CH 33 Electromagnetic Waves - United States Naval Academy · 2016-07-08 · Page 6 4. Now let’s...

24
[SHIVOK SP212] March 17, 2016 Page 1 CH 33 Electromagnetic Waves I. Electromagnetic Waves A. Maxwell’s Rainbow 1. As the figure shows, we now know a wide spectrum (or range) of electromagnetic waves: Maxwell’s rainbow. In the wavelength scale in the figure, (and similarly the corresponding frequency scale), each scale marker represents a change in wavelength (and correspondingly in frequency) by a factor of 10. 2. ________________________________________________________________________________ _________________________________________________________________________________________ ________________________________________________________________________________________. 3. Visible Spectrum: CH: 16 Review items:

Transcript of CH 33 Electromagnetic Waves - United States Naval Academy · 2016-07-08 · Page 6 4. Now let’s...

Page 1: CH 33 Electromagnetic Waves - United States Naval Academy · 2016-07-08 · Page 6 4. Now let’s prove the Equation 33‐3 using Calculus. a) Examine the Magnetic field b) Fig. 33‐7

 [SHIVOK SP212] March 17, 2016 

 

 Page1

CH 33 

Electromagnetic Waves 

I. ElectromagneticWaves

A. Maxwell’sRainbow 

 

1. Asthefigureshows,wenowknowawidespectrum(orrange)ofelectromagneticwaves:Maxwell’srainbow.Inthewavelengthscaleinthefigure,(andsimilarlythecorrespondingfrequencyscale),eachscalemarkerrepresentsachangeinwavelength(andcorrespondinglyinfrequency)byafactorof10.

2. _________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________.

3. VisibleSpectrum:

       

CH: 16 Review items:

Page 2: CH 33 Electromagnetic Waves - United States Naval Academy · 2016-07-08 · Page 6 4. Now let’s prove the Equation 33‐3 using Calculus. a) Examine the Magnetic field b) Fig. 33‐7

 [SHIVOK SP212] March 17, 2016 

 

 Page2

B. TheTravelingElectromagneticWave,Qualitatively

1. Someelectromagneticwaves,includingxrays,gammarays,andvisiblelight,are________________________________________fromsourcesthatareofatomicornuclearsize.Figure33‐3showsthegenerationofsuchwaves.AtitsheartisanLCoscillator,whichestablishesanangularfrequency____________________________________________.Chargesandcurrentsinthiscircuitvarysinusoidallyatthisfrequency.

 

2. Figure33‐4showshowtheelectricfieldandthemagneticfieldchangewithtimeasonewavelengthofthewavesweepspastthedistantpointPinthelastfigure;ineachpartofFig.33‐4,thewaveistravelingdirectlyoutofthepage.

       

Page 3: CH 33 Electromagnetic Waves - United States Naval Academy · 2016-07-08 · Page 6 4. Now let’s prove the Equation 33‐3 using Calculus. a) Examine the Magnetic field b) Fig. 33‐7

 [SHIVOK SP212] March 17, 2016 

 

 Page3

3. Atadistantpoint,suchasP,thecurvatureofthewavesissmallenoughtoneglectit.Atsuchpoints,thewaveissaidtobea_________________________________________.

4. Herearesomekeyfeaturesregardlessofhowthewavesaregenerated:

a) Theelectricandmagneticfieldsandarealwaysperpendiculartothedirectioninwhichthewaveistraveling.Thewaveisatransversewave.

b) Theelectricfieldisalways______________________tothemagneticfield.

c) Thecrossproduct______________________alwaysgivesthedirectioninwhichthewavetravels.

d) Thefieldsalwaysvary________________________________________.Thefieldsvarywiththesamefrequencyandare______________________witheachother.

5. Wecanwritetheelectricandmagneticfieldsassinusoidalfunctionsofpositionx(alongthepathofthewave)andtimet:

                            

                            

6. HereEmandB

maretheamplitudesofthefieldsand,andkarethe

angularfrequencyandangularwavenumberofthewave,respectively.

7. ________________________________________________________________________________________________________________________________________________________________________________________.

8. Thespeedofthewave(invacuum)isgivenbyc. 

                

Its value is about 3.0 x108 m/s 

9. TheratioofamplitudesoftheElectricandMagneticfieldsarealsorelatedtothespeedoflightasfollows:

                                (Eq 33‐4) 

10. Themagnitudesofthefieldsateveryinstantandatanypointarerelatedby:

                                                                 (Eq 33‐5) 

Let’s now prove equations 33‐4 and 33‐5 with Calculus. 

Page 4: CH 33 Electromagnetic Waves - United States Naval Academy · 2016-07-08 · Page 6 4. Now let’s prove the Equation 33‐3 using Calculus. a) Examine the Magnetic field b) Fig. 33‐7

 [SHIVOK SP212] March 17, 2016 

 

 Page4

C. TheTravelingElectromagneticWave,Quantitatively

1. Let’srepresentanElectromagneticwaveasinFig33‐5

        

2. ThedashedrectangleofdimensionsdxandhinFig.33‐6isfixedatpointPonthexaxisandinthexyplane.

     

3. Astheelectromagneticwavemovesrightwardpasttherectangle,themagneticfluxBthroughtherectanglechangesand—accordingtoFaraday’slawofinduction—inducedelectricfieldsappearthroughouttheregionoftherectangle.WetakeEandE+dEtobetheinducedfieldsalongthetwolongsidesoftherectangle.Theseinducedelectricfieldsare,infact,theelectricalcomponentoftheelectromagneticwave.

a) StartingwithMaxwell’sEquationthatrelatestheinducedelectricfieldtothechangingmagneticflux:

 

Page 5: CH 33 Electromagnetic Waves - United States Naval Academy · 2016-07-08 · Page 6 4. Now let’s prove the Equation 33‐3 using Calculus. a) Examine the Magnetic field b) Fig. 33‐7

 [SHIVOK SP212] March 17, 2016 

 

 Page5

b) Applyittoourdrawingsof33‐5and33‐6;thus: 

  

c) Thefluxthroughtherectangleis:                            

d) Finding

e) Therforesubstituteandthus 

                            

f) SO (Eq33‐11)

g) ThusfromEqs33‐1and33‐2 

 

h) SorewritingEq33‐11weget: 

 

  

 

i) Finallyyoucanseethat 

 where  = c          (Eq33‐13) 

If we divide Eq 33‐1 by 33‐2 and then substitute in Eq 33‐13 we get Eq 33‐5. You can prove on your own. 

Page 6: CH 33 Electromagnetic Waves - United States Naval Academy · 2016-07-08 · Page 6 4. Now let’s prove the Equation 33‐3 using Calculus. a) Examine the Magnetic field b) Fig. 33‐7

 [SHIVOK SP212] March 17, 2016 

 

 Page6

4. Nowlet’sprovetheEquation33‐3usingCalculus.

a) ExaminetheMagneticfield

b)

Fig.33‐7Thesinusoidalvariationoftheelectricfieldthroughthisrectangle,located(butnotshown)atpointPinFig.33‐5b,Einducesmagneticfieldsalongtherectangle.TheinstantshownisthatofFig.33‐6:isdecreasinginmagnitude,andthemagnitudeoftheinducedmagneticfieldisgreaterontherightsideoftherectanglethanontheleft.

c) StartingwithMaxwell’sEquationthatrelatestheinducedmagneticfluxtothechangingelectricalfield:

 

  

d) Applyittoourdrawingof33‐7thus: 

  

e) Theelectricfieldthroughtherectangleis: 

  

f) Thismeans 

g) So 

h) Whichleadsto 

  

Page 7: CH 33 Electromagnetic Waves - United States Naval Academy · 2016-07-08 · Page 6 4. Now let’s prove the Equation 33‐3 using Calculus. a) Examine the Magnetic field b) Fig. 33‐7

 [SHIVOK SP212] March 17, 2016 

 

 Page7

i) Justaswedidbeforesubstitutingweget: 

j) Now

k) Whichfinallymeansthat 

 

D. EnergyTransportandthePoyntingVector

1. TherateofenergytransportperunitareaiscalledthePoyntingVector. 

 

2. InstantaneousEnergyflowrate. 

 

 

 

3. AverageEnergyTransportedovertimeorIntensity

a)  

 

(1) Remember that the average for Sin2f for any f is ½. 

(2) Theenergydensityu(=)withinanelectricfield,canbewrittenas:

  

 

 

Page 8: CH 33 Electromagnetic Waves - United States Naval Academy · 2016-07-08 · Page 6 4. Now let’s prove the Equation 33‐3 using Calculus. a) Examine the Magnetic field b) Fig. 33‐7

 [SHIVOK SP212] March 17, 2016 

 

 Page8

b) VariationofIntensitywithDistance

                               

(1) TheintensityI(powerperunitarea)measuredatthespheremustbe

 

4. SampleProblem:A10‐kWradiostationradiatessphericalelectromagneticwaves.Themaximumvalue(amplitude)ofthewave’soscillatingelectricfieldatadistanceof5.0kmfromthestationisclosestto:

A. 3.6 V/m B. 0.16 V/m C. 0.56 V/m D. 1.6 V/m E. 16 V/m 

Show all work 

Page 9: CH 33 Electromagnetic Waves - United States Naval Academy · 2016-07-08 · Page 6 4. Now let’s prove the Equation 33‐3 using Calculus. a) Examine the Magnetic field b) Fig. 33‐7

 [SHIVOK SP212] March 17, 2016 

 

 Page9

E. RadiationPressure

1. Electromagneticwaveshavelinearmomentumandthuscanexertapressureonanobjectwhenshiningonit.

2. Duringtheintervalt,theobjectgainsanenergyUfromtheradiation.Iftheobjectisfreetomoveandthattheradiationisentirelyabsorbed(takenup)bytheobject,thenthemomentumchangepisgivenby

 

                   

3. Iftheradiationisentirelyreflectedbackalongitsoriginalpath,themagnitudeofthemomentumchangeoftheobjectistwicethatgivenabove,or

4. Since anditfollowsthat 

 

 

 

5. Finally,theradiationpressureinthetwocasesare

Page 10: CH 33 Electromagnetic Waves - United States Naval Academy · 2016-07-08 · Page 6 4. Now let’s prove the Equation 33‐3 using Calculus. a) Examine the Magnetic field b) Fig. 33‐7

 [SHIVOK SP212] March 17, 2016 

 

  Page10

6. SampleProblems:

a) Thenexttwoproblemsdealwithanelectromagneticwaveinamaterialwheretheelectricfieldhasay‐componentonlyand,inSIunits,isgivenbyEy=(40.0V/m)sin[(1.4x107m‐1)x–(4.2x1015rad/s)t)]wherexisinmetersandtisinseconds.

(1) ThewavelengthanddirectionoftravelofthewaveareclosesttoA. 449 nm in the positive x direction. B. 449 nm in the negative x direction. C. 333 nm in the positive x direction. D. 333 nm in the positive x direction. E. 282 nm in the positive x direction. 

Show all work/Explain: 

 

 

 

 

 

 

(2) Iftheelectromagneticwaveisfullyreflectedbyasurface,theradiationpressureisclosestto

A. 2.03 x 10-8 N/m2

.

B. 3.45x 10-7 N/m2

.

C. 1.42 x 10-8 N/m2

.

D. 7.08 x 10-9 N/m2

.

E. 5.63 x 10-9 N/m2

Show all work 

Page 11: CH 33 Electromagnetic Waves - United States Naval Academy · 2016-07-08 · Page 6 4. Now let’s prove the Equation 33‐3 using Calculus. a) Examine the Magnetic field b) Fig. 33‐7

 [SHIVOK SP212] March 17, 2016 

 

  Page11

F. Polarization

1. Polarized______________________________________________________________________.

a) Diagram‐Figure33‐9ashowsanelectromagneticwavewithitselectricfieldoscillatingparalleltotheverticalY‐axis.

 

2. Polarizedrandomlyorunpolarized

 

 

Page 12: CH 33 Electromagnetic Waves - United States Naval Academy · 2016-07-08 · Page 6 4. Now let’s prove the Equation 33‐3 using Calculus. a) Examine the Magnetic field b) Fig. 33‐7

 [SHIVOK SP212] March 17, 2016 

 

  Page12

(1) IntensityofUnpolarizedLight

(a) IftheintensityoforiginalunpolarizedlightisIo,then

theintensityoftheemerginglightthroughthepolarizer,I,ishalfofthat.

 

3. Polarizingsheets

a) Wecantransformunpolarizedvisiblelightintopolarizedlightbysendingitthroughapolarizingsheet,asshownbelow.

                                  

(1) __________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________.

 

Page 13: CH 33 Electromagnetic Waves - United States Naval Academy · 2016-07-08 · Page 6 4. Now let’s prove the Equation 33‐3 using Calculus. a) Examine the Magnetic field b) Fig. 33‐7

 [SHIVOK SP212] March 17, 2016 

 

  Page13

4. IntensityofPolarizedLight

a) Supposenowthatthelightreachingapolarizingsheetisalreadypolarized.

b) Figure33‐12showsapolarizingsheetintheplaneofthepageandtheelectricfieldofsuchapolarizedlightwavetravelingtowardthesheet(andthuspriortoanabsorption).

                                    

c) WecanresolveEintotwocomponentsrelativetothepolarizingdirectionofthesheet:parallelcomponentE

yistransmittedbythesheet

andperpendicularcomponentEzisabsorbed.Sinceqistheangle

betweenandthepolarizingdirectionofthesheet,thetransmittedparallelcomponentis

 

d) Since,then 

(1) ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________.

 

 

 

Page 14: CH 33 Electromagnetic Waves - United States Naval Academy · 2016-07-08 · Page 6 4. Now let’s prove the Equation 33‐3 using Calculus. a) Examine the Magnetic field b) Fig. 33‐7

 [SHIVOK SP212] March 17, 2016 

 

  Page14

e) Asshowninfigure33‐13,oftenunpolarizedlightwillbesentthroughatleasttwosheets.Thefirstsheetisoftencalledapolarizer,andtheadditionalsheetsarecalledanalyzers.

 

 

f) Ifthetwosheetsareparallelallthelightpassedbythefirstisalsopassedbythesecond.Ifthesheetsareperpendicular(thesheetsaresaidtobecrossed),nolightispassedbythesecondsheet(figure33‐14).

 

Page 15: CH 33 Electromagnetic Waves - United States Naval Academy · 2016-07-08 · Page 6 4. Now let’s prove the Equation 33‐3 using Calculus. a) Examine the Magnetic field b) Fig. 33‐7

 [SHIVOK SP212] March 17, 2016 

 

  Page15

g) Soobviouslythereisthecasewheretheyarenotparallelorperpendicular.Thefollowingisasampleproblemonhowthiscaseishandled.

 

(1) Solution:

(a) Theanglebetweenthedirectionofpolarizationofthelightincidentonthefirstpolarizingsheetandthepolarizingdirectionofthatsheetis1=70°.IfI0istheintensityoftheincidentlight,thentheintensityofthelighttransmittedthroughthefirstsheetis:

 

 

 

(b) Thedirectionofpolarizationofthetransmittedlightmakesanangleof70°withtheverticalandanangleof2=20°withthehorizontal.2istheangleitmakeswiththepolarizingdirectionofthesecondpolarizingsheet.Consequently,thetransmittedintensityis:

 

 

 

 

 

 

In the figure on the left, a beam of light, with Intensity 

43W/m2 and polarization parallel to the y axis, is sent 

into a system of two polarizing sheets with polarizing 

directions at angles of q1=70± and q2=90± to the Y‐axis. What is the Intensity of the light transmitted by the 

two‐sheet system? 

Page 16: CH 33 Electromagnetic Waves - United States Naval Academy · 2016-07-08 · Page 6 4. Now let’s prove the Equation 33‐3 using Calculus. a) Examine the Magnetic field b) Fig. 33‐7

 [SHIVOK SP212] March 17, 2016 

 

  Page16

5. Whenunpolarizedlightispassedthroughtwopolarizingfiltersinsuccession,itsintensityisdecreasedby80%.Theangle,θ,betweenthetransmissionaxesofthefiltersis:

 

A. 78.5°. B. 63.4°. C. 26.6°. D. 36.9°. E. 50.8°.  

 

Show all work 

 

 

 

 

 

6. Alaserproducesunpolarizedlightwithanintensityof5.0W/cm2.ThelightpassesthroughthreesheetsofPolaroidfilmasshown.ThetransmissionaxisofthesecondPolaroidmakesa30anglewiththatofthefirst,andtheaxisofthethirdmakesa60Þanglewiththatofthesecond(and90anglewiththatofthefirst).TheintensityofthelightthatemergesfromthethirdPolaroidisclosestto: A. 0 B. 1.4 W/cm2

C. 1.1 W/cm2

D. 0.16 W/cm2

E. 0.47 W/cm2 Show all work 

 

 

 

7. Lightcanbepolarizedbymeansotherthanpolarizingsheet…suchasbyscatteringorreflection.

 

Page 17: CH 33 Electromagnetic Waves - United States Naval Academy · 2016-07-08 · Page 6 4. Now let’s prove the Equation 33‐3 using Calculus. a) Examine the Magnetic field b) Fig. 33‐7

 [SHIVOK SP212] March 17, 2016 

 

  Page17

G. ReflectionandRefraction

a) LawofReflection

   

b) LawofRefraction(Snell’sLaw)

 

 

c) TableofIndexesofRefraction

 

 

Page 18: CH 33 Electromagnetic Waves - United States Naval Academy · 2016-07-08 · Page 6 4. Now let’s prove the Equation 33‐3 using Calculus. a) Examine the Magnetic field b) Fig. 33‐7

 [SHIVOK SP212] March 17, 2016 

 

  Page18

d) Effectsofdifferentindexmediums

 

(1) Ifn2isequalton1,thenq2=q1andthebeamcontinuesun‐deflected.

(2) Ifn2>n1,thenq2<q1andthebeamisbentawayfromtheun‐deflecteddirectiontowardthenormal.

(3) Ifn2<n1,thenq2>q1andthebeamisbentawayfromtheun‐deflecteddirectionandawayfromthenormal.

(4) ItisamemoryaidtothinktowardthemediumwiththeHIGHERindex.Seein(b)itbendsdownandin(c)itbendsup.

(5) RefractionCANNOTbendabeamsomuchthattherefractedrayisonthesamesideofthenormalastheincidentray!

 

 

e) ExampleProblem: 

 

 

 

 

Light in a vacuum is incident on the surface of an unknown medium. 

They Physics Lab student decides she can figure out the medium if 

she knows the index of the unknown material.  She measures the 

angle of the light in the unknown material and gets 21.28 ±.  In the vacuum the beam of light makes and angle of 32.00± with the normal 

to the surface.  In your opinion what is the material made of? 

Page 19: CH 33 Electromagnetic Waves - United States Naval Academy · 2016-07-08 · Page 6 4. Now let’s prove the Equation 33‐3 using Calculus. a) Examine the Magnetic field b) Fig. 33‐7

 [SHIVOK SP212] March 17, 2016 

 

  Page19

(1) Solution:

Thelawofrefractionstates 

(2) Wetakemedium1tobethevacuum,withn1=1and1=32.0°.Medium2istheunknown,with2=21.28°.

(3) Wesolveforn2: 

 

 

(4) Solooking________________thematerialis_______________________. 

 

 

 

 

H. ChromaticDispersion

1. Theindexofrefractionnencounteredbylightinanymediumexceptvacuumdependsonthewavelengthofthelight.

2. Thedependenceofnonwavelengthimpliesthatwhenalightbeamconsistsofraysofdifferentwavelengthstherayswillberefractedatdifferentanglesbyasurface;thatis,thelightwillbespreadoutbytherefraction.

3. ThespreadingofthelightiscalledChromaticDispersion.

 

Page 20: CH 33 Electromagnetic Waves - United States Naval Academy · 2016-07-08 · Page 6 4. Now let’s prove the Equation 33‐3 using Calculus. a) Examine the Magnetic field b) Fig. 33‐7

 [SHIVOK SP212] March 17, 2016 

 

  Page20

4. ChromaticDispersionofWhitelight

 

5. Rainbows

 

 

 

Page 21: CH 33 Electromagnetic Waves - United States Naval Academy · 2016-07-08 · Page 6 4. Now let’s prove the Equation 33‐3 using Calculus. a) Examine the Magnetic field b) Fig. 33‐7

 [SHIVOK SP212] March 17, 2016 

 

  Page21

I. TotalInternalReflection

 

   

1. Foranglesofincidencelargethanc,suchasforraysfandgabove,thereis

norefractedrayandallthelightisreflected;thiseffectiscalledTotalInternalReflection.

2. ciscalledthe_______________________:

 

 

 

 

3. Whichmeans 

Page 22: CH 33 Electromagnetic Waves - United States Naval Academy · 2016-07-08 · Page 6 4. Now let’s prove the Equation 33‐3 using Calculus. a) Examine the Magnetic field b) Fig. 33‐7

 [SHIVOK SP212] March 17, 2016 

 

  Page22

J. PolarizationbyReflection

1.  

 

2.

 

 

 

3.

 

 

Page 23: CH 33 Electromagnetic Waves - United States Naval Academy · 2016-07-08 · Page 6 4. Now let’s prove the Equation 33‐3 using Calculus. a) Examine the Magnetic field b) Fig. 33‐7

 [SHIVOK SP212] March 17, 2016 

 

  Page23

K. SampleproblemsforReflection/Refraction

1. Abeamoflighttravelinginairstrikesthesurfaceofasolutionofcornsyrupinwateratanangleof30tothevertical.Ifthebeamisrefractedatanangleof19tothevertical,thenthespeedofthelightinthecornsyrupsolutionisclosestto:

 

A. 1.5 x 108 m/s B. 1.7 x 108 m/s C. 2.0 x 108 m/s D. 2.3 x 108 m/s E. 2.6 x 108 m/s 

Show all work 

 

 

 

 

 

2. Aflatpieceofglass(withindexofrefraction1.50)hasalayerofethanol(withindexofrefraction1.36)floatingontopofit.Lighttravelingintheglassstrikestheglass‐ethanolsurface.Thecriticalanglefortotalinternalreflectionintheglassisclosestto:

 

A. 65 B. 59 C. 47 D. 55 E. 39

Show all work 

 

Page 24: CH 33 Electromagnetic Waves - United States Naval Academy · 2016-07-08 · Page 6 4. Now let’s prove the Equation 33‐3 using Calculus. a) Examine the Magnetic field b) Fig. 33‐7

 [SHIVOK SP212] March 17, 2016 

 

  Page24

3. Alayerofwater(n=1.33)existsonaslabofglass(n=1.46).Alaserbeamintheglassisincidentontheglass‐waterinterface.Relativetotheperpendiculartotheinterface,thesmallestanglefortotalinternalreflectionisclosestto:

 

A. 57.3°. B. 65.6°. C. 40.1°. D. 42.3°. E. 74.8°.

Show all work 

 

 

 

 

 

 

4. Theangleofincidence(relativetothenormaltothesurface)forwhichthelightreflectedfromthewater‐diamondsurfaceiscompletelypolarizedisclosestto:

 

A. 57.6º. B. 59.5º. C. 61.2º. D. 66.3º. E. 64.1º.

Show all work