Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent...

62
Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE- processes Retenta te Feed Permeat e Problems: High pressure ( > 100 bar) Solution of Carbon Dioxide in Polymers Influence on glass transition point

Transcript of Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent...

Page 1: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

Ch 9Gas Separation by Membranes

Membrane

Flow sheet of a membrane separation

Separation of solvent and solute in SFE-processes

Retentate

FeedPermeate

Problems: High pressure ( > 100 bar) Solution of Carbon Dioxide in Polymers Influence on glass transition point

Page 2: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

Gas Circuit

Page 3: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

CO2

OC

Permeate

Retentate

Membrane Process

Page 4: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

GKSS-membrane (organic, active dense layer)

1.86 wt.-%

< 0.06 wt.-%

p = 2.0 MPa

active dense layer

1.5 mole CO2

kg/(m2 h)

P = 18 MPa, T = 323 K

Separation by membranes

Page 5: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

Reference Membrane System T, P

Wagner (1986) RO, (Polyamid) Kaffein 473 K, 30 MPa

Semenova et al. (1992, ´93, ´94)

Kapton® (Polyimide)

Ethanol, Petroleum compounds

423 K, 15 MPa

Sarrade et al. (1996, ´97)

Composite with Nafion®

PEG, Triglycerides 333 K, 31 MPa

Nakamura et al. (1994)

Ceramic , NTGS-2100 (Silikon)

PEG 400-600 313 K, 20 MPa

Literature overview

Page 6: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

Flat sheet membranes

ROMACO, high pressure RO, (Polyamide, Pall Rochem)

PAN-Fluorinated Polymer (FP), GP, (GKSS)

PEI-FP, GP, (GKSS)

PVDF-FP, GP, (GKSS)

6-FDA-4MPD/DABA 4:1 (Polyimide, crosslinked with ethylene glycol, University of Heidelberg)

Al2O3-TiO2, (Inocermic)

Membranes

Page 7: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

N

O

O

N

O

O

COOH

CF3CF3

4 1

CF3CF3

N

O

O

N

O

O CH3

CH3

CH3

CH3

6FDA-4MPD/DABA 4:1

Membranes

Page 8: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

Tubular membranes

Carbone membrane, ( 20 nm, Le Carbone-Lorraine)

ZrO2- TiO2, (Schuchmacher)

Al2O3-TiO2 -FP, (US-Filter, GKSS)

Membranes

Page 9: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

porous membrane

nonporous membrane

carrier membrane

phase 1 phase 1phase 1phase 2 phase 2 phase 2

Mechanisms of membrane transport

Membranes

Page 10: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

Table Fehler! Kein Text mit angegebener Formatvorlage im Dokument..1: Pore

diameter and thickness of inorganic gas separation membranes, after van Veen et al.

(1996).

Membrane systemPore diameter+ (thickness) Membrane system

Pore diameter+ (thickness)

Mesoporous alumina 4 nm(3 m)

Microporous carbon molecularsieve; hollow fibre

appr. 0.5 nm(6 m)

Mesoporous glass 4.5 nm(300 m)

Silicate on ceramic appr. 0.45 nm (5m)

Mesoporous carbon several nm(12–18 m)

Dense SiO2 by CVD modificationof microporous silica on alumina

dense(5 m)

Inorganic Membranes

Membranes

Pore diameter and thickness of inorganic gas separation membranes, after van Veen et al. (1996).

Page 11: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

Table Fehler! Kein Text mit angegebener Formatvorlage im Dokument..1:Classification of ceramic membranes (Bonekamp, 1996).

Membrane Process Structure Average pore diameter Separation layerMicrofiltration 1 layer 5 m macroporous

2 layers 0.25 m macroporous3 layers 0.1 m macroporous

Ultrafiltration 4 layers 5 nm mesoporous

Gas separation,Nanofiltration,Pervaporation

5 layers 1 nm microporous

Membranes

Classification of ceramic membranes (Bonekamp, 1996).

Page 12: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

Polymeric, Nonporous Membranes

amorphous semicrystalline crystalline

States of polymers

Membranes

Page 13: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

v

T

vg

vc

vw

A

B

C

W

TmTg

freevolume

glassystate

rubberystate

Specific volume and free volume as a function of temperature for an amorphous polymer: A: specific volume of a liquid; B: specific volume of a glassy polymer; C: specific volume of a crystal solid; W: van der Waals volume; Tg: glass transition temperature; Tm: melting temperature.

Effect of Temperature on the Polymeric Structure

Page 14: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

Effect of Temperature on the Polymeric Structure

Effect of Pressure on the Polymeric Structure

Swelling and Plasticization of Polymers

Aging of Polymers

Membranes

Influences on Membrane Properties

Page 15: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

Gas Permeation through Membranes

l

ppP

l

ffP

A

nJ ee 2121

Steady state flux J :

Pe : effective permeability coefficient, (integral value over the whole membrane).

1

2

121

f

fe dfPffP

iii pf pfp

0

limwith

dpp

zp

i

0

1lnFugacity coefficient :

z: compressibility factor.

Page 16: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

tApp

lVP

21

cmHgscm

cmSTPcm2

3

The permeability coefficient for ideal–gas conditions

Pressure - normalized flux Q, "membrane permeability":

l

PQ

Separation factor for a binary mixture of component A and B:

BA

BABA xx

yy/

Gas Permeation through Membranes

Page 17: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

Gaspermeation:

P = D H: Permeationskoeffizient,D = Diffusionskoeffizient, H = Henry-Koeffizient.

Trennfaktor:

jP

zP P ( ).1 2

1Barrer = 10cm (STP) cm

cm s cmHg-10

3

2 .

ABA

B

P

P0 .

Stofftransport

Einheit von P:

Page 18: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

Joule-Thomson effect

Definition of the Joule-Thomson coefficient:h

JT p

T

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 300

2

4

6

8

10

343.15 K

333.15 K

323.15 K

313.15 K308.15 K303.15 K J

T [K

MP

a -1]

pFeed [MPa]

Joule-Thomson coefficient of carbon dioxide

Gas Permeation through Membranes

Page 19: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

E

F

B

A

C

D

A: Hagen-Poiseuille's flow,

B: Knudsen flow,

C: surface flow,

D: multilayer adsorption,

E: capillary condensation,

F: molecular sieving.

Gas Permeation through Porous Membranes

Transport mechanisms through porous membranes

Page 20: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

Hagen-Poiseuille Flow

TRl

ppr

TRl

ppppr

TRl

pprJ SSmS

16168

22

21

22121

22

The term p/RT has to be replaced by the mean density rm resulting in the following relation for Hagen-Poiseuille's flow of carbon dioxide through mesoporous membranes:

28

2

COm

mS

Ml

prJ

28

2

COm

mS

Ml

rQ

Gas Permeation through Porous Membranes

Page 21: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

Surface Diffusion and Capillary Condensation

Surface diffusion is a poorly understood phenomenon The total molar surface flux is calculated by:

dl

dqqDJ ss

with pore length l, porosity e, and density r of the solid. The surface diffusion coefficient Ds is a function of the amount of gas q adsorbed on the surface.

The effective surface coverage qe of gas can be described by adsorption isotherms, for monolayer adsorption: Langnuir isotherm:

pbpbq

q

sate 1

For multilayer adsorption BET isotherm:

re p 1

rrrr pCpp/pC 11

0pppr

Gas Permeation through Porous Membranes

Page 22: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

1 2

0.0 0.2 0.4 0.6 0.8 1.0

Relative Mean Pressure pm/p0

0.4

0.6

0.8

1.0

Per

mea

bilit

y Q

x10

5(S

td C

.C.-cm

/cm

2–s

ec c

mH

g)

0.1

p/p0 T [K]

0.2

0.054

0.211

273

273

298

298

Permeability of carbon dioxide through vycor glass, after Rhim and Hwang, (1975). Maximum permeability: point where capillary condensation takes place.

Gas Permeation through Porous Membranes

Page 23: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

The capillary condensation pressure (pt) can be predicted by the Kelvin equation:

2

0

cos2ln

r

tr

p

p

M

TR t

where t represents the thickness of the adsorbed layer. For non-cylindrical capillaries the term 2 cosq (r-t)/r2 has to be replaced by another relation.

Gas Permeation through Porous Membranes

Page 24: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

Adsorption Isotherms at Sub- and Supercritical Conditions

0 5 10 150,0

0,1

0,2

0,3

0,4

0,5

Mas

s ad

sorb

ed C

O2 [g

g-1

Adsorb

ens]

Pressure [MPa]

Isotherms of the total amount of adsorbed carbon dioxide on two different silica gels. Silica gel with 10 nm mean pore diameter, -- 308.15 K, -- 318,15 K, data replotted from Bamberger (1996) silica gel with 1 nm mean pore diameter, -- 313,15 K, -- 333,15 K, data replotted from Ozawa and Ogino (1972).

Gas Permeation through Porous Membranes

Page 25: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

The flux Ji of component i is given by Fick’s law:

dl

dcDJ Mi

ii,

2,1, MiMii

i ccl

DJ 2,1,

,ii

Giii pp

l

SDJ

Temperature dependence of the permeability coefficient P = D S:

TREexpPP p 0

Temperature dependence of diffusivity and solubility:

TREDD d exp0

TRHexpSS s 0

TR

EHexpSDP ds00

Gas Permeation Through Nonporous Membranes

Page 26: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

TRH435.0SlogTSlog S

0

Sorption of gases in all types of amorphous polymers shows that the solubility of CO2 increases with decreasing temperature (van Krevelen, 1990):

Transport mechanism of penetrants through polymers differs below and above the glass transition of polymers.

The diffusion of penetrants through glassy polymers is a highly non-linear function depending on the state of the polymer.

Gas Permeation Through Nonporous Membranes

Page 27: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

cPermeate

cMembrane

cBulkFeed

Boundary Layer

J cPermeate

J c

D dc/dx

x

Membrane

cPermeate

cMembrane= cGel

cBulkFeed

Boundary Layer

x

Membrane

Gel Layer

Concentration polarization at steady state conditions;

left: normal concentration polarization; right: gel-layer formation

Concentration Polarization

Page 28: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

400 450 500 550 600 650 700 750 8000

2

4

6

8

10

12

14

16 T = 313 .15 K T = 333 .15 K T = 343 .15 K

Con

cent

ratio

n E

thyl

este

r [w

-%

]

C O

2 [kg m -2 ]

Solubility of fatty acid ethyl esters in carbon dioxide (Riha, 1996).

Concentration Polarization

A liquid layer forms on the retentate surface of the membrane when the solubility ís reached

1 phase

2 phases

Change in concentration when CO2 is removed by a membrane process

Page 29: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

Membrane Test Cell

Membrane

Page 30: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

Flat Sheet Test Cell

Page 31: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

PI

P I

P I

TI

TI

TIC TIC

FI

FI

V1

S2

S1

P1

V2

V1

C 1P2

Experimental Set Up For Testing Flat Sheet Membranes

Page 32: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

P l u gF e e d

R e t e n t a t e

M e m b r a n e M o u n t i n g

P e r m e a t e

M e m b r a n eO - R i n g

N u tC o o l i n g -H e a t i n gF l u i d

Tubular membrane test cell.

Experimenatal Membrane Test

Page 33: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

TI

TI

P I

P I

P I

F I

TI

F I

d P

P I

P I

CO2

P I

P I

TCA

P C

2 80 b ar

1 20 b ar

1 20 b ar

K üh lwa sser

E V

TS H

LS

TE

TIC

2 50 b ar

2 50 b ar

2 50 b ar

N2

P I

V1

V2

V3

2 50 b ar

Experimental Set-Up

Page 34: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

Pure Gas Permeation

0 2 4 6 8 10 12 140

2

4

6

8Q

CO

2 x 1

02 [km

ol m

-2 h

-1 M

Pa-1

]

Upstream Pressure [MPa]

TEOS, pressure-normalized CO2 flux vs. upstream pressure –– 34 °C, –– 49 °C,–– 66 °C –– 0.1 MPa 25 °C manufacturer, p = 0.3–1.9 MPa, 20-mm TC, membrane #2, values taken after 30 minutes.

Page 35: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

Membranes

Inorganic Membranes: Titania-Alumina Composite Membranes

TiO2 (0,9 nm)

TiO2 (5 nm)

Al2O3 (macroporous)

approx. 1 mm

Schematic representation of titania-alumina membrane cross-sections

TEOSSubstructure: commercially available -Al2O3 membrane of 18 mm in diameter, mean pore diameter of 5 nm, porosity 50%, surface roughness appr. 0.2 m. Substructure modified by tetraethylorthosilicate (TEOS) treatment.

Page 36: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

Polymeric Membranes

PEI-Teflon Membranes

N

O

O

ON

O

O

O

CH3

CH3

n

Chemical structure of polyetherimide (PEI), trademark Ultem by GE.

An intermediate ultrafiltration layer of polyetherimide (PEI) is applied to a polyester support fleece. The PEI-layer is then coated with a selective layer of poly (tetrafluoroethylene) (PTFE).

O O

F F

F3C CF3

n

F

F F

Fm

PDDn TFEm

Repeat unit of poly (2,2-bistrifluoromethyl-4,5-difluoro-1,3-dioxole) [PDD] / PTFE, commercially available under the trademark (AF 2400 Du Pont)

Page 37: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

1 Barrer = 10-10 (cm3 cm)/(cm Hg s cm2)

Gas Teflon® PTFE AF2400

CO2 2800 12O2 990 4.2H2 4100 #He 2700 #H2 2200 9.8N2 350 1.4CH4 340 #C2H4 350 #C2H6 180 #

CF2 CF2

CF3 CF3

O O

F F

TFE

PDD

Structure of Monomers of the AF2400-polymer

Gas Permeabilities of PTFE-Polymers

Page 38: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

0 5 10 15 20

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

QC

O2 [k

mol

m-2 h

-1 M

Pa

-1]

Upstream Pressure [MPa]

TEOS membranes: pressure-normalized CO2 flux vs. upstream pressure, –– #1 increasing pressures, –– #1 decreasing pressures, –– #2 increasing pressures, p = 0.3–1 MPa; T = 50 °C, 20-mm TC.

Pure Gas Permeation

Page 39: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

0 2 4 6 8 10 12 14 16 18 200.00.2

0.4

0.6

0.8

1.0

QC

O2 [k

mol

m-2 h

-1 M

Pa-1

]

Upstream Pressure [MPa]

PEI-TE10x pressure-normalized CO2 flux as a function of upstream and permeate pressure for increasing upstream pressures (solid symbols), and decreasing upstream pressure (open symbols): –– 1 MPa transmembrane pressure difference,–– downstream pressure at atmospheric pressure, T = 50 °C, 47-mm TC.

Pure Gas Permeation: Organic Membranes

Page 40: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

0 1 2 3 4 5 60

1

2

3

4

5

J CO

2 [km

ol m

-2 h

-1]

p [MPa]

CO2 flux at different upstream pressures as a function of transmembrane pressure difference for PEI-TE1x, –– 7 MPa, –– 9 MPa, –– 12 MPa, –– 14 MPa, –– 15.9 MPa, –– 18.1 MPa, T = 50 °C, 47-mm TC.

Pure Gas Permeation: Organic Membranes

Page 41: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

0 5 10 15 202,5

3,0

3,5

4,0

4,5

5,0

5,5

6,0

6,5

7,0

7,5 Neue Membran 2. Benutzung 3. Benutzung

Q C

O2

[km

ol m

-2h-1

MP

a-1]

Feeddruck [MPa]

Influence of Repeated Use

PAN-AF2400-Membran, 50 °C

Page 42: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

0 5 10 15 200

1

2

3

4

5

6R

atio

QP

EI-

TE

1x / Q

PE

I-T

E10x [

-]

Upstream Pressure [MPa]

CO2-Permeate Flow of PEI-AF2400-1x Related to PEI-AF2400-10x

–– increasing retentate Pressure (Feed side),

–– decreasing retentate pressure (Feed side), T = 50 °C, 47-mm test cell.

Page 43: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

0 5 10 15 200

50

100

150

200

PTFE, 50 °C, Muth, (1998)

PMMA, 50 °C, Muth, (1998)

PMMA, 58 °C, Liau, McHugh,(1985)

50°C 45°C

35°C

Teflon AF 2400, 25°CS

olub

ility

[cm

3 CO

2 (S

TP

) cm

-3

poly

mer ]

Pressure [MPa]

Solubility of CO2 in Teflon AF 2400

Page 44: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

0 5 10 15 200

1

2

3

4

5

6

De, C

O2 x

105

[m2 h

-1]

Upstream Pressure [MPa]

Diffusion Coefficient of CO2

7-m Teflon AF 2400 layer on a PEI-AF2400-10x Membran, 50 °C, p = 1 MPa; 50 °C, p2 = atmospheric pressure; 35 °C, p2 = atmospheric pressure (after Merkel et al. (1999).

Page 45: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2 2,4 2,6

3000

4500

600010500

12000

13500

15000

16500

18000

PExt = 23 MPaTExt = 60 °C

40 °C 70 °C 50 °C 80 °C 60 °C 85 °C

Per

mea

tflu

ss v

on C

O2

[mol

m-2 h

-1]

Druckdifferenz P [MPa]

CO2 Permeate Flow

2-HHU-1TEOS - membrane

Sartorelli 2001

Page 46: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,20

5

10

15

20

25

30

35

40

40° C 70° C 50° C 80° C 60° C 85° C

Pe

rme

atf

luss

vo

n T

CA

[m

ol m

-2 h

-1]

Druckdifferenz P [MPa]

TEOS-Membrane: Feed: P = 23 MPa; T = 60° C

Sartorelli 2001

Page 47: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0 b

PExt = 23 MPaTExt = 60 °C

40 °C 50 °C 60 °C 70 °C 80 °C 85 °C

Tre

nnfa

ktor

[-]

Druckdifferenz P [MPa]

TEOS-Membrane

Separation Factors

2-HHU-1

Sartorelli 2001

Page 48: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2 2,4900

1200

1500

1800

2100

2400

2700

3000

3300

3600 P

Ext T

Ext T

m

18 50 50 18 50 60 18 50 70 23 60 50 23 60 60 23 60 70

P

erm

eatflu

ss v

on C

O2 [

mol

m-2 h

-1]

DruckdifferenzP [MPa]

Permeate flows of CO2 at 50 °C, 60 °C and 70 °C,Exp. series: 2-FP-X10 (18 MPa/50 °C) and 3-FP-X10 (23 MPa/60 °C).

Permeate Flow

AF 2400 - Membrane

Page 49: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

316 K 323 K 333 K 343 K 353 K

PExt = 23 MPaTExt = 333 K

CO

2 P

erm

eate

Flu

x [

mol

m-2 h

-1]

Transmembrane Pressure P [MPa]

CO2 Permeate Flow: AF 2400 membrane

Sartorelli 2001

Page 50: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8 316 K 323 K 333 K 343 K 353 K

PExt

= 23 MPaT

Ext = 333 K

Sep

arat

ion

Fac

tor

[-]

Transmembrane Pressure P [MPa]

LVCLVC

LVCLVCx100/x

y100/y

Separation Factor: AF 2400 membrane

Sartorelli 2001

Page 51: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,090,000

0,005

0,010

0,015

0,020

0,025

0,030

PExt = 23 MPaTExt = 60 °C

Y -

[J s

c-1]

X - [c Jv c-1]

TM = 43/44 °C TM = 50 °C TM = 60 °C T

M = 70 °C

TM = 80 °C

Determination of Transport Coefficients

Sartorelli 2001

Nanofiltration Membrane, AF 2400 coated

Page 52: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

0 1 2 3 4 5 60

1

2

3

4

5

6

7 MPa 9 MPa 12 MPa 14 MPa 16 MPa 18 MPa

J C

O 2 [k

mol3

m-2

h-1]

p [MPa]

Pressure Difference, PEI-FP, 323

Page 53: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

0 5 10 15 200

2

4

6

8 PAN-FP PVDF-FP PEI-FP

Q C

O2

[km

ol m

-2h-1

MP

a-1]

Feed Pressure [MPa]

Membrane Comparison, 323 K

Page 54: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

0 2 4 6 8 10 12 14 16 18 200

1

2

3

4

5 Increasing Pressure 2.5 Decreasing Pressure 2.5 Increasing Pressure 10 Decreasing Pressure 10

Q C

O 2 [k

mo

l m-2

h-1M

Pa-1

]

Feed Pressure [MPa]

T = 323 K

P = 2 MPa

Hysteresis in the PEI-FP 2,5 and 10 Membranes

Page 55: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

Membrane

Type

Q CO2

[kmol m-2 h-1 MPa-1]

? p

[MPa]

cFeed

[%]

LVC

[-]

FDA 1.25 0.85 1.94 0.9

ROMACO 12 0.65 0.83 1.02

PEI-FP 2.5 1.45 2.2 1.2 0.27

PEI-FP 10 0.34 2.2 1.94 > 0.1

Mixture Results Overview

Page 56: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

0 1000 2000 3000 40000,00

0,02

0,04

0,06

0,08

0,10

[-

]

Operating Time [min]

T = 323 K

Pf = 18 MPa

P = 2 MPa

PEI-FP 10 Membrane

Page 57: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

Scale Up: Plate and Frame Construction

Page 58: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

Scale Up: Plate and Frame Construction

Page 59: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

Scale Up: Plate and Frame Construction

Page 60: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

PC

PC

RV1

RV2

WT1 WT2

B2

B1

P1WT3

1

18 MPa323 K

6 MPa323 K

273 K

Supercritical Fluid Extraction

Page 61: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

PC

WT2

1

PC

P1

B1

RV3

PC

WT1 K1

RV1

RV2

M1

18 MPa323 K

P = 2 MPa

Coupling With a Membrane Separation Unit

Page 62: Ch 9 Gas Separation by Membranes Membrane Flow sheet of a membrane separation Separation of solvent and solute in SFE-processes Retentate Feed Permeate.

53 kJ/ kgCO2

21 kJ/ kgCO2

7.6 kJ/ kgCO2

1

2

3

Wie in 2Like in 2

Energy For Different Solvent Cycles

Pump-Cycle

Compressor-Cycle

Membrane-Cycle

Sartorelli 2001