Ch t i ti f Characterisation of mesopores - ortho...

20
Ch t i ti f Characterisation of mesopores - ortho-Positronium lifetime measurement on controlled pore glass controlled pore glass S Thraenert 1 D Enke 2 S. Thraenert , D. Enke , R. Krause-Rehberg 1 Martin-Luther-Universität Halle-Wittenberg Naturwissenschaftliche Fakultät II 1 Institut für Physik 2 Institut für Chemie

Transcript of Ch t i ti f Characterisation of mesopores - ortho...

  • Ch t i ti f Characterisation of mesopores -ortho-Positronium lifetime m f m

    measurement on controlled pore glass controlled pore glass

    S Thraenert1 D Enke2 S. Thraenert , D. Enke , R. Krause-Rehberg1

    Martin-Luther-Universität Halle-Wittenbergg

    Naturwissenschaftliche Fakultät II1Institut für Physik

    2Institut für Chemie

  • OutlinePorous glass - CPG

    synthesisyproperties

    Principles of PALS d

    0.014

    0.016

    0.018

    0.020

    1.8 nm

    positron and positroniumlifetime measurementthe spectrum

    0.006

    0.008

    0.010

    0.012

    6 2 nm

    4.5 nm

    2.5 nm

    pdf n

    (d)From τ4 to pore size d

    the model

    E i t l lt100000

    1000000

    0 5 10 150.000

    0.002

    0.0046.2 nm

    d(nm)

    Experimental resultscalibration curvepore size distribution 1000

    10000

    8 nm

    N

    d(nm)p

    Summary0 100 200 300 400 500 600 700 800 900

    10

    100

    40 nm

    o-Ps lifetime measurement on CPG 2

    t (ns)

  • Controlled pore glass - CPGVYCOR-Process

    alkali borosilicate

    ExtractionTl

    HCl/NaOH530 – 710°Cglass

    ddPP 1 to 110 nm1 to 110 nmspinodal phase separationspinodal phase separationdecomposition is initiated by heat treatmentalkali rich borate phase pure silicaalkali phase soluble in acid -> silica networkalkali phase soluble in acid -> silica networkpore size depends on basic materialporosity of 50 %

    o-Ps lifetime measurement on CPG 3

    F. Janowski, D. Enke in F. Schüth, K.S.W. Sing, J. Weitkamp (Eds.), Handbook of Porous Solids, WILEY-VCH, Weinheim, 2002, 1432-1542.

  • Controlled pore glass - CPG

    different geometries possiblep

    homogenous microstructure

    controlled pore sizemicrostructure

    uniform pore sizewe can choose d (!)

    o-Ps lifetime measurement on CPG 4

    D. Enke, F. Janowski, W. Schwieger, Microporous and Mesoporous Materials 2003, 60, 19-30.

  • OutlinePorous glass - CPG

    synthesisyproperties

    Principles of PALS d

    0.014

    0.016

    0.018

    0.020

    1.8 nm

    positron and positroniumlifetime measurementthe spectrum

    0.006

    0.008

    0.010

    0.012

    6 2 nm

    4.5 nm

    2.5 nm

    pdf n

    (d)From τ4 to pore size d

    the model

    E i t l lt100000

    1000000

    0 5 10 150.000

    0.002

    0.0046.2 nm

    d(nm)

    Experimental resultscalibration curvepore size distribution 1000

    10000

    8 nm

    N

    d(nm)p

    Summary0 100 200 300 400 500 600 700 800 900

    10

    100

    40 nm

    o-Ps lifetime measurement on CPG 5

    t (ns)

  • Principles of PALS: pick-off annihilationPrinciples of PALSpick-off annihilation:

    o-Ps captures e- with anti-parallel spinh d i lli i t ll f

    positrons from 22Na: thermalize, diffuse, being trapped and annihilate

    happens during collisions at walls of porelifetime (τ) decreases rapidlyτ is function of pore size: 1.5 - 142 ns

    ppOR: positrons form Ps

    palso for closed pore systems25 %

    75 %

    positronium: p-Ps -> short self annihilation

    lifetime of 0.125 nso-Ps -> long self annihilation

    lifetime of 142 ns (3γ)-> pick off annihilation (2γ)

    o-Ps lifetime measurement on CPG 6

    > pick off annihilation (2γ)

  • Principles of PALS

    sample preparation: ”sandwich”

    positron(ium) lifetime: time between “birth” (1 27 MeV) and “death” (511 keV)positron(ium) lifetime: time between birth” (1,27 MeV) and death” (511 keV)

    106

    5 nm

    104

    105

    5 nm 26 nm

    102

    103

    0 200 400 600 800101

    10

    time (ns)

    o-Ps lifetime measurement on CPG 7

    time (ns)

  • Principles of PALS: typical spectrumtypical lifetime spectrum for CPG (here d = 20 nm):

    4 ti l d t4 exponential decay components

    p-Ps -> 0.125 ns

    free positrons ~ 0.5 ns

    o-Ps in disordered structure ~ 1.5 ns

    o-Ps in pores

    analysis with LT9 (LifeTime)analysis with LT9 (LifeTime)

    o-Ps lifetime measurement on CPG 8

  • OutlinePorous glass - CPG

    synthesisyproperties

    Principles of PALS d

    0.014

    0.016

    0.018

    0.020

    1.8 nm

    positron and Positroniumlifetime measurementthe spectrum

    0.006

    0.008

    0.010

    0.012

    6 2 nm

    4.5 nm

    2.5 nm

    pdf n

    (d)From τ4 to pore size d

    the model

    E i t l lt100000

    1000000

    0 5 10 150.000

    0.002

    0.0046.2 nm

    d(nm)

    Experimental resultscalibration curvepore size distribution 1000

    10000

    8 nm

    N

    d(nm)p

    Summary0 100 200 300 400 500 600 700 800 900

    10

    100

    40 nm

    o-Ps lifetime measurement on CPG 9

    t (ns)

  • Extended Tao Eldrup model extended TE model (calculations by EELViS):

    quantum well of infinite height, but: overlap of o-Ps wave function and wall of pore -> δBoltzmann statistics ascribes explicit temperature dependence to the lifetimep p pintegrals of spherical / cylindrical Bessel functionsδ = 0.19 nm mean free path D = 4V/S = dcyl, diameter of cylinder

    f th D 4V/S 2/3 d di t f hmean free path D = 4V/S = 2/3 dsphere, diameter of sphere

    o-Ps lifetime measurement on CPG 10

    R. Zaleski, Excited Energy Levels and Various Shapes (EELViS), Institute of Physics, Maria Curie-Sklodowska University, Lublin, Poland

  • OutlinePorous glass - CPG

    synthesisyproperties

    Principles of PALS d

    0.014

    0.016

    0.018

    0.020

    1.8 nm

    positron and Positroniumlifetime measurementthe spectrum

    0.006

    0.008

    0.010

    0.012

    6 2 nm

    4.5 nm

    2.5 nm

    pdf n

    (d)From τ4 to pore size d

    the model

    E i t l lt100000

    1000000

    0 5 10 150.000

    0.002

    0.0046.2 nm

    d(nm)

    Experimental resultscalibration curvepore size distribution 1000

    10000

    8 nm

    N

    d(nm)p

    Summary0 100 200 300 400 500 600 700 800 900

    10

    100

    40 nm

    o-Ps lifetime measurement on CPG 11

    t (ns)

  • The experiments at T = 300 K

    we measured CPG in a broad pore size rangepore size range

    given pore sizes obtained by N2-adsorption or Hg-intrusionN2 adsorption or Hg intrusion

    δ = 0.193 nm best fit for our CPG -> calibration curve for calculating pore size

    good model for T = 300 K,galso good model for temperature dependence of lifetime?

    o-Ps lifetime measurement on CPG 12

  • The T-dependencecalculations: cylindric model with δ = 0.193 nm

    although we found good agreement for T > 300 K temperature behavior temperature behavior cannot be explained very well at low temperatures

    for 20 nm a catching effect of o-Ps at low temperatures may occur (van-der-waals

    “ ill power, “capillary condensation”)and o-Ps bonds at the wall

    model still too simple but works well for room temperature

    o-Ps lifetime measurement on CPG 13

    temperature

  • Pore size distribution

    D τ4 σ4140

    1.8 nm 21.1 ns 14.8 ns2.5 nm 46.9 ns 17.6 ns4 5 nm 65 9 ns 18 9 ns

    100

    120

    (ns) τ4 4.5 nm 65.9 ns 18.9 ns

    6.2 nm 80.0 ns 19.3 ns

    and its distribution by 60

    80

    ETE models spheres with δ = 0.19 nm

    ill ith δ 0 193)

    τ 4

    τ4 and its distribution σ4 by analysis of truncated spectra starting from 20 ns

    20

    40cappillars with δ = 0.193 nm experiment

    σ 4 (n

    s)

    σ4

    problem of LT: limit of 142 ns is not taken into account, for large pores unphysically large σ4

    1 10 1000

    pore size D = 4V/S (nm) from porosimetry

    distribution for 4 smaller selected pores

    o-Ps lifetime measurement on CPG 14

  • Pore size distribution

    distribution of τ4: α4(τ) = α4(λ)λ2, α4(λ) is probability density function (pdf) of 0.012

    0.014

    0.016

    1.8 nm

    λ2α4(λ) is probability density function (pdf) of o-Ps annihilation rate, assumed by LT to be a log. Gaussian

    0 004

    0.006

    0.008

    0.010

    4.5 nm

    2.5 nm

    df α

    4(τ) =

    α4(λ

    from distr. α4(τ) it is possible to calc.distribution of diameters of the pore:

    ⎞⎛

    0 20 40 60 80 100 1200.000

    0.002

    0.004

    6.2 nm

    4.5 nm

    pd

    τ(ns)

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛=

    cylcyl dd

    ddn 44 )()(ττα

    τ(ns)

    120

    140

    all we need is a differentiable analytical function τ4 = τ4(dcyl):

    60

    80

    100

    ETE Fit

    τ 4 (n

    s)

    ⎟⎟⎠

    ⎞⎜⎜⎝

    +−

    += pcylcyl dd

    AAA)/(1 0

    2124τ

    1 10 1000

    20

    40

    o-Ps lifetime measurement on CPG 15

    d (nm)

  • Pore size distributiondistribution norm. to 1

    arrows show d directly 0.014

    0.016

    0.018

    0.020

    1.8 nm

    calculated from mean o-Ps lifetime using cylindric model (1.77 nm, 3.09 nm, 4.38 nm and

    0.006

    0.008

    0.010

    0.012

    6 2 nm

    4.5 nm

    2.5 nm

    pdf n

    (d)

    d (n m )

    5.80 nm)

    this distribution contains the true variation of pore sizes

    0 5 10 150.000

    0.002

    0.0046.2 nm

    0 ,0 6

    0 ,0 8

    0 ,1 0

    0 ,1 2

    )

    ( )

    g-1 )

    true variation of pore sizes but also the effect of irregular not linear character of pores

    pore size distribution from BJH method (N2 ads.) for the same 4.5 nm sample

    0 ,0 2

    0 ,0 4

    0 ,0 4

    0 ,0 6

    V Por

    e (c

    m3 g

    -1

    dV/d

    r (cm

    3 nm

    -1 of pores

    long tail for larger pores:

    overestimation of α4(τ)

    volume weighted

    0 ,0 00 ,0 0

    0 ,0 2

    0 5 1 0 1 5d (n m )

    f 4( )

    nonlinear char. τ4 vs. d

    o-Ps lifetime measurement on CPG 16

    ( )

    to be published

  • OutlinePorous glass - CPG

    synthesisyproperties

    Principles of PALS d

    0.014

    0.016

    0.018

    0.020

    1.8 nm

    positron and Positroniumlifetime measurementthe spectrum

    0.006

    0.008

    0.010

    0.012

    6 2 nm

    4.5 nm

    2.5 nm

    pdf n

    (d)From τ4 to pore size d

    the model

    E i t l lt100000

    1000000

    0 5 10 150.000

    0.002

    0.0046.2 nm

    d(nm)

    Experimental resultscalibration curvepore size distribution 1000

    10000

    8 nm

    N

    d(nm)p

    Summary0 100 200 300 400 500 600 700 800 900

    10

    100

    40 nm

    o-Ps lifetime measurement on CPG 17

    t (ns)

  • Summaryfor T = 300 K we found a calibration curve for CPG

    non destructive porosimetry tool for opened and closed pore-systemsmost sensitive for d = 0.5 … 10 nm

    for other temperatures the measurements show disagreement to the ETE model -> model still too simplefor pores d < 10 nm we can calculate a pore size distribution

    f t near future: phase transition of gas in CPG (to be presented @ PPC9 Wuhan / China, May 2008)SBA-15 (to be presented @ COPS VIII Edinburgh / Scotland, June 2008)

    0.014

    0.016

    0.018

    0.020

    1.8 nm

    0.006

    0.008

    0.010

    0.012

    6.2 nm

    4.5 nm

    2.5 nm

    pdf n

    (d)

    0 5 10 150.000

    0.002

    0.004

    d(nm)

    o-Ps lifetime measurement on CPG 18

  • Acknowledgment

    Special thanks from our group go to:

    R Zaleski and his group R. Zaleski and his group (Lublin/Poland) for EELViS

    G. Dlubek (Halle/Germany) for fruitful discussions

    all organizers of DZT20

    o-Ps lifetime measurement on CPG 19

  • Thanks for your patience!

    This talk as pdf?This talk as pdf?

    http://positron physik uni halle dehttp://positron.physik.uni-halle.de

    o-Ps lifetime measurement on CPG 20