CH 8: Electron Configuration Renee Y. Becker Valencia Community College CHM 1045 1.

33
CH 8: Electron Configuration Renee Y. Becker Valencia Community College CHM 1045 1

Transcript of CH 8: Electron Configuration Renee Y. Becker Valencia Community College CHM 1045 1.

Page 1: CH 8: Electron Configuration Renee Y. Becker Valencia Community College CHM 1045 1.

CH 8: Electron Configuration

Renee Y. Becker

Valencia Community College

CHM 1045

1

Page 2: CH 8: Electron Configuration Renee Y. Becker Valencia Community College CHM 1045 1.

Electron Configuration of Atoms

Rules of Aufbau Principle:

• Lower n orbitals fill first.

• Each orbital holds two electrons; each with different

ms.

• Half-fill degenerate orbitals before pairing

electrons. (p, d, & f)

NOT __

3px 3py 3pz

2

Page 3: CH 8: Electron Configuration Renee Y. Becker Valencia Community College CHM 1045 1.

Electron Configuration of Atoms

1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 6s 6p 6d 7s 7p

Increasing Energy

[He][Ne] [Ar] [Kr] [Xe] [Rn]

Core

3

Page 4: CH 8: Electron Configuration Renee Y. Becker Valencia Community College CHM 1045 1.

Electron Configuration of Atoms

Element Diagram Configuration

Li (Z = 3) 1s2 2s1

1s 2s

Be (Z = 4) 1s2 2s2 1s 2s

B (Z = 5) __ __ 1s2 2s2 2p1

1s 2s 2px 2py 2pz

C (Z = 6) __ 1s2 2s2 2p2

1s 2s 2px 2py 2pz

4

Page 5: CH 8: Electron Configuration Renee Y. Becker Valencia Community College CHM 1045 1.

Electron Configuration of Atoms

Element Diagram Configuration

O (Z = 8) 1s2 2s2 2p4

1s 2s 2px 2py 2pz

Ne (Z = 10) 1s2 2s2 2p6

1s 2s 2px 2py 2pz

S (Z = 16) 1s 2s 2px 2py 2pz 3s 3px 3py 3pz

1s2 2s2 2p6 3s2 3p6 or [Ne] 3s2 3p6

abbreviations using the noble gases valence vs. core electrons

5

Page 6: CH 8: Electron Configuration Renee Y. Becker Valencia Community College CHM 1045 1.

Electron Configuration of Atoms

6

Page 7: CH 8: Electron Configuration Renee Y. Becker Valencia Community College CHM 1045 1.

Electron Configuration of Atoms

Tc (Z = 43) [Kr] 5s2 4d5 Technetium

Ni (Z = 28) [Ar] 4s2 3d8

7

Page 8: CH 8: Electron Configuration Renee Y. Becker Valencia Community College CHM 1045 1.

Electron Configuration of Atoms

8

Page 9: CH 8: Electron Configuration Renee Y. Becker Valencia Community College CHM 1045 1.

Electron Configuration of Atoms

9

Page 10: CH 8: Electron Configuration Renee Y. Becker Valencia Community College CHM 1045 1.

Example 1: Electron Config. And NG Abb.

1. Sodium

2. Titanium

3. Argon

10

Page 11: CH 8: Electron Configuration Renee Y. Becker Valencia Community College CHM 1045 1.

Anomalous Electron Configurations

• 19 of the predicted configurations from the periodic table are wrong– Largely due to unusual stability of both half-filled

and fully filled subshells

Cr (Z=24)

expected configuration: 1s2 2s2 2p6 3s2 3p6 4s2 3d4

__

4s 3d 3d 3d 3d 3d

actual configuration: 1s2 2s2 2p6 3s2 3p6 4s1 3d5

4s 3d 3d 3d 3d 3d 11

Page 12: CH 8: Electron Configuration Renee Y. Becker Valencia Community College CHM 1045 1.

Atomic Radii

12

Page 13: CH 8: Electron Configuration Renee Y. Becker Valencia Community College CHM 1045 1.

Atomic Radii

• ½ the distance between the nuclei of two identical atoms when they are bonded together.

13

Page 14: CH 8: Electron Configuration Renee Y. Becker Valencia Community College CHM 1045 1.

Example 2: Ionic Radii

Which of the following in each pair has a larger atomic radius?

1.Carbon or Fluorine

2.Chlorine or Iodine

3.Sodium or Magnesium

4.O or O2-

5.Ca or Ca2+

14

Page 15: CH 8: Electron Configuration Renee Y. Becker Valencia Community College CHM 1045 1.

Example 3: Quantum Numbers and Electron Configuration

What are the 4 quantum numbers for the following? Remember you are only interested in the last electron!!

1. C

2. Na+

3. S

4. N3- 15

Page 16: CH 8: Electron Configuration Renee Y. Becker Valencia Community College CHM 1045 1.

Main Groups

16

Page 17: CH 8: Electron Configuration Renee Y. Becker Valencia Community College CHM 1045 1.

Ions and their Electron Configuration

• Main-group metals donate electrons from the atom’s highest-energy occupied atomic orbital.

– Na: 1s2 2s2 2p6 3s1 = [Ne] 3s1

– Na+: 1s2 2s2 2p6 = [Ne]

– Mg: 1s2 2s2 2p6 3s2 = [Ne] 3s2

– Mg2+: 1s2 2s2 2p6 = [Ne]

– Al: 1s2 2s2 2p6 3s2 3p1 = [Ne] 3s2 3p1

– Al3+ 1s2 2s2 2p6 = [Ne]

17

Page 18: CH 8: Electron Configuration Renee Y. Becker Valencia Community College CHM 1045 1.

Ions and their Electron Configuration

• Main-group nonmetals accept electrons into their lowest-energy unoccupied atomic orbital.

– N: 1s2 2s2 2p3 = [He] 2s2 2p3

– N3–: 1s2 2s2 2p6 = [He] 2s2 2p6 = [Ne]

– O: 1s2 2s2 2p4 = [He] 2s2 2p4

– O2–: 1s2 2s2 2p6 = [He] 2s2 2p6 = [Ne]

– F: 1s2 2s2 2p5 = [He] 2s2 2p5

– F–: 1s2 2s2 2p6 = [He] 2s2 2p6 = [Ne]

18

Page 19: CH 8: Electron Configuration Renee Y. Becker Valencia Community College CHM 1045 1.

Example 4: Electron config. and NG Abb.

1. Cl-

2. F-

3. Ca2+

4. Na+

19

Page 20: CH 8: Electron Configuration Renee Y. Becker Valencia Community College CHM 1045 1.

Ionic Radii or size

• Atoms shrink when an electron is removed to form a cation

– Dec. # of shells

– Inc. Zeff : Less electrons, less shielding, outer electrons more attracted to nucleus, therefore smaller more compact

20

Page 21: CH 8: Electron Configuration Renee Y. Becker Valencia Community College CHM 1045 1.

Ionic Radii or size

• Atoms expand when converted to anions– III A ns2 np1 __ __ __– IV A ns2 np2 __ __ __– V A ns2 np3 __ __ __– VI A ns2 np4 __ __ __– VII A ns2 np5 __ __ __

Adding one electron to each of these will not add another shell it will just fill an already occupied p subshell

• Therefore the expansion is due to the decrease in Zeff and the increase in the electron-electron repulsions

21

Page 22: CH 8: Electron Configuration Renee Y. Becker Valencia Community College CHM 1045 1.

Ionization Energy, Ei

• The amount of energy needed to remove the highest-energy electron from an isolated neutral atom in the gaseous state

Increase

Increase

22

Page 23: CH 8: Electron Configuration Renee Y. Becker Valencia Community College CHM 1045 1.

Ionization Energy, Ei

• Some exceptions/irregularities to general trend– Ei Be > Ei B we would expect opposite

– Be 4 e 1s2 2s2

– B 5 e 1s2 2s2 2p1

• 2s is closer to nucleus than 2p, Zeff for Be is stronger

• 2s is held more tightly and is harder to remove

23

Page 24: CH 8: Electron Configuration Renee Y. Becker Valencia Community College CHM 1045 1.

Ionization Energy, Ei

• Ei N > Ei O we would expect opposite

• N 7e 1s2 2s2 2p3 __ __ __

• O 8e 1s2 2s2 2p4 __ __ __

• Only difference is that an electron is being removed from a half-filled orbital (N) and one from a filled orbital (O)– Electrons repel each other and tend to stay as far apart as

possible, electrons that are forced together in a filled orbital are slightly higher in energy so it is easier to remove one

• Therefore O < N

24

Page 25: CH 8: Electron Configuration Renee Y. Becker Valencia Community College CHM 1045 1.

Higher Ionization Energy, Ei1234…

• Ionization is not limited to one electron

M + Energy M+ + e Ei1

M+ + Energy M2+ + e Ei2

M2+ + Energy M3+ + e Ei3

• Larger amts. Of energy are needed for each successive ionization, harder to remove an electron from a positively charger cation

• The energy differences between successive steps vary from one element to another. Why? EC

25

Page 26: CH 8: Electron Configuration Renee Y. Becker Valencia Community College CHM 1045 1.

Higher Ionization Energy, Ei1234…

• Easy to remove an electron from a partially filled valence shell

• Difficult to remove an electron from a filled valence shell

• Large amount of stability associated with filled s & p subshells

• Na: 1s2 2s2 2p6 3s1

• Mg: 1s2 2s2 2p6 3s2

• Cl: 1s2 2s2 2p6 3s2 3p5

26

Page 27: CH 8: Electron Configuration Renee Y. Becker Valencia Community College CHM 1045 1.

Electron Affinity, Eea

• Energy change that occurs when an electron is added to an isolated atom in the gaseous state.

• The more neg. the Eea the greater the tendency of the atom to accept an electron

• Group 7A (halogens) have the most neg. Eea, high Zeff and room in valence shell

• Group 2A and 8A have near zero or slightly positive Eea

27

Page 28: CH 8: Electron Configuration Renee Y. Becker Valencia Community College CHM 1045 1.

Alkali Metals

• Group 1A– Metallic– Soft– Good Conductors– Low MP– Lose 1 elec in redox, powerful reducing agent– Very reactive– Not found in elemental state in nature

28

Page 29: CH 8: Electron Configuration Renee Y. Becker Valencia Community College CHM 1045 1.

Alkaline Earth Metals

• Group 2A– Harder, but still relatively soft– Silvery– High MP than group 1A– Less reactive than group 1A– Lose 2 e in redox, powerful reducing agent– Not found in elemental form in nature

29

Page 30: CH 8: Electron Configuration Renee Y. Becker Valencia Community College CHM 1045 1.

Group 3A

• All but Boron– Silvery– Good conductor– Relatively soft– Less reactive than 1A & 2A

30

Page 31: CH 8: Electron Configuration Renee Y. Becker Valencia Community College CHM 1045 1.

Halogens

• Group 7A– Non-metals– Diatomic molecules– Tend to gain e during redox

31

Page 32: CH 8: Electron Configuration Renee Y. Becker Valencia Community College CHM 1045 1.

Noble Gases

• Group 8A– Colorless, odorless, unreactive gases– Ns2 np6

• Makes it difficult to add e or remove e

32

Page 33: CH 8: Electron Configuration Renee Y. Becker Valencia Community College CHM 1045 1.

Octet Rule

• Group 1A tends to lose their ns1 valence shell electron to adopt a noble gas electron config.

• Group 2A lose both ns2 “ “

• Group 3A lose all three ns2 np1 “ “

• Group 7A Gains one electron to attain NG

• Group 8A inert, rarely lose or gain electrons

33