ฅ๐‘ฆ๐‘ง) that initially is coincident with a

global coordinate frame ๐‘ฎ(๐‘‚๐‘‹๐‘Œ๐‘) undergoes a rotation ๐œ‘ = 300 about

the ๐‘ง-axis, then ๐œƒ = 300 about the ๐‘ฅ-axis, and then ๐œ“ = 300 about the

๐‘ฆ-axis.

The local rotation matrix is

๐‘จ๐บ = ๐‘จ๐‘ฆ,30๐‘จ๐‘ฅ,30๐‘จ๐‘ง,30 =0.63 0.65 โˆ’0.43โˆ’0.43 0.75 0.500.65 โˆ’0.125 0.75

๐ต

The global coordinate of ๐‘ท is ๐‘‹ = 5, ๐‘Œ = 30, ๐‘ = 10, so the coordinate

of ๐‘ท in the local frame is

๐‘ฅ๐‘ฆ๐‘ง

=0.63 0.65 โˆ’0.43โˆ’0.43 0.75 0.500.65 โˆ’0.125 0.75

53010

=18.3525.357.0

Robotics 2.26 Rotation Kinematics

Page 27: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

V. SUCCESSIVE ROTATION ABOUT LOCAL CARTESIAN AXES

โ€ข Example 16 (Successive local rotation)

The rotation matrix for a body point ๐‘ท(๐‘ฅ, ๐‘ฆ, ๐‘ง) after rotation ๐‘จ๐‘ง,๐œ‘

followed by ๐‘จ๐‘ฅ,๐œƒ and ๐‘จ๐‘ฆ,๐œ“ is

๐‘จ๐บ๐ต = ๐‘จ๐‘ฆ,๐œ“๐‘จ๐‘ฅ,๐œƒ๐‘จ๐‘ง,๐œ‘

=

๐‘๐œ‘๐‘๐œ“ โˆ’ ๐‘ ๐œƒ๐‘ ๐œ‘๐‘ ๐œ“ ๐‘๐œ“๐‘ ๐œ‘ + ๐‘๐œ‘๐‘ ๐œƒ๐‘ ๐œ“ โˆ’๐‘๐œƒ๐‘ ๐œ“โˆ’๐‘๐œƒ๐‘ ๐œ‘ ๐‘๐œƒ๐‘๐œ‘ ๐‘ ๐œƒ

๐‘๐œ‘๐‘ ๐œ“ + ๐‘ ๐œƒ๐‘๐œ“๐‘ ๐œ‘ ๐‘ ๐œ‘๐‘ ๐œ“ โˆ’ ๐‘๐œ‘๐‘ ๐œƒ๐‘๐œ“ ๐‘๐œƒ๐‘๐œ“

(2.97)

Robotics 2.27 Rotation Kinematics

Page 28: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

V. SUCCESSIVE ROTATION ABOUT LOCAL CARTESIAN AXES

โ€ข Example 17 (Twelve independent triple local rotations)

Any 2 independent orthogonal coordinate frames with a common origin

can be related by a sequence of three rotations about the local coordinate

axes, where no two successive rotations may be about the same axis. In

general, there are 12 different independent combinations of triple

rotation about local axes

1 โˆ’ ๐‘จ๐‘ฅ,๐œ“๐‘จ๐‘ฆ,๐œƒ๐‘จ๐‘ง,๐œ‘ 5 โˆ’ ๐‘จ๐‘ฆ,๐œ“๐‘จ๐‘ฅ,๐œƒ๐‘จ๐‘ง,๐œ‘ 9 โˆ’ ๐‘จ๐‘ง,๐œ“๐‘จ๐‘ฅ,๐œƒ๐‘จ๐‘ง,๐œ‘

2 โˆ’ ๐‘จ๐‘ฆ,๐œ“๐‘จ๐‘ง,๐œƒ๐‘จ๐‘ฅ,๐œ‘ 6 โˆ’ ๐‘จ๐‘ฅ,๐œ“๐‘จ๐‘ง,๐œƒ๐‘จ๐‘ฆ,๐œ‘ 10 โˆ’ ๐‘จ๐‘ฅ,๐œ“๐‘จ๐‘ง,๐œƒ๐‘จ๐‘ฅ,๐œ‘

3 โˆ’ ๐‘จ๐‘ง,๐œ“๐‘จ๐‘ฅ,๐œƒ๐‘จ๐‘ฆ,๐œ‘ 7 โˆ’ ๐‘จ๐‘ฅ,๐œ“๐‘จ๐‘ฆ,๐œƒ๐‘จ๐‘ฅ,๐œ‘ 11 โˆ’ ๐‘จ๐‘ฆ,๐œ“๐‘จ๐‘ฅ,๐œƒ๐‘จ๐‘ฆ,๐œ‘

4 โˆ’ ๐‘จ๐‘ง,๐œ“๐‘จ๐‘ฆ,๐œƒ๐‘จ๐‘ฅ,๐œ‘ 8 โˆ’ ๐‘จ๐‘ฆ,๐œ“๐‘จ๐‘ง,๐œƒ๐‘จ๐‘ฆ,๐œ‘ 12 โˆ’ ๐‘จ๐‘ง,๐œ“๐‘จ๐‘ฆ,๐œƒ๐‘จ๐‘ง,๐œ‘

Robotics 2.28 Rotation Kinematics

Page 29: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

VI. EULER ANGLES

โ€ข The rotation about the ๐‘ -axis of the global coordinate is called

precession, the rotation about the ๐‘ฅ-axis of the local coordinate is called

nutation, and the rotation about the ๐‘ง-axis of the local coordinate is

called spin

โ€ข The precession-nutation-spin rotation angles are also called Euler angles

โ€ข Euler angles rotation matrix has many application in rigid body

kinematics

โ€ข To find Euler angles rotation matrix to go from the global frame

๐บ(๐‘‚๐‘‹๐‘Œ๐‘) to the final body frame ๐ต(๐‘‚๐‘ฅ๐‘ฆ๐‘ง), we employ a body frame

๐ตโ€ฒ(๐‘‚๐‘ฅโ€ฒ๐‘ฆโ€ฒ๐‘งโ€ฒ) that shown in Fig 2.12 that before the first rotation coincides

with the global frame

Robotics 2.29 Rotation Kinematics

Page 30: Ch.02 Rotation Kinematics

VI. EULER ANGLES

โ€ข Let there be at first a rotation ๐œ‘ about the ๐‘งโ€ฒ-axis. Because ๐‘-axis and

๐‘งโ€ฒ-axis are coincident, we have

๐’“ = ๐‘จ๐บ ๐’“๐บ๐ตโ€ฒ๐ตโ€ฒ

๐‘จ๐บ = ๐‘จ๐‘ง,๐œ‘ =๐‘๐‘œ๐‘ ๐œ‘ ๐‘ ๐‘–๐‘›๐œ‘ 0โˆ’๐‘ ๐‘–๐‘›๐œ‘ ๐‘๐‘œ๐‘ ๐œ‘ 00 0 1

๐ตโ€ฒ

โ€ข Next we consider the ๐‘ฉโ€ฒ(๐‘‚๐‘ฅโ€ฒ๐‘ฆโ€ฒ๐‘งโ€ฒ) frame as a new fixed global frame and

introduce a new body frame ๐‘ฉโ€ฒโ€ฒ(๐‘‚๐‘ฅโ€ฒโ€ฒ๐‘ฆโ€ฒโ€ฒ๐‘งโ€ฒโ€ฒ). Before the second rotation,

the two frame coincide

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

Robotics 2.30 Rotation Kinematics

Page 31: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

VI. EULER ANGLES

โ€ข Then, we execute a ๐œƒ rotation about ๐‘ฅโ€ฒโ€ฒ-axis as shown in Fig 2.13. The

transformation between ๐‘ฉโ€ฒ(๐‘‚๐‘ฅโ€ฒ๐‘ฆโ€ฒ๐‘งโ€ฒ) and ๐‘ฉโ€ฒโ€ฒ(๐‘‚๐‘ฅโ€ฒโ€ฒ๐‘ฆโ€ฒโ€ฒ๐‘งโ€ฒโ€ฒ) is

๐’“ = ๐‘จ๐ตโ€ฒ ๐’“๐ตโ€ฒ๐ตโ€ฒโ€ฒ๐ตโ€ฒโ€ฒ

๐‘จ๐ตโ€ฒ = ๐‘จ๐‘ฅ,๐œƒ =1 0 00 ๐‘๐‘œ๐‘ ๐œƒ ๐‘ ๐‘–๐‘›๐œƒ0 โˆ’๐‘ ๐‘–๐‘›๐œƒ ๐‘๐‘œ๐‘ ๐œƒ

๐ตโ€ฒโ€ฒ

โ€ข Finally, we consider the ๐‘ฉโ€ฒโ€ฒ(๐‘‚๐‘ฅโ€ฒโ€ฒ๐‘ฆโ€ฒโ€ฒ๐‘งโ€ฒโ€ฒ) frame as a new fixed global

frame and consider the final body frame ๐‘ฉ(๐‘‚๐‘ฅ๐‘ฆ๐‘ง) to coincide with ๐‘ฉโ€ฒโ€ฒ before the third rotation

Robotics 2.31 Rotation Kinematics

Page 32: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

VI. EULER ANGLES

โ€ข We now execute a ๐œ“ rotation about the ๐‘งโ€ฒโ€ฒ-axis as shown in Fig 2.14. The

transformation between ๐‘ฉโ€ฒโ€ฒ(๐‘‚๐‘ฅโ€ฒโ€ฒ๐‘ฆโ€ฒโ€ฒ๐‘งโ€ฒโ€ฒ) and ๐‘ฉ(๐‘‚๐‘ฅ๐‘ฆ๐‘ง) is

๐’“ = ๐‘จ๐ตโ€ฒโ€ฒ ๐’“๐ตโ€ฒโ€ฒ๐ต๐ต

๐‘จ๐ตโ€ฒโ€ฒ = ๐‘จ๐‘ง,๐œ“ =๐‘๐‘œ๐‘ ๐œ“ ๐‘ ๐‘–๐‘›๐œ“ 0โˆ’๐‘ ๐‘–๐‘›๐œ“ ๐‘๐‘œ๐‘ ๐œ“ 00 0 1

๐ต

By the rule of composition of rotation, the

transformation from ๐‘ฎ(๐‘‚๐‘‹๐‘Œ๐‘) to ๐‘ฉ(๐‘‚๐‘ฅ๐‘ฆ๐‘ง) is

๐’“๐ต = ๐‘จ๐บ ๐’“๐บ๐ต

๐‘จ๐บ = ๐‘จ๐‘ง,๐œ“๐‘จ๐‘ฅ,๐œƒ๐‘จ๐‘ง,๐œ‘๐ต

=

๐‘๐œ‘๐‘๐œ“ โˆ’ ๐‘๐œƒ๐‘ ๐œ‘๐‘ ๐œ“ ๐‘๐œ“๐‘ ๐œ‘ + ๐‘๐œƒ๐‘๐œ‘๐‘ ๐œ“ ๐‘ ๐œƒ๐‘ ๐œ“โˆ’๐‘๐œ‘๐‘ ๐œ“ โˆ’ ๐‘๐œƒ๐‘๐œ“๐‘ ๐œ‘ โˆ’๐‘ ๐œ‘๐‘ ๐œ“ + ๐‘๐œƒ๐‘๐œ‘๐‘๐œ“ ๐‘ ๐œƒ๐‘๐œ“

๐‘ ๐œƒ๐‘ ๐œ‘ โˆ’๐‘๐œ‘๐‘ ๐œƒ ๐‘๐œƒ

Robotics 2.32 Rotation Kinematics

Page 33: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

VI. EULER ANGLES

โ€ข Example 18 (Euler angle rotation matrix)

The Euler or precession-nutation-spin rotation matrix for ๐œ‘ = 79.150,

๐œƒ = 41.410, and ๐œ“ = โˆ’40.70 would be found by substituting ๐œ‘, ๐œƒ and ๐œ“

in equation (2.106)

๐‘จ๐บ = ๐‘จ๐‘ง,โˆ’40.7๐‘จ๐‘ฅ,41.41๐‘จ๐‘ง,79.15๐ต

=0.63 0.65 โˆ’0.43โˆ’0.43 0.75 0.500.65 โˆ’0.125 0.75

Robotics 2.33 Rotation Kinematics

Page 34: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

VI. EULER ANGLES

โ€ข Example 19 (Euler angles of a local rotation matrix)

The local rotation matrix after rotation 300 about the ๐‘ง-axis, then rotation

300 about the ๐‘ฅ-axis, and then 300 about the ๐‘ฆ-axis is

๐‘จ๐บ = ๐‘จ๐‘ฆ,30๐‘จ๐‘ฅ,30๐‘จ๐‘ง,30๐ต

=0.63 0.65 โˆ’0.43โˆ’0.43 0.75 0.500.65 โˆ’0.125 0.75

The Euler angles of the corresponding rotation matrix are

๐œƒ = ๐‘๐‘œ๐‘ โˆ’1 ๐‘Ÿ33 = ๐‘๐‘œ๐‘ โˆ’1 0.75 = 41.410

๐œ‘ = โˆ’๐‘ก๐‘Ž๐‘›โˆ’1๐‘Ÿ31๐‘Ÿ32

= โˆ’๐‘ก๐‘Ž๐‘›โˆ’10.65

โˆ’0.125= 79.150

๐œ“ = ๐‘ก๐‘Ž๐‘›โˆ’1๐‘Ÿ13๐‘Ÿ23

= ๐‘ก๐‘Ž๐‘›โˆ’1โˆ’0.43

0.50= โˆ’40.70

Robotics 2.34 Rotation Kinematics

Page 35: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

VI. EULER ANGLES

โ€ข Example 20 (Relative rotation matrix of two bodies)

Consider a rigid body ๐‘ฉ1 with an orientation matrix ๐‘จ๐บ๐ต1 made by Euler

angles ๐œ‘ = 300, ๐œƒ = โˆ’450, ๐œ“ = 600, and another rigid body ๐‘ฉ2 having

๐œ‘ = 100, ๐œƒ = 250, ๐œ“ = โˆ’150, the individual rotation matrices are

๐‘จ๐บ = ๐‘จ๐‘ง,60๐‘จ๐‘ฅ,โˆ’45๐‘จ๐‘ง,30 ๐ต1 ๐‘จ๐บ = ๐‘จ๐‘ง,โˆ’15๐‘จ๐‘ฅ,25๐‘จ๐‘ง,10

๐ต2

=0.127 0.78 โˆ’0.612โˆ’0.927 โˆ’0.127 โˆ’0.354โˆ’0.354 0.612 0.707

=0.992 โˆ’0.0633 โˆ’0.1090.103 0.907 0.4080.0734 โˆ’0.416 0.906

The relative rotation matrix to map ๐‘ฉ2 to ๐‘ฉ1 may be found by

๐‘จ๐ต2 = ๐‘จ๐บ ๐‘จ๐ต2 =0.992 0.103 0.0734

โˆ’0.0633 0.907 โˆ’0.416โˆ’0.109 0.408 0.906

๐บ๐ต1๐ต1

Robotics 2.35 Rotation Kinematics

Page 36: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

VII. LOCAL ROLL-PITCH-YAW ANGLES

โ€ข Rotation about the ๐‘ฅ-axis of the local frame is called roll or bank, rotation

about ๐‘ฆ-axis of the local frame is called pitch or attitude, and rotation about

the ๐‘ง-axis of the local frame is called yaw, spin or heading

โ€ข The local roll-pitch-yaw rotation matrix is

๐‘จ๐บ = ๐‘จ๐‘ง,๐œ“๐‘จ๐‘ฆ,๐œƒ๐‘จ๐‘ฅ,๐œ‘ =๐ต

๐‘๐œƒ๐‘๐œ“ ๐‘๐œ‘๐‘ ๐œ“ + ๐‘ ๐œƒ๐‘๐œ“๐‘ ๐œ‘ ๐‘ ๐œ‘๐‘ ๐œ“ โˆ’ ๐‘๐œ‘๐‘ ๐œƒ๐‘๐œ“โˆ’๐‘๐œƒ๐‘ ๐œ“ ๐‘๐œ‘๐‘๐œ“ โˆ’ ๐‘ ๐œƒ๐‘ ๐œ‘๐‘ ๐œ“ ๐‘๐œ“๐‘ ๐œ‘ + ๐‘๐œ‘๐‘ ๐œƒ๐‘ ๐œ“๐‘ ๐œƒ โˆ’๐‘๐œƒ๐‘ ๐œ‘ ๐‘๐œƒ๐‘๐œ‘

Note the difference between roll-pitch-yaw

and Euler angles, although we show both

utilizing ๐œ‘, ๐œƒ and ๐œ“

Robotics 2.36 Rotation Kinematics

Page 37: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

VII. LOCAL ROLL-PITCH-YAW ANGLES

โ€ข Example 28 (Angular velocity and local roll-pitch-yaw rate)

Using the roll-pitch-yaw frequencies, the angular velocity of a body ๐‘ฉ

with respect to the global reference frame is

๐Ž๐ต = ๐œ”๐‘ฅ๐’Š + ๐œ”๐‘ฆ๐’‹ + ๐œ”๐‘ง๐’Œ ๐บ

= ๐œ‘ ๐’† ๐œ‘ + ๐œƒ ๐’† ๐œƒ + ๐œ“ ๐’† ๐œ“

The roll unit vector ๐’† ๐œ‘ = 1 0 0 ๐‘‡ transforms to the body frame after

rotation ๐œƒ and then rotation ๐œ“

๐’† ๐œ‘ = ๐‘จ๐‘ง,๐œ“๐‘จ๐‘ฆ,๐œƒ

100

=๐‘๐‘œ๐‘ ๐œƒ๐‘๐‘œ๐‘ ๐œ“โˆ’๐‘๐‘œ๐‘ ๐œƒ๐‘ ๐‘–๐‘›๐œ“

๐‘ ๐‘–๐‘›๐œƒ

๐ต

The pitch unit vector ๐’† ๐œƒ = 0 1 0 ๐‘‡ transforms to the body frame

after rotation ๐œ“

Robotics 2.37 Rotation Kinematics

Page 38: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

VII. LOCAL ROLL-PITCH-YAW ANGLES

๐’† ๐œƒ = ๐‘จ๐‘ง,๐œ“

010

=๐‘ ๐‘–๐‘›๐œ“๐‘๐‘œ๐‘ ๐œ“0

๐ต

The yaw unit vector ๐’† ๐œ“ = 0 0 1 ๐‘‡ is already along the local ๐‘ง-axis

Hence, ๐Ž๐ต๐บ can be expressed in body frame ๐‘‚๐‘ฅ๐‘ฆ๐‘ง as

๐Ž๐ต =๐‘๐‘œ๐‘ ๐œƒ๐‘๐‘œ๐‘ ๐œ“ ๐‘ ๐‘–๐‘›๐œ“ 0โˆ’๐‘๐‘œ๐‘ ๐œƒ๐‘ ๐‘–๐‘›๐œ“ ๐‘๐‘œ๐‘ ๐œ“ 0

๐‘ ๐‘–๐‘›๐œƒ 0 1

๐œ‘

๐œƒ

๐œ“ ๐บ๐ต

And therefore, ๐Ž๐ต๐บ in global frame ๐‘‚๐‘‹๐‘Œ๐‘ is

๐Ž๐ต =1 0 ๐‘ ๐‘–๐‘›๐œƒ0 ๐‘๐‘œ๐‘ ๐œ‘ โˆ’๐‘๐‘œ๐‘ ๐œƒ๐‘ ๐‘–๐‘›๐œ‘0 ๐‘ ๐‘–๐‘›๐œ‘ ๐‘๐‘œ๐‘ ๐œƒ๐‘๐‘œ๐‘ ๐œ‘

๐œ‘

๐œƒ

๐œ“ ๐บ๐บ

Robotics 2.38 Rotation Kinematics

Page 39: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

VIII. LOCAL AXES VERSUS GLOBAL AXES ROTATION

โ€ข The global rotation matrix ๐‘ธ๐ต๐บ is equal to the inverse of the local

rotation matrix ๐‘จ๐บ๐ต and vice versa

๐‘ธ๐ต๐บ = ๐‘จ๐บ

โˆ’1๐ต , ๐‘จ๐บ๐ต = ๐‘ธ๐ต

โˆ’1๐บ

where

๐‘ธ๐ต๐บ = ๐‘จ1

โˆ’1๐‘จ2โˆ’1๐‘จ3

โˆ’1โ‹ฏ๐‘จ๐‘›โˆ’1

๐‘จ๐บ๐ต = ๐‘ธ1

โˆ’1๐‘ธ2โˆ’1๐‘ธ3

โˆ’1โ‹ฏ๐‘ธ๐‘›โˆ’1

โ€ข Also, pre-multiplication of the global rotation matrix is equal to post-

multiplication of the local rotation matrix

Robotics 2.39 Rotation Kinematics

Page 40: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

VIII. LOCAL AXES VERSUS GLOBAL AXES ROTATION

โ€ข Example 29 (Global position and post-multiplication of rotation matrix)

The local position of a point ๐‘ท after rotation is at ๐’“ = 1 2 3 ๐‘‡๐ต . If

the local rotation matrix to transform ๐’“๐บ to ๐’“๐ต is given as

๐‘จ๐‘ง,๐œ‘ =๐‘๐‘œ๐‘ ๐œ‘ ๐‘ ๐‘–๐‘›๐œ‘ 0โˆ’๐‘ ๐‘–๐‘›๐œ‘ ๐‘๐‘œ๐‘ ๐œ‘ 00 0 1

=๐‘๐‘œ๐‘ 30 ๐‘ ๐‘–๐‘›30 0โˆ’๐‘ ๐‘–๐‘›30 ๐‘๐‘œ๐‘ 30 0

0 0 1

๐ต

Then we may find the global position vector ๐’“๐บ by post-multiplication

๐‘จ๐‘ง,๐œ‘๐ต by the local position vector ๐’“๐‘‡๐ต

๐’“๐‘‡ =๐บ ๐’“๐‘‡ ๐‘จ๐‘ง,๐œ‘๐ต๐ต = 1 2 3

๐‘๐‘œ๐‘ 30 ๐‘ ๐‘–๐‘›30 0โˆ’๐‘ ๐‘–๐‘›30 ๐‘๐‘œ๐‘ 30 0

0 0 1

= โˆ’0.13 2.23 3.0

Robotics 2.40 Rotation Kinematics

Page 41: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

VIII. LOCAL AXES VERSUS GLOBAL AXES ROTATION

โ€ข Example 29 (Global position and post-multiplication of rotation matrix)

Instead of pre-multiplication of ๐‘จ๐‘ง,๐œ‘โˆ’1๐ต by ๐’“๐ต

๐’“๐บ = ๐‘จ๐‘ง,๐œ‘โˆ’1๐ต ๐’“๐ต

=๐‘๐‘œ๐‘ 30 โˆ’๐‘ ๐‘–๐‘›30 0๐‘ ๐‘–๐‘›30 ๐‘๐‘œ๐‘ 30 00 0 1

123

=โˆ’0.132.233

Robotics 2.41 Rotation Kinematics

Page 42: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

IX. GENERAL TRANSFORMATION

โ€ข Consider a general situation in which two coordinate frames, ๐‘ฎ(๐‘‚๐‘‹๐‘Œ๐‘) and ๐‘ฉ(๐‘‚๐‘ฅ๐‘ฆ๐‘ง) with a common origin ๐‘ถ, are employed to express the

components of a vector ๐’“. There is always a transformation matrix ๐‘น๐ต๐บ

to map the components of ๐’“ from the reference frame ๐‘ฉ(๐‘‚๐‘ฅ๐‘ฆ๐‘ง) to the

other reference frame ๐‘ฎ(๐‘‚๐‘‹๐‘Œ๐‘)

๐’“๐บ = ๐‘น๐ต ๐’“๐ต๐บ

โ€ข In addition, the inverse map, ๐’“๐ต = ๐‘น๐ตโˆ’1 ๐’“๐บ๐บ , can be done by ๐‘น๐บ

๐ต

๐’“๐ต = ๐‘น๐บ ๐’“๐บ๐ต

where

๐‘น๐ต๐บ = ๐‘น๐บ

๐ต = 1

and

๐‘น๐บ๐ต = ๐‘น๐ต

โˆ’1 = ๐‘น๐ต๐‘‡๐บ๐บ

Robotics 2.42 Rotation Kinematics

Page 43: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

IX. GENERAL TRANSFORMATION

โ€ข Example 30 (Elements of transformation matrix)

The position vector ๐’“ of a point ๐‘ท may be expressed in terms of its

components with respect to either ๐‘ฎ(๐‘‚๐‘‹๐‘Œ๐‘) or ๐‘ฉ(๐‘‚๐‘ฅ๐‘ฆ๐‘ง) frames. If

๐’“ = 100๐‘ฐ โˆ’ 50๐‘ฑ + 150๐‘ฒ ๐บ โ‡’ Find components of ๐’“ in the ๐‘‚๐‘ฅ๐‘ฆ๐‘ง frame?

The ๐‘ฅ-axis lie in the ๐‘‹๐‘ plane at 400 from

the ๐‘‹-axis, and the angle between ๐‘ฆ and ๐‘Œ is

600. Therefore

๐‘น๐บ =

๐‘๐‘œ๐‘ 40 0 ๐‘ ๐‘–๐‘›40๐’‹ โˆ™ ๐‘ฐ ๐‘๐‘œ๐‘ 60 ๐’‹ โˆ™ ๐‘ฒ

๐’Œ โˆ™ ๐‘ฐ ๐’Œ โˆ™ ๐‘ฑ ๐’Œ โˆ™ ๐‘ฒ

๐ต

=

0.766 0 0.643๐’‹ โˆ™ ๐‘ฐ 0.5 ๐’‹ โˆ™ ๐‘ฒ

๐’Œ โˆ™ ๐‘ฐ ๐’Œ โˆ™ ๐‘ฑ ๐’Œ โˆ™ ๐‘ฒ

Robotics 2.43 Rotation Kinematics

Page 44: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

IX. GENERAL TRANSFORMATION

And by using ๐‘น๐บ ๐‘น๐ต = ๐‘น๐บ ๐‘น๐บ๐‘‡ = ๐‘ฐ๐ต๐ต๐บ๐ต

0.766 0 0.643๐‘Ÿ21 0.5 ๐‘Ÿ23๐‘Ÿ31 ๐‘Ÿ32 ๐‘Ÿ33

0.766 ๐‘Ÿ21 ๐‘Ÿ310 0.5 ๐‘Ÿ32

0.643 ๐‘Ÿ23 ๐‘Ÿ33

=1 0 00 1 00 0 1

We obtain a set of equations to find the missing elements. Solving these

equations provides the following transformation matrix

๐‘น๐บ =0.766 0 0.6430.557 0.5 โˆ’0.663โˆ’0.322 0.866 0.383

๐ต

Then we can find the components of ๐’“๐ต

๐’“๐ต = ๐‘น๐บ ๐’“ =0.766 0 0.6430.557 0.5 โˆ’0.663โˆ’0.322 0.866 0.383

100โˆ’50150

=173.05โˆ’68.75โˆ’18.05

๐บ๐ต

Robotics 2.44 Rotation Kinematics

Page 45: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

IX. GENERAL TRANSFORMATION

โ€ข Example 31 (Global position, using ๐’“๐ต and ๐‘น๐บ๐ต )

The position vector ๐’“ of a point ๐‘ท in local frame is

๐’“ = 100๐’Š โˆ’ 50๐’‹ + 150๐’Œ ๐ต

The transformation matrix to map ๐’“๐บ to ๐’“๐ต

๐‘น๐บ =0.766 0 0.6430.557 0.5 โˆ’0.663โˆ’0.322 0.866 0.383

๐ต

Then the components of ๐’“๐บ in ๐‘ฎ(๐‘‚๐‘‹๐‘Œ๐‘) would be

๐’“๐บ = ๐‘น๐ต ๐’“ = ๐‘น๐บ๐‘‡ ๐’“๐ต๐ต๐ต๐บ

=0.766 0.557 โˆ’0.3220 0.5 0.866

0.643 โˆ’0.663 0.383

100โˆ’50150

=0.45104.9154.9

Robotics 2.45 Rotation Kinematics

Page 46: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

IX. GENERAL TRANSFORMATION

โ€ข Example 32 (Two points transformation matrix)

The global position vector of two points, ๐‘ท1 and ๐‘ท2, of a rigid body ๐‘ฉ are

๐’“๐‘ƒ1 =1.0771.3652.666

๐บ ๐’“๐‘ƒ2 =โˆ’0.4732.239โˆ’0.959

๐บ

The origin of the body ๐‘ฉ(๐‘‚๐‘ฅ๐‘ฆ๐‘ง) is fixed on the origin of ๐‘ฎ(๐‘‚๐‘‹๐‘Œ๐‘), and

the points ๐‘ท1 and ๐‘ท2 are lying on the local ๐‘ฅ-axis and ๐‘ฆ-axis respectively.

To find ๐‘น๐ต๐บ , we use the local unit vectors ๐’Š ๐บ and ๐’‹ ๐บ

๐’Š =๐’“๐‘ƒ1

๐บ

๐’“๐‘ƒ1๐บ

=0.3380.4290.838

๐บ ๐’‹ =๐’“๐‘ƒ2

๐บ

๐’“๐‘ƒ2๐บ

=โˆ’0.1910.902โˆ’0.387

๐บ

Robotics 2.46 Rotation Kinematics

Page 47: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

IX. GENERAL TRANSFORMATION

โ€ข Example 32 (Two points transformation matrix)

We can calculate ๐’Œ ๐บ as follow

๐’Œ = ๐’Š ร— ๐’‹ ๐บ๐บ๐บ =โˆ’0.922โˆ’0.0290.387

Hence, the transformation matrix using the coordinates of two points

๐’“๐‘ƒ1๐บ and ๐’“๐‘ƒ2

๐บ would be

๐‘น๐ต = ๐’Š ๐บ ๐’‹ ๐บ ๐’Œ ๐บ๐บ

=0.338 โˆ’0.191 โˆ’0.9220.429 0.902 โˆ’0.0290.838 โˆ’0.387 0.387

Robotics 2.47 Rotation Kinematics

Page 48: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

X. ACTIVE AND PASSIVE TRANSFORMATION

โ€ข Rotation of a local frame when the position vector ๐’“๐บ of a point ๐‘ท is

fixed in global frame and does not rotate with the local frame, is called

passive transformation

โ€ข Rotation of a local frame when the position vector ๐’“๐ต of a point ๐‘ท is

fixed in the local frame and rotate with the local frame, is called active

transformation

โ€ข The passive and active transformation are mathematically equivalent

โ€ข The rotation matrix for a rotated frame and rotated vector (active

transformation) is the same as the rotation matrix for a rotated frame and

fixed vector (passive transformation)

Robotics 2.48 Rotation Kinematics

Page 49: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

X. ACTIVE AND PASSIVE TRANSFORMATION

โ€ข Example 39 (Active and passive rotation about ๐‘‹-axis)

Consider a local and global frames ๐‘ฉ and ๐‘ฎ that are coincident. A body

point ๐‘ท is at ๐’“๐ต

๐’“๐ต =121

A rotation of 900 about ๐‘‹-axis will move the point to ๐’“๐บ

๐’“ = ๐‘น๐‘‹,90 ๐’“๐ต๐บ

=

1 0 0

0 ๐‘๐‘œ๐‘ ๐œ‹

2โˆ’๐‘ ๐‘–๐‘›

๐œ‹

2

0 ๐‘ ๐‘–๐‘›๐œ‹

2๐‘๐‘œ๐‘ 

๐œ‹

2

121

=1โˆ’12

Robotics 2.49 Rotation Kinematics

Page 50: Ch.02 Rotation Kinematics

HCM City Univ. of Technology, Faculty of Mechanical Engineering Phung Tri Cong

X. ACTIVE AND PASSIVE TRANSFORMATION

โ€ข Example 39 (Active and passive rotation about ๐‘‹-axis)

Now assume that ๐‘ท is fixed in ๐‘ฎ. When ๐‘ฉ rotates 900 about ๐‘‹-axis, the

coordinates of ๐‘ท in the local frame will change such that

๐’“๐ต = ๐‘น๐‘‹,โˆ’90 ๐’“๐บ

=

1 0 0

0 ๐‘๐‘œ๐‘ โˆ’๐œ‹

2โˆ’๐‘ ๐‘–๐‘›

โˆ’๐œ‹

2

0 ๐‘ ๐‘–๐‘›โˆ’๐œ‹

2๐‘๐‘œ๐‘ 

โˆ’๐œ‹

2

121

=11โˆ’2

Robotics 2.50 Rotation Kinematics