Ch 17 Gene Expression I: Transcription

24
17 Gene Expression I: Transcription What is this?

description

Ch 17 Gene Expression I: Transcription. What is this?. Basic Principles of Gene Expression. DNA encodes hereditary information (genotype) -> decoded into RNA -> protein (phenotype). DNA. Transcription. RNA. Translation. Protein. LE 17-3-1. DNA. TRANSCRIPTION. Prokaryotic cell. - PowerPoint PPT Presentation

Transcript of Ch 17 Gene Expression I: Transcription

Page 1: Ch 17  Gene Expression I: Transcription

Ch 17 Gene Expression I: Transcription

What is this?

Page 2: Ch 17  Gene Expression I: Transcription

Basic Principles of Gene Expression

DNA encodes hereditary information (genotype) ->

decoded into RNA -> protein (phenotype)

DNA

RNA

Protein

Transcription

Translation

Page 3: Ch 17  Gene Expression I: Transcription

LE 17-3-1

TRANSCRIPTIONDNA

Prokaryotic cell

Page 4: Ch 17  Gene Expression I: Transcription

LE 17-3-1

TRANSCRIPTIONDNA

Prokaryotic cell

Page 5: Ch 17  Gene Expression I: Transcription

LE 17-3-2

TRANSCRIPTIONDNA

Prokaryotic cellRibosome

Polypeptide

mRNA

Prokaryotic cell

Page 6: Ch 17  Gene Expression I: Transcription

LE 17-3-3

TRANSCRIPTION

TRANSLATION

DNA

mRNA

Ribosome

Polypeptide

DNA

Prokaryotic cell

Nuclearenvelope

TRANSCRIPTION

Eukaryotic cell

Page 7: Ch 17  Gene Expression I: Transcription

LE 17-3-4

TRANSCRIPTION

TRANSLATION

DNA

mRNA

Ribosome

Polypeptide

DNA

Pre-mRNA

Prokaryotic cell

Nuclearenvelope

mRNA

TRANSCRIPTION

RNA PROCESSING

Eukaryotic cell

Page 8: Ch 17  Gene Expression I: Transcription

LE 17-3-5

TRANSCRIPTION

TRANSLATION

DNA

mRNA

Ribosome

Polypeptide

DNA

Pre-mRNA

Prokaryotic cell

Nuclearenvelope

mRNA

TRANSLATION

TRANSCRIPTION

RNA PROCESSING

Ribosome

Polypeptide

Eukaryotic cell

Page 9: Ch 17  Gene Expression I: Transcription

• Promoter: DNA sequence where RNA polymerase binds to transcribe the gene

• Transcription start site: the nucleotide where RNA pol initiates transcription

• Transcription unit: the transcribed DNA

Transcription: DNA->RNA

Structure of a gene

Page 10: Ch 17  Gene Expression I: Transcription

Basic components for transcription

dsDNA with a promoter

RNA polymerase

rNTPs (ribonucleotides triphosphates)ATP, CTP, GTP, UTP

Page 11: Ch 17  Gene Expression I: Transcription

LE 17-7

Promoter Transcription unit

RNA polymeraseStart point

DNA

53

35

Page 12: Ch 17  Gene Expression I: Transcription

LE 17-7

ElongationNon-templatestrand of DNA

RNApolymerase

RNA nucleotides

3 end3

5

5

Newly madeRNA

Templatestrand of DNA

Direction of transcription(“downstream”)

Page 13: Ch 17  Gene Expression I: Transcription

Synthesis of an RNA Transcript

• The three stages of transcription:– Initiation– Elongation– Termination

Page 14: Ch 17  Gene Expression I: Transcription

LE 17-7Promoter

35

Transcription unit

DNA

InitiationRNA polymerase

Start point

Template strandof DNA

RNAtran-script

UnwoundDNA

Elongation

3

3

53

5

5

3 5

RewoundDNA

5 3

35 35

RNAtranscript Termination

35

5 3Completed RNA transcript

Page 15: Ch 17  Gene Expression I: Transcription

Termination of Transcription

Different in prokaryotes and eukaryotes• In prokaryotes• RNA pol stops transcription at the end of the

terminator (DNA sequence)

• In eukaryotes• pre-mRNA is cleaved from the growing RNA chain• RNA pol eventually falls off the DNA

Page 16: Ch 17  Gene Expression I: Transcription

RNA processing in eukaryotes, not prokaryotes

1. Addition of methylated cap to 5’ end of messenger RNA (mRNA)-> increases stability and translation of mRNA

2. Addition of poly(A) tail to 3’ end (polyadenylation) -> increases stability and translation of mRNA

3. Splicingremoval of introns and joining together of exons

All processing events occur in nucleus

before transport to cytoplasm

Draw

Page 17: Ch 17  Gene Expression I: Transcription

LE 17-10

5 Exon Intron Exon Intron Exon 3Pre-mRNA

1 30 31 104 105 146

Codingsegment

Introns cut out andexons spliced together

1 146

5Cap

5Cap

Poly-A tail

Poly-A tail

5 3UTR UTR

(mature) mRNA

Page 18: Ch 17  Gene Expression I: Transcription

• RNA splicing:

carried out by spliceosomes

• Spliceosomes complex of proteins and several small nuclear

ribonucleoproteins (snRNPs)

Recognize splice sites (specific RNA sequences)

cleave out introns and splice together exons (coding region)

Page 19: Ch 17  Gene Expression I: Transcription

LE 17-11

Exon 15

Intron Exon 2

Other proteinsProtein

snRNA

snRNPs

RNA transcript (pre-mRNA)

Spliceosome

5

Spliceosomecomponents

Cut-outintron

mRNA

Exon 1 Exon 25

Page 20: Ch 17  Gene Expression I: Transcription

Ribozymes

• Catalytic RNAs molecules that function as enzymes; involved in splicing

• Non-protein biological catalyst

Can you think of a ribozyme with a different function?

Telomerase

Page 21: Ch 17  Gene Expression I: Transcription

Functional and Evolutionary Importance of Introns

• Some genes can encode more than one kind of polypeptide

-different combinations of exons can be spliced together

• Called alternative RNA splicing

• Increases the potential number of different proteins (and thus functions) in an organism

• Increased adaptive potentialDraw Splice Variants

Page 22: Ch 17  Gene Expression I: Transcription

• In many cases, different exons code for the different domains in a protein

• Protein domains– Distinct conformational regions often with discrete

functions

Exons and protein domains

Page 23: Ch 17  Gene Expression I: Transcription

LE 17-12

Gene

Transcription

RNA processing

Translation

Domain 2

Domain 3

Domain 1

Polypeptide

Exon 1 Intron Exon 2 Intron Exon 3

DNA

Page 24: Ch 17  Gene Expression I: Transcription

LE 17-9

5Protein-coding segment

5 Start codon Stop codon Poly-A tail

Polyadenylation signal

5 3Cap UTR UTR

Architecture of eukaryotic mRNA

UTR: untranslated regions