CFD Simulation of the Two-Phase Flow around an … an Obstacle applying an Inhomogeneous Multiple...

25
Institute of Safety Research 26.04.2007 Mitglied der Leibniz-Gemeinschaft CFD Simulation of the Two-Phase Flow around an Obstacle applying an Inhomogeneous Multiple Bubble Size Class Approach E. Krepper, D. Lucas, H.-M. Prasser , M. Beyer, Th. Frank Multiphase Flows: Simulation, Experiment and Application Hotel Park Plaza, Dresden 25 – 27 April 2007

Transcript of CFD Simulation of the Two-Phase Flow around an … an Obstacle applying an Inhomogeneous Multiple...

Institute of Safety Research26.04.2007

Mitglied der Leibniz-Gemeinschaft

CFD Simulation of the Two-Phase Flow

around an Obstacle applying an

Inhomogeneous Multiple Bubble Size Class

Approach

E. Krepper, D. Lucas, H.-M. Prasser , M. Beyer, Th. Frank

Multiphase Flows: Simulation, Experiment and Application

Hotel Park Plaza, Dresden

25 – 27 April 2007

Institute of Safety Research26.04.2007

2Mitglied der Leibniz-Gemeinschaft

Outline

1. The concept of the inhomogeneous MUSIG model

• role of the lift force for the flow regime

2. Application to the simulation of a complex flow situation

Institute of Safety Research26.04.2007

3Mitglied der Leibniz-Gemeinschaft

Nondrag bubble forces:

Forces perpendicular to the flow direction

• Turbulence Dispersion:

– transfer of the turbulent fluctuations of the liquid on the bubbles

� smoothing of radial volume fraction profiles

• Wall Force:

– pushes bubbles away from the wall

• Lift Force:

– gaseous bubbles in a shear flow: pressure differences from the liquid surrounding on the bubble surface

– proportional to the gradient of the liquid flow field

� direction dependent on the bubble size

Lift

WandkraftDispersion

Institute of Safety Research26.04.2007

4Mitglied der Leibniz-Gemeinschaft

Tomiyama (1998): Experimental Investigation of single bubbles in a laminar shear flow (Glycol)

• application of this correlation to air/water:

• CLIFT changes the sign at dB = 5.8 mm0 2 4 6 8 10

dB [mm]

-0.4

-0.2

0

0.2

0.4

CL

IFT

474.00204.00159.000105.0)(

1027.0

104)(

4)](Re),121.0tanh(288.0min[

23+−−=

>−

<<

<

=

dddd

d

dd

dd

Lift

EoEoEoEofwith

Eo

EoforEof

EoEof

C

σ

ρρ 2)( hgl

d

dgEo

−=

Institute of Safety Research26.04.2007

5Mitglied der Leibniz-Gemeinschaft

Conditions for steam/water

• evaluation of the Tomiyamacorrelation:

� with higher pressure the critical bubble size dB(CLIFT=0) is decreased

0 50 100 150 200P [105 Pa]

0.0

2.0

4.0

6.0

dB [

mm

]

Institute of Safety Research26.04.2007

6Mitglied der Leibniz-Gemeinschaft

Measurements in FZD: Decomposition of the gas volume fraction distribution according bubble size

Institute of Safety Research26.04.2007

7Mitglied der Leibniz-Gemeinschaft

TOPFLOW experimentsJL = 1 m/s and JG = 0.22 m/s (FZR-118), L/D = 40, Injection valves: Dinj = 4 mm

• Horst-Michael Prasser et. al (2005): evolution of the structure of a gas-

liquid two-phase flow in a large vertical pipe, NURETH-11, paper 399

Institute of Safety Research26.04.2007

8Mitglied der Leibniz-Gemeinschaft

Influence of bubble forces on the flow regime in a vertical upward bubbly flow

• Lift Force:

– small bubbles are pushed towards the wall

– large bubbles are moved towards the centre

• bubble break-up

– turbulent dissipation

– only near the wall

• bubble coalescence :

– at bubble accumulation

�radial phenomena have important influence on the flow regime

�a model approach has to be able to describe radial separation of small and large bubbles

Institute of Safety Research26.04.2007

9Mitglied der Leibniz-Gemeinschaft

Population balance approach

• Definition of different bubble size classes

– interact via models for bubble coalescence and bubble break-up

• In the Euler/Euler approach in principle the definition of several bubble classes is possible

• For the adequate description decades of bubble classes would be necessary (shown by separate investigations)

• Numerical problems: CPU time, convergence, stability

Institute of Safety Research26.04.2007

10Mitglied der Leibniz-Gemeinschaft

Multiple bubble size group model (MUSIG)

• S. Lo (1996 CFX-4):

• for the gaseous phase only one velocity field

• only one momentum equation for the gaseous phase

• consideration of bubble break-up and coalescence only in the continuity equation

VG

d1 dM

bubblecoalescence

bubblebreak-up

Gas velocity

Size fractionsK=1..M dk

Institute of Safety Research26.04.2007

11Mitglied der Leibniz-Gemeinschaft

Concept for the improvement of the MUSIG Model

• The gaseous momentum equation is solved for at least two gaseous phases

� the description of the separation of small and large bubbles becomes possible

• simulation of bubble coalescence and break-up over all gaseous subsizefractions (continuity equation)

V1 V2 VN

d1 dM1 dM1+1 dM1+M2

bubblecoalescence

bubble break-up

Velocity groupsJ=1..N

Size fractions

K=1..ΣMJ

...

dΣMJ

Institute of Safety Research26.04.2007

12Mitglied der Leibniz-Gemeinschaft

TOPFLOW FZR-118: JL=1.0 m/s, JG=0.2194 m/s

2 dispersed Phases, 34 sub-size fractions

0 6 12 18 24 30 36 42 48 54 60DBub [mm]

0.00

0.40

0.80

1.20

1.60

2.00dV

F/d

DB [%

mm

-1]

R: 7.802 mexp

CFX

0.000 0.020 0.040 0.060 0.080 0.100Radius [m]

0.00

0.10

0.20

0.30

Ga

s v

olu

me

fra

ctio

n [-]

R: 7.802 mExperiment

CFX-10 (total)

dB< 6 mm

dB> 6 mm

0 6 12 18 24 30 36 42 48 54 60DBub [mm]

0.00

0.20

0.40

0.60

dV

F/d

DB [%

mm

-1]

C: 0.335 mexp

CFX

0.000 0.020 0.040 0.060 0.080 0.100Radius [m]

0.00

0.10

0.20

0.30

Ga

s v

olu

me

fra

ctio

n [-]

C: 0.335 mExperiment

CFX-10 (total)

dB< 6 mm

dB> 6 mm

Institute of Safety Research26.04.2007

13Mitglied der Leibniz-Gemeinschaft

Investigation of a complex flow situation: Flow around an obstacle

Institute of Safety Research26.04.2007

14Mitglied der Leibniz-Gemeinschaft

Comparison of calculated and measured timely averaged gas volume fraction and liquid velocity distributions

Run 096: JL = 1.017 m/s; JG = 0.0898 m/s

water velocity air volume fraction

Institute of Safety Research26.04.2007

15Mitglied der Leibniz-Gemeinschaft

Calculated Turbulence Dissipation

Institute of Safety Research26.04.2007

16Mitglied der Leibniz-Gemeinschaft

Comparison of measured and calculated cross

sectional averaged bubble size distributions

0 5 10 15 20 25DB [mm]

0.0

1.0

2.0

3.0

4.0

dV

F/d

DB [%

mm

-1]

run 096-0.52 m

0.08 m

0.52 m

Run 096 JL = 1.017 m/s; JG = 0.0898 m/s

0 5 10 15 20 25DB [mm]

0.0

1.0

2.0

3.0

4.0

dV

F/d

DB [%

mm

-1]

run 096Z = -0.52 m

Z = 0.08 m

Z = 0.52 m

measurement calculation

Institute of Safety Research26.04.2007

17Mitglied der Leibniz-Gemeinschaft

streamlines for large and small bubbles

Run 096:

JL = 1.017 m/s;

JG = 0.0898 m/s

Institute of Safety Research26.04.2007

18Mitglied der Leibniz-Gemeinschaft

Lift forces

Run 096:

JL = 1.017 m/s;

JG = 0.0898 m/s

Institute of Safety Research26.04.2007

19Mitglied der Leibniz-Gemeinschaft

mean sauter bubble diameter

Run 096:

JL = 1.017 m/s;

JG = 0.0898 m/s

Institute of Safety Research26.04.2007

20Mitglied der Leibniz-Gemeinschaft

Gas distributions for different bubble size classes

run 096 (JL = 1.017 m/s; JG =0.0898 m/s)

measurement calculation

Institute of Safety Research26.04.2007

21Mitglied der Leibniz-Gemeinschaft

Run 097:

JL = 1. 611 m/s;

JG = 0.0898 m/s

Water Velocity

Institute of Safety Research26.04.2007

22Mitglied der Leibniz-Gemeinschaft

Run 097:

JL = 1. 611 m/s;

JG = 0.0898 m/s

Total Air Volume Fraction

Institute of Safety Research26.04.2007

23Mitglied der Leibniz-Gemeinschaft

Gas distributions for different bubble size classes

Run 097:

JL = 1.611 m/s;

JG = 0.0898 m/s

Institute of Safety Research26.04.2007

24Mitglied der Leibniz-Gemeinschaft

Obstacle: Summary of observations

1. Phenomena in the wake of the obstacle

• Small bubbles are transported behind the obstacle (lift force)

• Bubble accumulation behind the obstacle causes coalescence

• in the measurements behind the obstacle mainly large bubbles are

found

2. Phenomena in the jet beside the obstacle in the non-obstructed cross sectional area

• Generated large bubbles are rejected into the jet beside by the

obstacle

• Near the jet margin large shear rates are found

• fragmentation of large bubbles (not considered in the calculations)

• small bubbles are rejected out of the jet (lift force)

Institute of Safety Research26.04.2007

25Mitglied der Leibniz-Gemeinschaft

Summary

• correct function of the inhomogeneous MUSIG model approach confirmed

• thoroughly understanding of the complex flow situation

• closure models for bubble forces in agreement with experiment

• most weak point: Models for simulation of bubble coalescence and bubble break-up

– With the actual implemented models tuning coefficients are

necessary:

• air/water in vertical tube: FB = 0.25; FC = 0.05

• steam/water in vertical tube: FB = 0.02; FC = 0.05

• complex flow: tuning factors depend on flow situation

• Further work is considered for future investigations