Ch 5 Lecture 2 Complex MO’s I.MO’s from d-orbitals Transition metals and other heavy elements...

16
Ch 5 Lecture 2 Complex MO’s I. MO’s from d-orbitals Transition metals and other heavy elements use d-orbitals in their bonding interactions 1) d-orbitals may form , , or bonds a) A example is the d z2 /d z2 interaction b) A example is the d yz /d yz interaction c) A d example is the d xy/ d xy interaction d) bonds change signs upon C 4 rotation around the internuclear axis 2 z d

Transcript of Ch 5 Lecture 2 Complex MO’s I.MO’s from d-orbitals Transition metals and other heavy elements...

Page 1: Ch 5 Lecture 2 Complex MO’s I.MO’s from d-orbitals Transition metals and other heavy elements use d-orbitals in their bonding interactions 1)d-orbitals.

Ch 5 Lecture 2 Complex MO’s

I. MO’s from d-orbitalsTransition metals and other heavy elements use d-orbitals in their bonding interactions

1) d-orbitals may form , , or bonds

a) A example is

the dz2/dz2 interaction

b) A example is

the dyz/dyz interaction

c) A d example is

the dxy/dxy interaction

d) bonds change signs upon

C4 rotation around the internuclear axis

2zd

Page 2: Ch 5 Lecture 2 Complex MO’s I.MO’s from d-orbitals Transition metals and other heavy elements use d-orbitals in their bonding interactions 1)d-orbitals.

2) Examples

II. Heteronuclear DiatomicsA. Polar Bonds

1) MO pattern is same as homonuclear

2) One set of AO’s will be at a lower energy than the other

3) Valence Orbital Potential Energy

a) Negative energies of attraction of e- to the nucleus

b) Averaged for all e- on the same level (3p)

c) As Z increases left to right, VOPE becomes larger

Page 3: Ch 5 Lecture 2 Complex MO’s I.MO’s from d-orbitals Transition metals and other heavy elements use d-orbitals in their bonding interactions 1)d-orbitals.
Page 4: Ch 5 Lecture 2 Complex MO’s I.MO’s from d-orbitals Transition metals and other heavy elements use d-orbitals in their bonding interactions 1)d-orbitals.

4) The LCAO for heteronuclear diatomics

uses different coefficients because the energies

of the 2 atoms are no longer identical

a. = caa + cbb (ca ≠ cb)

b. The AO closest in energy to the MO

contributes most to it

i. In CO the 2 MO is mostly O

ii. The 2* MO is mostly C

c. The shape and energy of the MO

is similar to the major contributing AO

d. If E > 12 eV, there is no interaction

e. For CO, BO = 3

f. Mixing is still important

C O

Page 5: Ch 5 Lecture 2 Complex MO’s I.MO’s from d-orbitals Transition metals and other heavy elements use d-orbitals in their bonding interactions 1)d-orbitals.

B. HOMO and LUMO

1) Molecular reactivity occurs at the Frontier Orbitals

a) HOMO = Highest Occupied Molecular Orbital

b) LUMO = Lowest Unoccupied Molecular Orbital

2) MO Theory helps explain some observations about these orbitals

a) In CO, O is the most electronegative

b) We would expect the - oxygen end to bond to M+

c) Bonding MO’s are generally concentrated on the lower energy atom, but symmetry considerations put HOMO on C in this case

i. The HOMO = 3 is concentrated on C

ii. Carbonyls bind metals through the carbon atom

d) Antibonding MO’s are generally on the highest energy atom

i. The LUMO = 1* is concentrated on C

ii. This orbital can receive e- back from M, strengthening M—C bond

C O M+

C OM+

Page 6: Ch 5 Lecture 2 Complex MO’s I.MO’s from d-orbitals Transition metals and other heavy elements use d-orbitals in their bonding interactions 1)d-orbitals.

C. Ionic Compounds

1) This is the limit of polarity

a) e- completely donated from one atom to another, which becomes –charged

b) The + ion then has higher energy vacant orbitals

2) Example LiF

a) Li 2s donates e- to the F 2pz

b) In the MO description, these are the 2 orbitals of correct symmetry to interact

c) The energy difference is > 12 eV

d) The MO picture looks similar to a covalent interaction

Page 7: Ch 5 Lecture 2 Complex MO’s I.MO’s from d-orbitals Transition metals and other heavy elements use d-orbitals in their bonding interactions 1)d-orbitals.

III. MO’s for larger moleculesA. F—H—F-

1) Consider separately the central atom and its outer atoms

Linear = D∞h ~ D2h Character Table for symmetries

2) Group Orbital = SALC (symmetry adapted linear combination)

a) Combine orbitals of outer atoms with same symmetry

b) New group orbitals are then overlapped with central atom AO’s

c) Same combinations as in F2, but separated by a central atom (dot)

d) Each combination produces bonding type and antibonding type GO’s

Page 8: Ch 5 Lecture 2 Complex MO’s I.MO’s from d-orbitals Transition metals and other heavy elements use d-orbitals in their bonding interactions 1)d-orbitals.

3) H(1s) orbital on central atom only has 2 possibilities to combine with F GO’s

Combine for best overlap to give bonding MO’s

i. Must be correct symmetries to overlap

ii. Must be correct energies

iii. H(1s) can’t overlap with GO #1(F2s): right symmetry, wrong energy

iv. H(1s) can overlap with GO #3 (F2pz): right symmetry and energy

Orbital Energy

H(1s) -13.6eV

F(2pz) -18.7eV

F(2s) -40.2eV

Page 9: Ch 5 Lecture 2 Complex MO’s I.MO’s from d-orbitals Transition metals and other heavy elements use d-orbitals in their bonding interactions 1)d-orbitals.

4) None of the other F GO’s are of appropriate symmetry to interact with H(1s)

5) Sketching the MO diagram

a. Central atom on left

b. 7 F GO’s are nonbonding

(lone pairs)

c. GO #3/ H(1s) give bonding

and antibonding MO’s

6) Bonding Description:

a. Lewis:

b. MO better:

3 center 2 e- bond

F H F

Page 10: Ch 5 Lecture 2 Complex MO’s I.MO’s from d-orbitals Transition metals and other heavy elements use d-orbitals in their bonding interactions 1)d-orbitals.

B. CO2

1) The group orbitals for O • O are the same as for F • F

2) The central C has filled s and p orbitals to use in bonding

a) Use symmetry to find out which orbitals will interact with O GO’s

b) CO2 is in the D∞h point group, which is hard to work with

c) We will use D2h character table as a simplification

d) O • O group orbitals

with D2h symetry labels:

Page 11: Ch 5 Lecture 2 Complex MO’s I.MO’s from d-orbitals Transition metals and other heavy elements use d-orbitals in their bonding interactions 1)d-orbitals.

(Ag + B1u)

(B2u + B3g)

(B3u + B2g)

Page 12: Ch 5 Lecture 2 Complex MO’s I.MO’s from d-orbitals Transition metals and other heavy elements use d-orbitals in their bonding interactions 1)d-orbitals.

3) Carbon AO’s with D2h symmetry labels

4) Interactions of C AO’s and O GO’s

a. O GO #1(2s) interacts with C(1s) in Ag symmetry

b. O GO #2(2s) interacts with C(2pz) in B1u symmetry

Page 13: Ch 5 Lecture 2 Complex MO’s I.MO’s from d-orbitals Transition metals and other heavy elements use d-orbitals in their bonding interactions 1)d-orbitals.

c. O GO#3(2pz) interacts with C(2s) in Ag symmetry

d. O GO#4(2pz) interacts with C(2pz) in B1u symmetry

Page 14: Ch 5 Lecture 2 Complex MO’s I.MO’s from d-orbitals Transition metals and other heavy elements use d-orbitals in their bonding interactions 1)d-orbitals.

5) Energy of interactions

a. Which of the above 4 interactions are energetically permissible?

b. Interactions are strongest for orbitals of similar energies

c. Energy match for O GO#3(2pz)/C(2s) = -15.9eV/-19.4eV is good

d. Energy match for O GO#1(2s)/C(2s) = -32.4eV/-19.4eV is bad

e. Energy match for O GO#4(2pz)/C(2pz) = -15.9/-10.7 is good

f. Energy match for O GO#2(2s)/C(2pz) = -32.4eV/-10.7eV is bad

g. O GO’s #1 and #2 will not be involved in MO’s

Page 15: Ch 5 Lecture 2 Complex MO’s I.MO’s from d-orbitals Transition metals and other heavy elements use d-orbitals in their bonding interactions 1)d-orbitals.

6) Additional Favorable Interactions:

a. O GO#5(2py) and C(2py) interact in B2u symmetry

b. O GO#7(2px) and C(2px) interact in B3u symmetry

c. O GO#6 (B3g) and O GO#8 (B2g) have no C orbitals to interact with

Page 16: Ch 5 Lecture 2 Complex MO’s I.MO’s from d-orbitals Transition metals and other heavy elements use d-orbitals in their bonding interactions 1)d-orbitals.

7) Final CO2 MO Diagram

a. 16 valence e-

i. 2 Bonding MO

ii. 2 nonbonding MO

iii. 2 bonding MO

iv. 2 nonbonding MO

b. BO = 4 (2, 2)

c. All Bonding MO’s are

3 centered 2 electron bonds