Ch Wang Fracture Mechanics

download Ch Wang Fracture Mechanics

of 82

Transcript of Ch Wang Fracture Mechanics

  • 8/2/2019 Ch Wang Fracture Mechanics

    1/82

    Introduction to Fracture Mechanics

    C.H. Wang

    Airframes and Engines Division

    Aeronautical and Maritime Research Laboratory

    DSTO-GD-0103

    ABSTRACT

    This text is based on a series of lectures conducted on fracture mechanics. As anintroductory course, the test is focused on the essential concepts and analyticalmethods of fracture mechanics, aiming at painting a broad picture of the theoreticalbackground to fracture mechanics. While a brief review of some important issues in thetheory of elasticity is provided in the first chapter, the main focus of the test is centredon stress analysis and energetic approaches to cracked components, local plasticdeformation at crack tips, fracture criteria and fatigue life prediction.

    RELEASE LIMITATION

    Approved for public release

    D E P A R T M E N T O F D E F E N C E

    !

    DEFENCESCIENCEANDTECHNOLOGYORGANISATION

  • 8/2/2019 Ch Wang Fracture Mechanics

    2/82

    Published by

    DSTO Aeronaut ical and M aritime Research LaboratoryPO Box 4331

    Melbourne Victoria 3001

    Telephone: (03) 9626 8111

    Fax: (03) 9626 8999

    Commonwealth of Australia 1996

    AR No. AR-009-786

    July 1996

    APPROVED FOR PUBLIC RELEASE

  • 8/2/2019 Ch Wang Fracture Mechanics

    3/82

    Introduction to Fracture Mechanics

    Executive Summary

    This text is prepared for a series of lectures on fracture mechanics. The main aimof the lectures is to provide AMRL staff who are involved in aircraft fatigue andfracture research with a broad picture of the theoretical background to fracturemechanics via a stress analysis viewpoint.

    As an introductory course, the lectures are focused on the essential concepts andanalytical methods of fracture mechanics. A brief review of some importantissues in the theory of elasticity is provided in Chapter 1, while the remainingchapters deal with the stress analysis approach and the energy approach tocracked components, local plastic deformation at crack tips, fracture criteria andfatigue life prediction.

  • 8/2/2019 Ch Wang Fracture Mechanics

    4/82

    Authors

    C. H. Wang

    Airframe and Engine Division

    Chun-Hui Wang has a B.Eng and Ph.D (Sheffield, UK) in

    Mechanical Engineering and is currently a member of the Institute

    of Engineers, A ustralia. Prior to joining the A eronautical and

    Maritime Research Laboratory in 1995 as a Senior Research

    Scientist, Dr. Wang was a Lecturer at the Deakin University. He

    has an extensive research record in fatigue and fracture mechanics,

    stress analysis and constitut ive modelling, and biomechanics. Overthe last six years he also held academic/research positions at the

    University of Sydney and the University of Sheffield, UK.

    ____________________ ________________________________________________

  • 8/2/2019 Ch Wang Fracture Mechanics

    5/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    6/82

    Contents

    1. FUN DAM ENTALS ............................................................................................................1

    1.1 Historical Overview ......................................................................................................1

    1.2 Notch es an d Stress Con centra tion .............................................................................. 2

    1.3 Cracks an d Stress In ten sity Factor .............................................................................. 3

    1.4 Plane Stress and Plan e Strain ...................................................................................... 4

    1.5 Stress Functio n ............................................................................................................... 7

    2. STRESS AN ALYSIS O F CRACKED CO MPONENTS .............................................10

    2.1 Ene rgy Balance Durin g Crack Grow th ....................................................................10

    2.2 Griff ith Th eory .............................................................................................................11

    2.3 Energy Release Rate G an d Com plian ce ................................................................. 14

    2.3.1 Constant Load Conditions .................................................................................... 15

    2.3.2 Constant Displacement Condition.......................................................................15

    2.3.3 Determination Of Energy Release Rate From Compliance ..............................16

    2.4 Stress Intensity Factor K............................................................................................. 19

    2.5 Su perp osit ion M eth od ................................................................................................28

    2.6 Relationship Between G an d K................................................................................. 30

    3. PLASTIC YIELDING AT CRACK TIP ........................................................................35

    3.1 Irwin s Mod el ............................................................................................................... 35

    3.2 Th e Strip Yield M od el ................................................................................................ 37

    3.3 Plane Stress ver su s Plane Strain . .............................................................................. 39

    3.4 Sh ap es o f Plast ic Zon e ................................................................................................40

    3.5 Crack Tip Open in g Disp lacem en t ............................................................................43

    4. FRACTURE CRITERIA .................................................................................................. 45

    4.1 K as a Failu re Criter ion ...............................................................................................45

    4.2 Residua l Stren gth an d Cri tical Crack Size..............................................................47

    4.3 R -curve ...........................................................................................................................49

    4.4 Mixed Mod e Load in g: Fracture an d Crack Path ....................................................52

    5. FATIG UE AND LIFE PREDICTION ...........................................................................57

    5.1 Fatig ue Crack Grow th Equ ation s..............................................................................57

    5.2 Effect of Stress Rat io an d Crack Closu re ................................................................. 60

    5.3 Var iab le Am plitude Load in g.....................................................................................62

    5.3.1 First Generation Model and Palmgren-Miner Linear Rule .............................. 64

    5.3.2 Wheeler Model........................................................................................................65

    5.4 Dam age Toleran ce Design Meth od ology ................................................................ 67

    6. REFEREN CES ...................................................................................................................69

  • 8/2/2019 Ch Wang Fracture Mechanics

    7/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    8/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    9/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    10/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    11/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    12/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    13/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    14/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    15/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    16/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    17/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    18/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    19/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    20/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    21/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    22/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    23/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    24/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    25/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    26/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    27/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    28/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    29/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    30/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    31/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    32/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    33/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    34/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    35/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    36/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    37/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    38/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    39/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    40/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    41/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    42/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    43/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    44/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    45/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    46/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    47/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    48/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    49/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    50/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    51/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    52/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    53/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    54/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    55/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    56/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    57/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    58/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    59/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    60/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    61/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    62/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    63/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    64/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    65/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    66/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    67/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    68/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    69/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    70/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    71/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    72/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    73/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    74/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    75/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    76/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    77/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    78/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    79/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    80/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    81/82

  • 8/2/2019 Ch Wang Fracture Mechanics

    82/82