CESAER biennial report 2005-2006 · Chairman German Aerospace Center (DLR) Former President of the...

31
CESAER biennial report 2005-2006

Transcript of CESAER biennial report 2005-2006 · Chairman German Aerospace Center (DLR) Former President of the...

CESAER biennial report 2005-2006

�b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6

1 Autonomy:apassingtrendoranecessity? 5

Johann-DietrichWörner

2 Increasedautonomy:anecessityfortomorrow’suniversities 6 ExamplesfromChalmersUniversityofTechnology Jan-EricSundgren

3 Accreditation,QualityAssuranceandMutualRecognition 13 RamonWyss

4 TheBolognaProcessfromBergen2005toLondon2007 19 HansK.Kaiser

5 TheIDEALeague’spositiononaEuropeanInstituteofTechnology 24 JacobT.Fokkema

6 AcademicLearningOutcomes:AConceptualandEmpiricalApproach 29 AnthonieW.M.Meijers

7 TherelationshipbetweenResearchandEducation 42 inCESAER(Technical)Universities JeanE.Berlamont

8 CESAER’sPositionontheEuropeanInstituteofTechnology 47

9 CESAERStatementonQualityAssuranceandAccreditation 48 ofEngineeringEducation

10 CESAER’sPositionontheEuropeanQualificationsFramework(EQF) 49

11 FactsandFigures 51 LieveConinx,JanGraafmans

Professor Dr.-Ing. Johann-Dietrich Wörner

CESAER PresidentChairman German Aerospace Center (DLR) Former President of the Technische Universität Darmstadt

Inrecentyears,discussionsonuniversityautonomyhavefocusedprimarilyonhowtoachieve

autonomy.Otherimportantpointsthathavebeendebatedrangefrominternalorganisation

to the relationship between universities and the authorities. Although several institutions

haveachievedsignificantresultsintermsofincreasedautonomy,athoroughanalysisofwhat

autonomyisbasedonandwhatitspossibleconsequencesmaybeseemsappropriate.

With regard to university development, it seems correct to state that over the last ten to

twentyyears,manyresponsibilitieshaveshiftedfromministriestouniversities.Responsibility,

however, must result in freedom of action. The increasing complexity of modern science

must be based on scientific competence instead of on bureaucratic decisions. The kind of

competitionexperiencedbybusinessandindustryhasnowreachedthescientificcommunity.

Wemustconsidernotonlyscientificdecision-making,butalsotheimmediateexecutionofany

decisionsthataremade.Thesethoughtsandreflectionsmakeitclearthatuniversityautonomy

ismuchmore than just a trend.Some institutions seeautonomyasagift frompoliticians,

allowingmorefreedomofaction.Realautonomyprovidesabalancebetweendecision-making

freedomand responsibility. Inaddition, the institutionshave toaccept that theyareacting

according to thewillof theirowner,be thataprivateowneror thepublicauthorities. Iam

convinced that the shift towardsautonomousuniversitieswill enhanceeducation, research

andinnovationandshouldthereforebeimplementedinaconsistentway.

5b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6� b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6

Autonomy:a passing trend or a necessity?

7b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6� b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6

ChalmersUniversityofTechnologyinbriefChalmers3 is the only higher education establishment in Sweden to be named after its

founder, William Chalmers. It has its origins in the 'Industrial School' which opened in

Göteborgon5November1829underthename'ChalmerskaSlöjdskolan'[ChalmersSchool

ofArtsandCrafts]andwasentirelyfundedwithmoneybequeathedbyWilliamChalmers

(1748-1811),directoroftheSwedishEastIndiaCompany.Whenitopened,theschoolhadten

studentsand three teachers. The subjects taughtwereMathematics,Physics,Chemistry

(includinglaboratorywork),ChemicalTechnology,theManufactureofMechanicalModels,

andTechnicalDrawing.ThefirstpresidentwastheindustrialistCarlPalmstedt.Therehas

thereforebeenanaturallinkwithbusinessandindustryfromtheverybeginning.Thanksto

Palmstedt'sclosefriendshipwiththefamousSwedishchemistBerzelius,Chalmersfocused

onresearchinScienceandEngineeringrightfromtheoutset;averyunusualphenomenon

inthosedaysforaninstitutionfocusingonEngineeringtraining.

The school grew and from 1836 onwards it received Swedish government support and

begantobegraduallyincorporatedintothenationaleducationsystem.However,on1July

1994Chalmers returned to its roots,when it ceased tobea state-owned institutionand

becamean independentuniversity, ownedbya foundation.Chalmersnowoperatesasa

limitedcompany.

TheChalmersof todayhasa total of9,000students (undergraduateandgraduate) and

2,300 faculty post-graduate students, and technical and administrative staff. Each year

around150PhDdegreesareawarded,aswellas850MScEngandMArchdegrees.Around

40%ofSweden'sgraduateengineersandarchitectshavebeeneducatedatChalmers.The

annualturnoveratChalmersisapproximately230millionEuros,overtwothirdsofwhich

isgeneratedbyresearch.

ChalmersislocatedontwocampusesinthemiddleofGöteborg,thesecondlargestcityin

Sweden.The twocampuseshouseChalmersScienceParkandLindholmenSciencePark,

thesitesofanumberofsmallandlargecompanies,aswellasvariousotherorganisations

thathavelinkswithbusinessandindustry.

AutonomyWhen Chalmers was transformed from a completely government-owned university into

amoreautonomousuniversity, thegovernmentat the timewas in favourof introducing

complementary elements into the public higher education system in order to promote

increasedquality.Stateuniversities,aswellasprivateand foundationuniversitieswould

supplementeachother,offeringstudentsmorechoice.Itismyopinionthatinanysystem,

beitlargeorsmall,diversitystronglyfavourscreativityandaboveallquality.Inorderfor

universitiestoflourish,diversityamongdifferentuniversitiesisanecessity.BythisImean

thatdifferentorganisationalformsanddifferentstrategiesarenecessary.Eachuniversity

hastobedevelopedbasedonitsownstrategyandbasedonitsownboundaryconditions.

OneofmypredecessorsatChalmers,ProfessorSvenOlving,wasaheadofhistimewhen

hestatedin1985:“Detailedregulationscannevercreatesuccess;theycanonlyminimize

theriskofseriousmistakes”.Ifullyagreewiththisstatement.

Prior to Chalmers achieving new autonomy in July 1994, it held intense discussions on

increased autonomyboth internally among facultymembers and students, andwith the

Government. As a result, in 1992 the university board adopted a list of freedomsworth

strivingforinordertoachieveexcellenceinbotheducationandresearch.

Increasedautonomy:a necessity for tomorrow’s universities Examples from Chalmers University of Technology

IntroductionUniversities were one of themost significant creations of the pastmillennium. From

rather modest organisations, universities have evolved into institutions with a major

impact on the development of society. At universities, students are trained and new

knowledge is created. Since knowledge is perhaps the dominant force in society’s

economicdevelopment,wecanexpectuniversitiestoassumeanevenlargerroleinthe

yearsahead.However,sincetheenvironmentinwhichuniversitiesareactiveisrapidly

changing, universities also need to adapt to new situations more rapidly and more

progressivelythantheyhavedoneinthepast.

Thereare,ofcourse,obstaclestothefurtherdevelopmentofuniversities.Somecritics

seeuniversitiesasdinosaursandpredict that largeuniversities in their present form

will be extinct in several decades time. If they are to progress in phasewith society,

universitiesneedtodealwithfactorssuchas:theadvancementofoff-campuse-learning;

decreasing government support for higher education; harsh financial constraints for

research;thefactthatuniversitiesfromtimetotimehavebeensplendid intheirown

way;ivorytowersyndrome;andcompetitionfromnewer,moreflexibleorganisationsin

theknowledgesector.AstheformerpresidentofCornellUniversity,ProfFrankRhodes

said: “Survival requires adaptation; it is those better fitted to their environment that

leavedescendants.Theinadaptiveperish.”1

Onecrucialfeatureishowtocreateabalancebetweenthenecessitytoadapttosocial

changesandthedesiretoresisttheminordertopreservesomeofthecorevaluesthat

havemadeuniversitiessosuccessfulinthecourseofthepastmillennium.Freedomof

researchandtraining–asdeclared,forexample,intheEuropeanUniversityMagnaCarta

signedbythemajorityofEuropeanuniversitypresidentsin1988inBologna2–isoneof

thesecrucialcorevalues.Weneedtocreateaclimateofchangethatbalancesthetasks

ofresearchandtrainingwithvariousoutreachactivities.

Itisnotmyaiminthisbriefpapertoreviewallthepossiblewaysofmakingthisbalance

sustainable.InsteadIwillgivesomeexamplesofhowChalmersUniversityofTechnology

inGöteborg(Sweden),whereIwasPresidentforeightyears,istryingtoadapttotoday’s

challenges.

Prof. Jan-Eric Sundgren

Senior Vice President, Public and Environmental Affairs, Volvo Group, Göteborg, Sweden Past President, Chalmers University of Technology, Göteborg, Sweden

1. Thefreedomtobuildupitsownfunds.

2. Thefreedomtoownandmanageitsownproperty.

3. Thefreedomtodecideonitsownorganisation.

4. Thefreedomtodevelopitsowncareerandhumanresourcesstructure.

5. Thefreedomtodevelopitsownrecruitmentprocess.

When the university obtained its new found freedom, it decided to adopt a simple,

transparent, well-known and functional organisational form. We therefore chose to

becomeaSwedishlimitedcompany(aktiebolag,AB)ownedbytheChalmersUniversityof

TechnologyFoundation.TheaimoftheFoundationisto:

a) as sole owner of Chalmers Technical University AB, ensure that the company

(university) carriesouteducationand researchofan internationallyhigh standard in

thefieldsofEngineering,Mathematics,NaturalSciencesandotherrelatedSciences;

b) ensurethatthecompany'sresourcesareusedeffectivelyinordertoachievethisaim;

c) dependingonavailablefunds,financeassignmentswhichthefoundationconsidersto

beofvaluetoChalmers;

d) appointanddismisstheboardofdirectorsofChalmersTechnicalUniversityAB.

In addition to the above, Chalmers was also given a modest endowment of 168 million

Euros. Although this endowment is not sufficient to ensure complete freedom from

government, a long term contract has also been signed ensuring that necessary base

funds are provided to Chalmers for research and education. This of course implies that

ChalmersisnotfullyautonomouscomparedtoprivateuniversitiesintheUS.Inspiteofthis

however,organisationalfreedomandasmallendowmenthaveopenedupnewandexciting

developmentpossibilitiestoChalmers.

Inthebeginningof2006,theendowmentwas220millionEuros.Duringtheperiod1994-2005

the240millionEurospayout fromthe foundationwasprimarilyused for renewalprojects

andstrengtheningstrategic initiatives.Furthermore,theendowmenthasbeensuccessfully

usedtoleveragefundraisingprojectsandestablishasuccessfulinnovationsystem.

Tosummarize theadvantagesofbeinga foundation-owneduniversity Iwould like to list

thefollowingpoints:

a) Anendowment(evenamodestone)givesstrengthforrenewal

b) Organisationalfreedomisgained

c) Governancecanbemadeclearandtransparent

d) Theimplementationofinnovativesystemsisfacilitated(asdescribedbelow)

e) Recruitmentisfasterandeasier

f) Fundraisingcapabilitiesareincreased

The challengesmentionedabove require amoreactiveuniversitymanagement thanwe

have previously had. Governance today needs to cope with decreasing state support,

while simultaneously accomplishingmore than in the past. A university that is less tied

bygovernmentcontrol is inabetterpositiontoadapttocurrentrequirements.Areturn

tomoreindependenceisdesirable,asitemphasisestheresponsibilitythattheuniversity

hastoliveupto.AtChalmers,wetriedduringmyyearsaspresident,tospreadawareness

ofourdutiesandof theassociatedneed forchange throughout theuniversity.This isa

gradualculturalchangethatwearestillworkingon.

�b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6� b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6

11b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 610 b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6

ChalmersinnovationsystemThefutureuniversity-industrycollaborationmodelintermsofresearchneedstochangethe

traditionalset-upwhere industrialandacademicresearcherswork inparallel indifferent

laboratories. Insteadwe need to organize joint research projectswhere the researchers

meetandcollaborateonthesameplatforminordertoachieveagreatercriticalmassand

inorder tomakemoreefficientuseoffinancial resources.This approach leads to some

obviousdifficulties.Theprojectshavetobepre-competitiveandintellectualpropertyhas

tobespecifiedinamannerthatdoesnotimpedecollaboration.

Sincethe1970s,ChalmershasbeenapioneerinSwedenaswellasinEurope,supporting

entrepreneurialprocessesand theutilisationofnewknowledge.SinceChalmersbecame

afoundation in 1994thisprocesshasbeenacceleratedandanumberof functions,such

asfinancing, incubation, technology licensingandentrepreneur training,havebeenbuilt

upat theuniversity. The coreof theChalmers innovation system today is theChalmers

EntrepreneurshipSchool,ChalmersInnovation,andChalmersInvest.

In1997,theChalmersEntrepreneurshipSchool(CE)4openedasacuttingedgeproviderof

traininginentrepreneurshipandthecommercialisationofnewtechnology.ThepurposeofCE

istoeducatefutureentrepreneursandtostimulatestudentstobeboldinthepursuitofnew

technologicalbusinessopportunities.Thestudentsthereforeconductgenuinelyinnovative

projectswith theaimof formingcompaniesat theendof theirmasterprogrammes.The

Chalmers Entrepreneurship School also currently includes an Entrepreneurship School

Fund,whichworkstosetupsustainablecompaniesfromtheinnovationprojectsrunbythe

students,togetherwithresearchersandinventors.Theeducationbasishasbeenimproved

throughanewarrangement,andatthesametime,theinnovationprojectscanberununder

whatareinessencerealconditions.

TheChalmersInnovationFoundation5satisfiestheneedforknowledge,capitalandoffice

spaceforstart-upcompanies.ChalmersInnovationwasfoundedin1997usingagenerous

donationfromtheStenAOlssonFoundationforResearchandCulture.Thedonationenabled

thedevelopmentofanewcentrefor'innovationrelatedactivities'–aBusinessIncubator

oncampus.Withintheincubator,amodernworkplacehasbeencreatedwerepeople,ideas

andcompaniesareencouragedtogrowanddevelop.ChalmersInnovationoffersstart-ups

awidevarietyofcompetences.Severalexperiencedbusinessdevelopersareemployed,and

the focus is firmly on fast-growing technology-based start-up companies. The incubator

alsooffers theentrepreneursaccess toavastnetworkofprofessionaladvisorswhocan

supportthemduringthedevelopmentprocess.

TheventurecapitalcompanyABChalmersinvest6iswhollyownedbyChalmersandinvests

inseedcompanies fromChalmers. Inadditiontofinancing,Chalmersinvest is involved in

developingandstructuringcompanies inordertocreateconditionsforfurtherfinancing

andgrowth.ChalmersInvestalsocooperateswithseveralventurecapitalcompanies.

ChalmersTechnologyLicensingAB7ischargedwiththetaskofassistingChalmers’researchers

astheydevelopandprotectpatentableresearchresults,byfinancingandcommercialising

suchpatents.Thecompanyisawholly-ownedsubsidiaryofChalmersInvest.

The Centre for Intellectual Property studies, CIP, is a competence centre that is jointly

operated with Göteborg University. Its main objective is to carry out research on how

to create intellectual property and other structural capital necessary to manage firms,

universitiesandothersocietalinstitutions.Theimportantassetsthatformthestructures

ofsocietyarenothingmorethanconstructionsbasedonknowledgeprocesses.Bybringing

together researchers from the fields of Management, Economics, Law and Technology

who have experience in both the academic and corporate worlds, CIP has created the

interdisciplinary environment necessary to analyse existing structures so as better to

understandanddesignnewvaluecreatingstructures.

In addition to the organisations described above, Chalmers organisations for industrial

co-operationalsoinclude:

• the Corporate Relations Centre which markets Chalmers as a partner for industrial

renewal–researchinteractionandcontinuingprofessionaldevelopmentprogrammes;

• theChalmers Industrial Technology Foundation (CIT)8whichmarkets, sells and runs

commercially applied research and development programmes, as well as tailored

continuingprofessionaldevelopmentprogrammes;

• theCHAMPS(ChalmersAdvancedManagementPrograms)9Foundationwhicharranges

continuing professional development programmes in Technology Management for

managersinindustry;

• theSchoolofContinuingProfessionalLearningatLindholmenwhichofferscompetence

developmentprogrammesforengineersworkinginindustry.

In addition, Chalmers is involved in operating two science parks adjacent to our two

campuses. The Chalmers Science Park Foundation10 creates the necessary conditions

forclosecooperationbetween researchdepartmentsatmajorcompaniesandChalmers’

researchers at the Chalmers Science Park. Lindholmen Science Park AB11 creates the

requiredconditionsforclosecollaborationbetweencompaniesandcompanydepartments

workingonadvancedtechnicaldevelopmentsbyinitiatingandmarketingascienceparkin

theLindholmenarea.

Ramon Wyss, PhD, Prof. Nuclear Physics

Vice President International EducationKTH (Royal Institute of Technology)

The aim of the Bologna process is to open the borders between nations, not in the

geographicalsensebutinthespaceofeducation.Infact,itisastonishingtonotethelarge

varietyanddifferencethatwithrespecttoeducationexistbetweendifferentcountrieswithin

theEU,reflectingthefactthatthenationsofEuropeareofratherrecentorigin,especially

whencomparedtotheageoftheoldestuniversities.Clearly,thegoaloftheBolognaprocess

toachievea ‘systemof easily readableand comparabledegrees’whichwill increase the

competitivenessofEuropeiswithinreach.Amajorcomponentinthetransformationofthe

EuropeanspaceofhighereducationisrelatedtotheimplementationofacommonQuality

Assurancesystem(QA).Asstatedattheministersmeeting inBerlin2003: ‘Ministerscall

uponENQA(EuropeanAssociationforQualityAssuranceinHigherEducation)todevelop

anagreedsetofstandards,proceduresandguidelinesonqualityassurance,adequatepeer

reviewsystemforQA’,i.e.ENQAisputinchargetodefineaQAsystemfortheentirehigher

educationsector(e.g.http://www.enqa.eu/files/BergenReport210205.pdf)

Before proceeding, let’s briefly reflect upon the concept of ‘European Higher Education

Area’ (EHEA). A common degree structure and QA system are only two aspects of an

educational environment. In the US, which are characterized by a single educational

sector,thedifferencebetweendifferentinstitutionsofhighereducationisrelatedtotheir

resources, butnot at all to the state theymaybelong to.Also inEurope,weexpect the

competitionbetweenuniversitiestoincreaseoncetheBolognaprocessisfullyestablished,

resultinginlargerdifferencesbetweeninstitutions.Still,theeducationalsectorinEurope

ispredominantlydefinedat thenational leveland it isunlikely that theobstacles to the

formation of a single area of higher educationwill disappear in the near future. This is

partly related to the fact that certain sectors are serving professionswhich are defined

atthenationallevel,likelawyers,teachersetc.andthattheEHEAinspiteoftheBologna

processisoflimitedrelevance.Anotherimportantbarriertomobilityislanguage.Medical

educationisinprincipleuniversal,butagraduatefromtheUKcannotstarthis/hercareer

inFinlandunlesshe isfluent inFinnish.What iscomplicatingthesituationfurther is the

regulation of professions along national lines. The purpose of QA is to define common

European standards. These are defined on strictly academic grounds and applicable to

educationalinstitutions.Professionalqualificationsontheotherhandareoftendefinedby

professionalbodies,whicharenotpartoftheBolognaprocess.

Tocomplicatethesituationfurther,inseveralcountriesofEurope,liketheUKandPortugal,

academic and professional accreditation are intervened interlinked i.e. the same bodies

are in charge of both. The goal of the Bologna process to increase competitiveness in

Europewillonlyslowlyadvanceunlessprofessionsbecomederegulatedandprofessional

recognitionisbasedonacademicdegrees.

The language of engineering is English. A professional engineer is expected to present

his results at an international conference or to communicate to another company in

1�b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 612 b i e n n i a l r e p o r t 2 0 0 3 - 2 0 0 4

ConcludingremarksUniversitieswillundergosubstantialchangesintheyearstocome,drivenbyfactorssuch

as new learning technology, financial constraints, new requirements and demands from

society.However,itismyfirmbeliefthatcampusuniversitieswillstillhaveaveryimportant

role toplay in theadvancementof society in thedecades tocome.Nonetheless,wewill

needtobalancedemandsfromsocietywithinstitutionalautonomy,academicfreedomand

strongleadership.

To achieve this balance we need, first, to ensure that learning and particularly student

learning remains our priority; this is the backbone of all universities. Second, the trend

toward decreased state-funding and increased private funding requires a systematic

approachbothtoobtainingthenecessaryresourcesandtoensuringacademicindependence.

Ibelievethatbyopeningthedoortoourintellectualcapital,wewillbeabletoreachout

withourgreatwealthofknowledgeandresearch to thebenefitofsociety.Thiswillalso

enableustokeeppacewithdevelopments,expectationsanddemandsintheworldaround

us.AtChalmerswehavetriedtodothisbysettingupasystematicsystemforpromoting

innovationsasdescribedabove.

Third,Iwouldliketostressthefactthatsuccessfuluniversitiesneedtobeinternationally

oriented.Rapidadvances in information technology imply that the international aspects

of student and faculty populationswill be of increasing importance, that knowledgewill

spreadfaster,andthatthecomplexityofmanyissueswillrequirecross-bordercooperation.

Internationalpartnershipwillthusbecrucial.Althoughnotdescribedabove,thisisanother

oftheareasgivenhighpriorityatChalmers.ParticipationinEuropeanUnionprogrammes

ispartofthisstrategy,butothereffortssuchasbilateralexchangesandtheestablishment

ofotherinternationalnetworksarecrucial.Forexample,duetoitseffortsinEnvironmental

Sciences,ChalmerswaselectedasamemberoftheAllianceforGlobalSustainability,AGS12,

in2001.TheAllianceforGlobalSustainabilityisacooperativeventurethatseekssolutions

to some of today's most urgent and complex environmental problems. This Alliance

brings together research teams from four research universities: Chalmers University of

Technology;theMassachusettsInstituteofTechnology(MIT);theSwissFederalInstituteof

Technology;andTokyoUniversity.Theystudylarge-scale,multidisciplinaryenvironmental

problems that are faced by the world's ecosystems, economies, and societies. The AGS

is a worldwide partnership of university scholars and researchers who collaborate with

businessleaders,governmentpolicymakersandenvironmentaliststoidentifyanddevelop

effectivepathwaystosustainabledevelopment.

References1. FrankHTRhodes,Thecreationofthefuture,CornellUniversityPress,2001

2. www2.unibo.it/avl/charta/charta.htm

3. www.chalmers.se

4. www.entrepreneur.chalmers.se

5. www.chalmersinnovation.com

6. www.chalmersinvest.se

7. www.fpv.se

8. www.cit.chalmers.se

9. www.champs.se

10.www.chalmerssciencepark.com

11. www.lindholmensciencepark.se

12.www.globalsustainability.org

Accreditation,QualityAssuranceandMutualRecognition

Europeanddoesasuchsystembringanyadvantages?Atpresent,accreditationandquality

assuranceisdefinedatthenationallevel.ThequestionmayarisewhethertheUniversities

of Science and Technology in Europe are genuinely interested in towards a European

Engineeringlabel.Indeed,therehavebeenseveralsuchattempts.

Relatedtothisissueisthequestionwhatisaprofessionalengineer.Let’stakeasabasisfor

comparisonthecaseofarchitecture,requiringa5yearprogrammetobecomeaprofessional

architect, see e.g. www.eaae.be. Within engineering education, traditionally, two different

tracks exist side by side – a shorter track focusing ‘on applying known technologies’ and

a longer track ‘developing new technologies’. Following the Bologna Process, at many

universities the long cycle programmes have been divided into two cycles, where the first

cycleisgenerallyregardedasapreparationforthesecondcycle,andlessasaprofessional

engineeringeducation.Onecanarguequitesuccessfully, thatthecompetencesrequiredby

thesecondcycleeducationarenotnecessarilyamereextensionoftheapplicationoriented

firstcycleeducation,butcorrespondtoratherdifferentprofilesinengineering.Anoftenmade

comparisoniswithinthehealthsector,wheretheeducationofamedicaldoctorisnotjusttwo

moreyearsoftheeducationofanurse,butcorrespondstoadifferentprofessionalprofile.

Engineering education is controlled at the national level, and in contrast to e.g. the

architectural education, there has been little effort in Europe to define the ‘professional

engineer’ in the contextof researchuniversities.Onedefinition thathasbeenadvocated

by FEANI is the Euro Ing, which allows a graduate to register after a 5 year University

engineering education engineering plus two years of practice or equivalent, a 3 year

application-orientededucationcombinedwith4yearsofpracticaltraining(www.feani.org).

Oneattempt toestablishanaccreditationof theengineeringeducationwithinEurope is

theEUR-ACEproject(2004-2006),whichwasfinancedbytheDGEducationandCulture.

Its members constitute most of the accreditation organisations within Europe together

withinterestorganisationslikeSEFI,CESAERetc.TheambitionofEUR-ACEistobecome

theEuropeancounterparttoABET, i.e. theoneandonlyorganisationwithinEuropethat

definesthecontentofengineeringeducation.

TwomajorcomponentscharacterisetheEURACEaccreditationscheme:

i)Thesecondcycle(EUR-ACEMaster)degreeisdefinedasacontinuationofthefirstcycle

(EUR-ACEBachelor),bothbeingprofessionallyorientedand

ii)EUR-ACEdefines6setofcompetencesfortheengineeringeducation,whicharetobe

examinedinordertobecomeanaccreditedprogramme.Thesixprogrammeoutcomesof

accreditedengineeringdegreeprogrammesare:

1. KnowledgeandUnderstanding

2. EngineeringAnalysis

3. EngineeringDesign

4. Investigations

5.EngineeringPractise

6.TransferableSkills.

Withineachareaofcompetence,asetoflearningoutcomesarespecified,inaverygeneral

manner,seetheEUR-ACEFrameworkStandardsfortheAccreditationofEngineering

Programmes,(www.feani.org–seesectionEUR-ACE,currentdocuments).

It is important tonotethat theEUR-ACEFrameworkdoesnotacknowledgetheneedfor

differentprofileswithintheengineeringeducation.Theprocessforaccreditationisspecified

in the documentation of EUR-ACE. A national agency that conforms to the EUR-ACE

standardsisallowedtoattachtheEUR-ACElabeltothenationallyaccreditedengineering

programmes. The EUR-ACE procedure defines the content (‘learning outcomes’) of the

engineeringeducationandtheprocessforaccreditation.

15b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6

fluent English. Most likely, the language of all major companies will shift to English in

not too distant a future. The common language in engineering education, also seen in

thedevelopmentofMScprogrammes taught inEnglish in a largenumberofnonnative

English speaking countries, indicates that the EHEA is very important, in particular for

Engineering education. There are most likely few other educational programmes, with

similar international impact. Engineering Education may therefore be regarded as a

possibleforerunnerinapplyingtoolsofQAandaccreditationattheEuropeanlevel.Indeed,

theCommissionmadethefollowingstatementattheMinisters’meetinginBergenin2005:

‘Quality assuranceandaccreditationexercisesusually takeplaceat national or regional

level.Incertainhighlyinternationalfieldsofstudy,however,translationalevaluationsand

accreditationcanbemeaningful.Forthisreason,theCommissionissupportingsector-led

projectstoestablishEuropeanQualitylabelsinEngineeringandChemistry.’

Accreditation (accredere, to give trust) is an external evaluation process of a given

study programme to assureminimum standards. For the case of engineering education

it is intimately linked to warrant entrance to the engineering profession. The largest

accreditationagencyisABET(AccreditationBoardforEngineeringandTechnology,www.

abet.org)whichmoreor lessaccreditsallengineeringprogrammesintheUS.ABETisa

privateorganisationandaccreditation in theUS isdoneentirelyat thediscretionof the

involved institutions. Minimum standards of engineering programmes are warranted by

accreditationagencies.Evenwell-establishedengineeringprogrammesatUniversitieslike

MITandStanfordareaccreditedbyABET.

Engineering education institutions in English-speaking countries have established a

commonstandardviatheWashingtonAccordtoa jointagreement,comprisingAustralia,

US,UKandothercountries(www.washington.org).Canasimilarsystembe introducedto

17b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6

In order to implement the accreditation process defined by the EUR-ACE project, the

European Network for Accreditation of Engineering Education (ENAEE – www.enaee.eu)

has been formed, which is the legal follow up organisation of ESOEPE (www.feani.org –

seesectionAccredition/ESOEPE/EUR-ACE).Severalaccreditationbodiesandotherinterest

groups are members. The following institutions are authorized to award the EUR-ACE

label:theEngineeringCouncilUK,Commissiondestitresd’ingénieurs(CTI),ASIIN(oneof

theGermanorganisations for accreditation),ORDEMDosEngenheiros, the Institutionof

EngineersofIrelandandtheRAEE,RussianAssociationforEngineeringEducation.Inthis

contextitisinterestingtonotethatneithertheCTInortheORDEMhaveanyexperiencein

theaccreditationofengineersattheBSclevel.TheroleoftheENAEEcanbeviewedasa

Europeanagencythataccreditsnationalagencies,i.e.nationalagenciesthatsigntheEUR

ACE‘treaty’canbeentitledtogivetheEUR-ACElabeltoaccreditedprogrammes.Countries

lackingthoseaccreditationagenciesareencouragedtoestablishthemand/orcanbecome

accreditedbyanothercountry’sagencythatismemberofENAEE.

Accreditation through ENAEE definesminimum standards of the engineering education.

The definition of a professional engineer after 3 years of education follows closely the

educationalschemeofvocational/application-orientedcollegesthatexistinmostEuropean

countries.Astheinternationalrecognitionofthe3yearappliedprogrammes,aswellasthe

mobilityamongthegraduateshavebeenweak,itisofvalueforEuropetoestablishasetof

standardsforengineeringcolleges.ThereisanambitionofENAEEtoachieveequivalenceof

theaccredited3yearEUR-ACEBScprogrammeswiththe4yearengineeringprogrammes

thatdominatetheWashingtonaccordmembers.Lookingstrictlyatlearningoutcomes,they

mayindeedappeartoberathersimilar.This,however,tellsmoreabouttheshortcomingsof

defininglearningoutcomesthanaboutthecontentoftheWashingtonaccordprogrammes.

The learningoutcomesspecifiedwithinEUR-ACEareofsuchgeneralnaturethatthey in

factprovide littleguidancewithrespecttothequalityofaprogramme.This isageneral

problemfordefinitionsoflearningoutcomes.Ontheonehand,onemaywantthemtobe

general in nature, to allow for flexibilitywhile, on the other hand, they need to be very

specifictobeofanyvalue.Still,evenaverydetaileddescriptionmaysaylittleaboutthe

actualdepthofaspecificprogramme.Iamratherconvincedthatinspiteoftheattempts

ofENAEE,the3yearEUR-ACEBSceducationwillneverberecognisedbytheWashington

accordsignatoriesasanentrytotheengineeringprofession.

The Bologna process has introduced a new dynamic into engineering education within

Europe. For member universities of CESAER, the development of new BSc and MSc

programmes should not be forced into a scheme dictated by EUR-ACE procedures. In

contrast, the narrow requirements of EUR ACE with respect to the ‘professionalism’

of 3-year degree programmes, as stipulated by the content of Engineering Design and

EngineeringPractice,willpreventtheintroductionofstrongresearchand/orbasicscience

components. This of course is in contradiction to the development of research based

engineeringprogrammesthatlieattheheartofCESAER’seducationalprofile.Theconcept

ofEUR-ACEappearsoutdated,evenbefore it isput intopractice.Themainreasonisthe

denialofdifferentneedsoftheindustryinEurope.Europeneedsanengineeringeducation

at the MSc levels that is strongly research-based and oriented towards innovation, to

which thefirst3 yearsof educationwithaBSc in engineeringare thedooropenerand

muchlessaprofessionaldegreeprogramme.IndustryinEuropeneedsalsoeducational3-

yearprogrammeswithastrongfocusonexistingtechnologiesaswellaslifelonglearning

programmes.ButEuropedoesnotneedonesingleprofileengineeringeducation,wherethe

application-orientededucationofthefirst3yearsisturnedintoaresearchandinnovation

orientededucationattheMSclevel.Fromthisperspective,theEUR-ACElabelofENAEEis

notasignofqualityforCESAERSmembers.

InresponsetotheEHEA,universitiesofscienceandtechnologyinEuropeareengagedin

networks that strengthen cooperation amongmembers. The networks are characterised

1� b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6

bycertainqualitystandardsthatmembershavetofulfil.Goodknowledgeabouteducation

andresearchofmemberuniversitiesisessentialforthedevelopmentofnetworks.Therole

ofthenetworkscanbequitedifferentfrommoreoperativetomorepolicyoriented.How

cantherelationbetweentheuniversitynetworksandtheEHEAdevelop?Forthebenefitof

research, industryanduniversitydevelopment, freemobilityofengineeringgraduates in

Europeisofparamountimportance.Europewillalwaysbelackingbehindunlessthequality

inrecruitmentforindustryanduniversityfacultyisachievedattheEuropeanlevel.There

shouldbenoobstacleformobilityofexcellencewithinEurope.Asmentionedpreviously,

languagebarrierswilldecreaseduetoincreasinguseofEnglishinindustryandeducation.

Ontheotherhand,itisquestionablewhethera‘limitedqualitylabel’likeEUR-ACEwillgain

acceptanceforhigh-qualityrecruitmentinindustryandresearch.

Basedupontrustbetweenmembers,severaluniversitynetworksofexcellencehaveembarked

on a different route. Startingwith thenetworkCLUSTER, rectors ofmemberuniversities

signed an agreement on mutual recognition of the academic degrees guaranteeing the

academicequivalenceoftheirBSc,MScandPhDprogrammesandtherebytheequivalent

treatmentofalltheirstudentsforadmittancetoMScandPhDprogrammes.Thishasbeen

followed by a similar agreement in the IDEA League and later on by the TU9 network.

AslightlydifferentbutinfactsimilarpathischosenintheT.I.M.E.network,basedondouble

degreeagreementsbetweenmember institutions.Apparently,universitiescanbeseenas

forerunners in the establishment of a true EHEA based upon trust. In this respect, one

shouldnotunderestimatethequalitycontrolestablishedviatheSocrates/Erasmusmobility

schemeof their students.Returningstudentswill inevitably reporton teachingqualityof

thehostinstitutionandmanyyearsofexperiencehavebuiltuptheconfidenceamongthe

universitiescooperatingindifferentnetworks.Theimpactofmutualrecognitionagreements

on industry recruitmentsappearstill tobe limited.Partly, this isdue to the fact that the

largecompaniesinEuropehaveafairlygoodpictureofthelevelofthedifferentuniversities

inEurope.Still,thepotentialoftheseagreementsneedstobeexploitedfurtherinorderto

gain largeracceptance,whichwillcomewithanincreasinginterestforaEuropeanlabour

market.Again,onemaynoticearchitectsbeingattheforefrontwithArchiEurope,alabour

site for all EuropeanArchitects, http://www.archi-europe.com.Abarrier that needs to be

dismounted inthiscontext isthedifference intheprofessionalaccreditationofchartered

engineers,whichatpresentpreventsfreemobility.Professionalbodiesareinfactbecoming

athreattomobilityactingmorelikeguildsfrommedievalagethanfacilitatorsofmobility

and excellence. At present, the only professions within the EU that enjoy automatic

recognition are doctor, dentist, nurse, veterinarian, pharmacist, mid-wife and architect.

Itdoesnotincludetheengineer, implyingthatamajorresourceforthetransformationof

Europeintoaknowledgesocietybasedonexcellenceandfreemobilityisexcluded.

Trustisgood,controlisbetter.Presentrecognitionisessentiallybasedupontrustbetween

good friends. In future, that needs to be accompanied with a quantified description,

rendering quality labels. It can become one goal of a network like CESAER to evaluate

differentapproachesofQualityAssuranceandtobecomepartinapeerreviewprocessfor

the assessmentof quality in education and research. TheDutch systemdevelopedat TU

Eindhovencanserveasagoodexampleforsuchaprocess.TheCDIOapproachisanother

initiativeofinterest.ItisuptotheleadingUniversitiesofScienceandTechnologytodefine

learningoutcomesappropriateforthedevelopmentofnewtechnologiesandtoestablisha

QAsystemthatisaccountable.Oneimportantlessonatthisstageisnottoconfertoasingle

process as prescribed by e.g. EUR ACE and implemented by ENAEE. Another important

lesson isofcoursethe lackofastrongvoice inBrussels. It isaparadoxthatononeside

education in Science andTechnology is themost important single entity in transforming

Europeintoaknowledgebasedeconomyandontheothersidethelackofcommunication

between leading networks in Science and Technology like CESAER with members of the

commission.ItmayreflectalargerneedfromourcommunitytobepresentinBrusselsand

tobecomeaconstantpartnerindiscussionandevaluationofinitiativeslikeEUR-ACE.

1� b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6

TheBolognaProcessfrom Bergen 2005 to London 2007

Prof. Dr. Hans K. Kaiser Vienna University of Technology

In the beginning, the Bologna Process was very much an affair concerning Education

Ministersinthesignatorystates.Europeanuniversitiestriedtoinfluencetheprocessand

itbecameimportanttopresentthespecialfeaturesofEngineeringbothatthelevelofthe

EUAandinthepoliticalarena.CESAERandSEFI joinedforcesandattendedthemeeting

convenedby theEUA inSalamanca inMarch2001.At themeeting,membersof the two

organisationstookpartinthevariousworkinggroupsandstooduptodefendEngineering.In

February2003,representativesofEngineeringinstitutionswereinvitedtoaseminarwhich

tookplaceattheTUHelsinki.Thisseminarresultedinapositionpaperbeingdraftedonthe

BolognaProcessfromanEngineeringperspective.Thispaperwasthenreferredtoatthe

gatheringofEducationMinistersinPrague.InJune2004theEngineeringcommunitymet

againinMadridandproducedarevisedversionofthepositionpaperwhichwaspresented

totheEUAmeetingheldinGrazandtotheConferenceofMinistersheldinBergenin2005.

ThispaperwassupportedbyanumberofotherEngineeringorganisations.

develop transferable skills. Doctoral programmes should seek to offer geographical as

wellasinterdisciplinaryandintersectoralmobility,andtheyshouldalsoofferinternational

collaboration within an integrated framework of cooperation between universities and

other partners. The development of quality doctoral programmes and their successful

completionbydoctoralcandidatesrequiresappropriateandsustainablefunding.

TheSalzburgprincipleswereacceptedbytheGatheringofMinistersinBergen.Themain

outcomesoftheBergenConferencearedescribedbelow.

AtthegatheringofHigherEducationMinistersfromtheBolognasignatorystatesinBergen

(Norway) inMay2005,acommuniquéwasadoptedwhichconfirmed the threepriorities

definedattheBerlinmeetingof2003:

• thedegreesystem;

• qualityassurance;

• recognitionofdegreesandstudyperiods.

AsfurtherprioritiestheMinistersidentified:

• highereducationandresearch;

• thesocialdimension

• andmobility

• theattractivenessoftheEuropeanHigherEducationArea(EHEA)andcooperationwith

otherpartsoftheworld.

Concerningthepriorityofdegreesystems,theMinistersadoptedanoverarchingframework

for qualifications within the EHEA. They should be based on three cycles, and generic

descriptionsforeachcycledescribinglearningoutcomesandcompetencesshouldbegiven.

TheMinisterscommittedthemselvestoworkingonnational frameworksforqualifications

until2010whichshouldbecompatiblewiththeEQF(EuropeanQualificationsFramework).

As far as quality assurance is concerned, theMinisters agreed in Bergenwith the EHEA

qualityassurancemodelassuggestedbyENQA.Theycommittedthemselvestoimplementing

apeerreviewmodelforqualityassuranceagenciesonanationalbasis.Theywelcomedthe

ideaofaEuropeanregisterofqualityassuranceagenciesbasedonnationalreview.

In terms of degree recognition and study periods, theMinisterswant to see the Lisbon

Recognition Convention ratified and called upon the participating countries to address

recognitionproblemsas identifiedinnetworkssuchasENICandNARIC.Theydecidedto

workonnationalactionplansinordertoimprovethequalityoftheprocessassociatedwith

therecognitionofforeignqualifications.Ofcentral importanceistherecognitionof joint

degreesawarded in twoormorecountries,and the improvementof recognitionofprior

learning including informal learning for access to, and as elements of, higher education

programmes.

Regardinghighereducationandresearch,theMinistersstressedthatinordertoimprove

thesynergiesbetweentheEHEAandtheEuropeanResearchArea,doctoralqualifications

need to be fully alignedwith the EHEA’s overarching framework for qualifications using

the outcome-based approach. The core component of doctoral programmes is the

advancementofknowledgethroughoriginalresearch.Consideringtheneedforstructured

PhDprogrammesandtheneedfortransparentsupervisionandassessment,theMinisters

notedthatthenormalworkloadofthethirdcycleinmostcountrieswouldcorrespondto

3-4yearsfull-time.TheyurgeduniversitiestoensurethattheirPhDprogrammespromote

interdisciplinary training and the development of transferable skills, thus meeting the

needsofawideremploymentmarket.Andfinally,theMinistersstatedthatthereisaneed

toachieveanoverall increase in thenumbersofdoctoral candidates takingup research

careerswithintheEHEA,andtheydeclaredthatparticipantsinthethirdcycleshouldbe

consideredasearlystageresearchers.

21b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6

AnotherimportanteventwastheSalzburgSeminarondoctoralstudiesinFebruary2005.

SinceCESAERisanetworkofresearch-orientedtechnologyuniversities,theissueatthetop

oftheagendawasthereformofdoctoralstudies.SeveralCESAERmemberrepresentatives

attended the Salzburg Seminar where the “10 Salzburg basic principles of doctoral

programmes”were adopted. Itwas stated that the core component of doctoral training

shouldbetheadvancementofknowledgethroughoriginal research.At thesametime it

wasrecognisedthatdoctoraltrainingmustincreasinglymeettheneedsofanemployment

marketthatiswiderthanacademia.TherichdiversityofdoctoralprogrammesinEuropeis

astrengthwhichhastobeunderpinnedbyqualityandsoundpractice.Doctoralcandidates

should be recognised – and should receive commensurate rights – if they make a key

contributiontoknowledge.Withregardtohowindividualdoctoralcandidatesarrangetheir

supervisionandassessment, it shouldbebasedona transparentcontractual framework

of shared responsibilities between doctoral candidates, supervisors and the institution.

Doctoral programmes should seek toachieve criticalmassand shoulddrawondifferent

types of innovative practices being introduced in universities across Europe. Doctoral

programmesshouldoperatewithinanappropriatetimeframe:threetofouryearsfull-time

as a rule. They shouldmeet the challenges of interdisciplinary training and they should

20 b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6

From a social point of view, theMinisters renewed their commitment tomaking quality

highereducationavailabletoall,andstressedtheneedforappropriateconditionssothat

studentsfrompoorersocio-economicbackgroundscancompletetheirstudieswithoutany

obstacles.TheMinisters recognised thatmobilityofstudentsandstaff is stilloneof the

key objectives of the Bologna Process. They confirmed their commitment to facilitating

the portability of grants and loans where appropriate through joint action, with a view

to making mobility within the EHEA a reality. They agreed to intensify their efforts to

lift obstacles to mobility by facilitating the delivery of visas and work permits and by

encouragingparticipationinmobilityprogrammes.

Regarding attractiveness and cooperation with other parts of the world, the Ministers

consider the EHEA to be a partner of higher education systems in other regions of the

world,stimulatingbalancedstudentandstaffexchanges,andcooperationbetweenhigher

educationinstitutions.Theyunderlinedtheimportanceofinterculturalunderstandingand

respect.Theystressedtheneedforadialoguewithotherregionsoftheworldonquestions

ofmutualinterestandtheycalledforanexternaldimensionstrategy.

The results of the Salzburg Seminar clearly influenced the communiqué issued at the

end of the Bergen Conference. It triggered discussions which led to a number of new

developments in the area of doctoral studies. Various routes to a doctorate emerged

including:doctoratesthatarecloselylinkedtospecificprofessions(socalledprofessional

doctorates);jointdoctorates;theEuropeandoctorate;andavarietyofdoctoratesthatare

completed with close cooperation between industry and universities. Original research

is the core element of all of these doctorates: there should be no doctorate without

an individual thesis containing an original research which advances knowledge or the

applicationofknowledge.Theresultshouldbepresentedtothescientificcommunityafter

havingreceivedtheapprovalofacommitteeofuniversityexperts. Inotherwords, these

newdoctoralformsmustmeetthequalitystandardsofthe“traditional”doctorate.Another

attempttoimplementtheSalzburgPrinciplesledtothecreationof“DoctoralSchools”.

CESAERrecognisedthe importanceof theongoingreorganizationofdoctoralstudiesby

formingaPhDWorkingGroup.TheaimofthisgroupistodeveloptheSalzburgPrinciples

furtherandtoassistthemembersofthenetworkinrestructuringtheirPhDprogrammes.

AtthefirstworkingsessionofthegroupinJanuary2007,recommendationsforthecore

requirementsofaPhDwereadopted:

1. Skillsforconductingoriginalresearch

2.AdefendedthesiscomprisingasubstantialcontributiontothefieldofEngineering

3. Exposuretoandparticipationinarichscientificenvironment,preferablynationaland

international

4.Therighttoawardadoctoraldegreeisrestrictedtouniversities(institutionsdelivering

research-basededucation)

5.Doctoralcandidatesareearlystageresearchers;theycanexpecttobefullysupported

bytheuniversityindevelopingskills

6.Admissiontodoctoralstudieshastobebasedonanindividualqualificationassessment

7. Individualscientificsupervisionisrequired.

Further work needs to be done within and beyond the Bologna Process. CESAER is

committedtotheimprovementofengineeringeducation.Theaimisasoundandmodern

Engineeringeducationand,ofcourse,excellenceinresearch.

2�b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 622 b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6

TowardsaEuropeanInstituteofTechnologyThe proposal to establish a European network of technological institutions was first

put forward in 2005 as part of the mid-term review of the Lisbon strategy. In terms

of developing a knowledge flagship, "The European Institute of Technology" (EIT), the

European Commission defined the broad elements for consideration by the heads of

stateandgovernment.TheEuropeanCouncilnotes thesignificanceof theCommission's

communication on the European Institute of Technology and will further examine the

ideasinordertoenhance,togetherwithotheractions,networkingandsynergiesbetween

excellent research and innovation communities in Europe. An EIT will be an important

step towardsfilling theexistinggapbetweenhigher education, researchand innovation,

together with other actions that enhance networking and synergies between excellent

researchandinnovationcommunitiesinEurope.

The IDEALeaguewelcomesthis initiative.With itsposition inscienceandtechnologyand

its long-standing record of working together, the IDEA League presents an ideal nucleus

onwhich to found theEIT. It is trulyEuropean; it has international academic standing; it

providesexpertiseintechnologytransfer;andithasstrongindustrialpartnerships.TheIDEA

LeagueseestheEITasanexcellentwayofforminganetworkoftoptechnicaluniversities.

The IDEA League is well aware of the fact that it is not the only existing network of

European academic institutions and that some of its presumptions about how an EIT

should be established are shared by other networks such as CESAER. Aspects such as

thefertilizationofeducationandresearch,andtheenhancementof interdisciplinaryand

inter-institutionalresearchactivitiesinanattractiveenvironmentforleadingscientistsand

engineersfromallaroundtheworld,arecommonlyshared. Inthisarticle,however, Iwill

highlightsomeaspects that the IDEALeagueconsiders tobeessential to thesuccessful

foundationofaEuropeanInstituteofTechnology.

WhatdoestheIDEALeagueoffer?ResearchAttheIDEALeaguewetakeresponsibilityforthechallengesofthe21stcenturybyresearching

keyareasofsocialimportance.TheIDEALeague’smembersdevelopstrategiccollaboration

andthereforehavecombinedstrengthsinthefollowingareas:

• The environment–todevelopsustainablemodesofexistenceandindustrialprocessing,

andtounderstandthecomplexmechanismsthatsupportusbetter.

• Healthcare–toaddressthenewdemandsbroughtaboutbydemographicchanges.

• Energy–tomeettheincreasingdemandsofdevelopedanddevelopingnations.

• Transport–tomeettheneedofsafelytransportingpeopleandgoodsindenselypopulated

areasatalowcostandwithlowenvironmentalimpactsandenergyconsumption.

• Data, Information, and Knowledge–torealisethepotentialofnewscienceandtechnology

inthemanagementandunderstandingofinformation.

Ourworkintheseareasisunderpinnedby‘enablingtechnologies’.Areaswherewehavean

opportunitytodevelopsubstantialpartnershipsare:

• Nanotechnology

• SensorsandImaging

• Materials

• ComputationalandMathematicalSciences

• CommunicationTechnology

Inthesekeyareasand intermsofenablingtechnologies, the IDEALeaguemembershave

formedacademicpartnershipswithanumberofotherworld-classacademicinstitutions,and

strategiccollaborationswithalargenumberofleadingindustrialpartnersinkeyindustries.

25b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6

Prof. dr. ir. Jacob T. Fokkema 1 Rector Magnificus TU Delft

WhatistheIDEALeagueTheIDEALeagueisaclosecollaborationonstrategicpolicyissuesbetweenfiveEuropean

technologicaluniversities:ImperialCollegeLondon,TUDelft,ETHZürich,RWTHAachen,

andParisTech.TheIDEALeagueiscommittedtothehighestinternationalstandardsin

bothresearchandeducation.The IDEALeaguehasachievedthesestandardsbyusing

commonqualitymanagementprinciplesforeducationalprogrammes.TheIDEALeague

expects to benefit from this alliance by recruiting students abroad and by using its

collectivepowertoattractmorefunding.Collaborationisfosteredatall levelsinorder

to share best practices. Setting up joint master programmes is also on the League’s

agenda, as is stimulating furthermobility. The institutions have agreed to strengthen

theLeaguebyestablishingresearchcollaborationaimedattakingtheleadinaddressing

Europe’sscientificandtechnologicalneeds.Tocarrythisforward,anumberofscientific

andengineeringareashavebeen identified.Theseareasaresupportedbyworld-class

scienceineachoftheinstitutions.Inthefuture,thealliancewantsitsbrandtobemore

widelyrecognized.TheIDEALeagueaimstoplayanactiveroleinEuroperegainingits

internationalpre-eminentpositioninscienceandtechnologybycombiningourvalueand

knowledgeresources,specificallyinresearch,educationandinnovation.

The IDEA League is pleased to find that CESAER is also ready to play a vital role in

realizinganEITbasedonitswidemembershipofexcellentEuropeanresearch-oriented

universitiesanditsresearchandteachingexperience.

In order to compete globally in the 21st century, Europe will need a fresh dialogue

between research- and education-driven institutions and industry, in order to create

novelandprogressiveapplicationswithinasustainableenvironment.

1InthisarticletheTUDelft,asmemberoftheIDEALeague,describesitsviewontheEuropeanInstituteofTechnology(EIT).

2� b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6

TheIDEALeague’spositiononaEuropeanInstituteofTechnology

Social relevance and impactTheIDEALeaguebelievesthatthesocialimpactofscientificandtechnologicalinnovations

should not be ignored. It is important for technology to be embedded in existing social

structures,thusofferingsustainablesolutionsforbothsocialandpublic issues.Research

on the social impact, moral and ethical questions, and the unwelcome side effects of

technology should be started from scratch. This also emphasizes the importance of the

serviceindustrynexttotheproductionindustry.

Industrial involvementInadditiontothepartnerinstitutions’existingindustriallinksandthehigh-levelresearch

collaborationwhichcanbebuiltupon,industryisinvitedtoparticipateintheprogramme,

providedthatitacknowledgesourmissiontoregainEurope’sinternationalpre-eminence.In

thisway,newcollaborationcanbedevelopedbyformingclustersofuniversityandindustry

researchers in order to tackle specific research themes. We should aim for intellectual

property rights that are common to all European partners. This is a prerequisite for

stimulatingindustrialinnovationinEurope.

Secondment arrangements and staff status InlinewithourformersuggestionthattheEITshouldpreferablybeavirtualcommunity,

members should keep their current legal identity and we advise that staff stay on the

payrolloftheiroriginaluniversity.TheIDEALeaguebelievesthattheexpectedresultsand

gainsfromnetworkactivitiesshouldbesetoutclearly.TheIDEALeaguedoesnotwantto

collaboratebybundlingapileofexistingprojects,butwantstoaimforatrulycommitted

researchprogrammeofficiallyundersignedbyalloftheparticipatingmembers.

27b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6

Education

Withoutstudents,therewouldbenoinstitutionandnoresearchprogrammes.Oureducational

portfolio is focused on our science and technology strengths, with training at bachelor,

mastersanddoctoral levels.Ourgraduatesarehighlysoughtafter inacademic, industrial,

commercialandgovernmentalsectors.Collectively,theIDEALeaguehasatotalof:

• approximately63,000students;

• morethan8,500ofwhomareregisteredondoctoralprogrammes;

• theremainderareregisteredforbachelorandmaster'sdegreesselectedfromatotalof

morethan550studyprogrammes.

ThesefiguresdemonstrateourEuropeanintellectualhumancapital,aswellasourrelevance

forindustrialnetworkmembers.

Further integration will be achieved by joint master programmes, the first of which

(Geophysics)was launched inautumn2006.Providinga framework thatallowsus to the

standardatalllevels,theallianceisnotonlyoperatingwithanefficientyetlightstructure,but

hasalsoestablishedatrustedrelationshipwithpartnerinstitutions-learningcontinuously

fromeachother,exchanginggoodpracticeandsharingexpertise.Pan-Europeanintegration

isadditionallyenhancedbystudent-ledsummerschools,andsportingandsocialevents.

Technology TransferThe success of university-led innovation depends on effective interactions within society.

New ideas fromacademiacan lead to totallynewcapabilities inkeyareas, suchashealth

managementandtransport.Similarly,theimplicitandexplicitneedsofthebusiness,industry

andhealthcaresectorscanleadtoproductivenewavenuesofresearch.Hence,relationships

between universities and their commercial partners need to be ever closer if needs and

possibilitiesaretobeeffectivelyexploited.

All of the IDEA League universities’ partners are committed to a research agenda that

emphasizestheapplicationofresearchinbusiness,industryandhealthcare.Ourtechnology

transferprogrammesareanessentialpartof thismission,andoursuccess is illustratedby

the high level of our industrial research funding (up to 30%) and the number of spin-off

companieswehaveestablished(atotalofabout60peryear).Collectively,wehavelinkswith

morethanthreequartersoftheEuropeanRoundTableofIndustrialists,andwithmanymore

industriesbeyondthisorganization.Wealsohavecloselinkswithgovernmentorganizations,

suchasournationalhealthservices.Weexpectthatevenmoreworld-leadingindustrieswill

seizetheopportunitytoembracethepossibilitiesthatournetworkoffersinthenearfuture.

TheIDEALeague’sviewonaEuropeanInstituteofTechnologyPhysical or Virtual CommunityThe IDEA League has had positive experiences with intellectual virtual networks that

acknowledge the strengths of the individual partners. That is why we believe that the

creation of a physical institute with its own infrastructure is undesirable. A European

InstituteofTechnologyshouldconstituteacohesive,andhenceopportunity-rich,network

of a limited number of knowledge communities. In this network the best groups from

universities, research institutesandcompanieswillworktogether inaprogramme-based

mannerinaselectednumberofstrategictechnologicalareas.

Membership criteria TheessentialcriteriaformembershipofanEITnetworkare:

• scientificandtechnologicalexcellence;

• goodrelationshipswithindustrystronglyinvolvedintechnologytransfer;

• accessto(large-scale)facilities;

• sharingavisionofregainingEurope’sinternationalpre-eminenceinscience&technology.

2� b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6

Prof. dr. ir. Anthonie W.M. MeijersEindhoven University of Technology

In collaboration with Tijn Borghuis, Kees van Overveld, Loes Mutsaers, Jacob Perrenet and Paul Bezembinder

AbstractLearningoutcomesorendqualificationsofstudentswillbeakeyfactorinfuturequality

assuranceinhighereducationinEurope.ThethreeDutchuniversitiesoftechnologyhave

developed a system of learning outcomes for academic education, which is described

inthispaper.Thissystemisbelievedtobemuchbetterfromaconceptualaswellasa

practicalpointofviewthantheso-calledsystemofDublinDescriptorsthatisnowbeing

used in the European Community. The 3TU system has received considerable support

from other European universities of technology. In the second part of the paper an

empiricalapproachisdescribedfortheevaluationofacademicstudyprogrammesandof

studentsintermsofthedevelopedsystemoflearningoutcomes.

IntroductionThe Bologna Declaration committed the member states of the European Community to

moretransparencyinhighereducation.Itaimedattheharmonizationofthevariouscycles

ineducationandatdegrees thataremoreeasily readable.Theaimof this restructuring

was, among other things, to increase mobility in higher education in Europe. Many

countrieshaveimplementedabachelor-masterstructurebynow,orareintheprocessof

implementingitinsomeform(thepictureiscomplicated).Fromthebeginningitwasclear

that a more harmonious structure of higher education by itself is not enough to make

more mobility possible. In addition, explicit learning outcomes or end qualifications of

studentsattheendofthefirst(bachelor)andsecond(master)cycleareessential.These

learningoutcomeshavebecomeevenmoreimportant,nowthatfuturequalityassurance

andaccreditationsystemswillbebasedonthem.Therewillbeatransitionfromaprocess

orientedtoaproductorientedapproachinhighereducation.

DublindescriptorsandtheEQFUndertheauspicesoftheEuropeanCommunity,asystemoflearningoutcomeshasbeen

developedunderthenameofDublinDescriptors.Itconsistsforthebachelorprogrammeof

thefivefollowingcompetences.Studentsshould:

• havedemonstratedknowledgeandunderstanding inafieldofstudythatbuildsupon

and supersedes their general secondary education, and is typically at a level that

includessomeaspectsoftheforefrontoftheirfieldofstudy;

• be able to apply their knowledge and understanding in a manner that indicates a

professionalapproachtotheirworkorvocation;

• havetheabilitytogatherandinterpretrelevantdatatoinformjudgmentsthatinclude

reflectiononrelevantsocial,scientificorethicalissues;

2�b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6

How the EIT should be financedTheIDEALeague isconcernedthattheestablishmentoftheEITshouldnotdivertfunds

away from theERCor FP7.Whereas theERCandFP7are fundingmechanisms, theEIT

will bean institution that canand should compete for those funds.Onepossiblewayof

achievingarapidstart-upwouldbetoreserveaspecialcompartmentwithinFP7forthe

development of the EIT (e.g. via joint technology platforms). This would also underpin

the special position and significance of the EIT. Furthermore, the IDEA League stresses

the importanceofclearlydifferentiatingtherolesandaimsoftheEITandtheEuropean

ResearchCounsel(ERC).Acleardescriptionofscientificstrategyandasystemtomonitor

qualityandperformanceinbothorganizationswillcreateasteppingstonetojointEuropean

scientificnetworksthatarereadyfortheEuropeoftomorrow.

AcademicLearningOutcomes:AConceptualandEmpiricalApproach*

• beabletocommunicate information, ideas,problemsandsolutionstobothspecialist

andnon-specialistaudiences;

• have developed those learning skills that are necessary for them to continue to

undertakefurtherstudywithahighdegreeofautonomy1.

ThissystemofDublinDescriptorshastwomaindisadvantagesforuniversities:

(i) it does not include ‘design’ as an academic competence, which is very important for

universitiesoftechnology;

(ii) it isphrased inverygeneral termsand thereforehard togive itoperationalvalue.For

example, on the basis of these learning outcomes it is almost impossible to discriminate

betweenaprogrammeataresearchuniversityandaprogrammeataninstitutionofhigher

vocationaltraining(oranappliedscienceuniversity). Intherecentevaluationofuniversity

programmesintheNetherlandsnotasingleprogrammewasrejectedbecauseofnotfulfilling

the Dublin Descriptors. These disadvantages have been an important reason for many

universitiestolookforanalter-nativesystem.

WhatappliestotheDublindescriptorsalsoappliestotheEuropeanQualificationsFramework,

inwhichtheDublindes-criptorsareasubsetofamoregeneralsetoflearningoutcomes

�TUsystemoflearningoutcomesAny system of learning outcomes for university programmes should fulfil the following

designcriteria:

• it should be generally applicable, i.e., it should not be disci-pline-specific and should

applytoallengineeringprogrammes;

• it should have discriminative power (distinguish between programmes at research

universitiesandprogrammesatuniver-sitiesofappliedscience);

• itshouldhavepracticalorope-ra-tionalvalue;

• itshouldcontainindependentcategoriesofcompetences,overlapshouldbeavoided;

• itshouldbecomplete,coveringthewholestudyprogramme;

• asawholeitshouldcaptureourintuitionofwhatwemeanby‘academic’

• easytomemorizeforstaff;nosystemwillworkinpracticeifitistoocomplicated.

�1b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6

Inadditiontothesegenerallearningoutcomes,eachprogrammewillhavediscipline-specific

endqualifications.Thesewillbedifferentformechanicalengineeringandcomputerscience,

tomentiontwoexamples.Thispaperonlyaddressesthegenerallearningoutcomes.

AtEindhovenUniversityofTechnologyasystemoflearningoutcomeshasbeendeveloped

over the last three years that aims to live up to these design criteria. Since the notion

of ‘compe-tence’ isused insomany interpretations, it isnecessarytospecifyournotion

in advance. By ‘competence’ we mean the integration of knowledge, skill and attitude.

Astudenthasacertaincompetenceif(s)hehastherelevantknowledge,if(s)heisableto

apply this knowledge in appropriate contexts, and if (s)he has the attitude of using this

knowledgeinthesecontexts.

Thedevelopedsystemof learningoutcomesdistinguishesbetweenstudentcompetences in

thefollowingthreedomains:thescientificdiscipline,thescientificmethod,andthecontextof

scienceandtechnology.Withinthesedomainsafurtherdistinctionhasbeenmadebetween

• existingknowledgeorthedevelopmentofnewknowledge;

• theunderstandingofphenomenaorthemakingofnewartefacts;

• between specific or generic methods of science, where the latter is subdivided into

individualworkandteamwork;

The resulting map of competence areas is the following:

Figure 1: Areas of Competence

Foreachofthesecompetenceareasfivetoeightkeycompetenceshavebeendefined

whicharethoughttobelongtothecoreofthearea.Examplesofthesecompetences

aregiveninthetablebelow,whereadistinctionhasbeenmadebetweenbachelorand

masterversionsof thesecompetences.Foracompleteaccountsee theAppendix to

thispaper2.

�0 b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6

LevelsofcompetencesAnysystemofcompetenceshastodefinelevelsonwhichthesecompetencesaremastered.

Just mentioning a competence is clear-ly not enough. For example, the competence

‘understandstheknowledgebaseofthediscipline’canbemasteredonanentrylevelbutalso

onanexpertlevel.Therealchallenge,then,istodefinetheselevels.Thisisthehardproblem

to be solved. One way to this is to use Bloom’s well-known scale. He made a distinction

between: the ability to reproduce information (theories, ideas, facts), to understand

information,touseinformationforthesolutionofproblems,toseepatternsininformation

(perception,analysis), togeneratenew ideas from information (synthesis),and toevaluate

information,ideas,theories,methods.Severalofourcompetencedefinitionsechoelements

ofBloom’sscale,todistinguishbetweenbachelorandmasterlevels.Otherapproachesused

todefinecompetence levelsare in termsof theproblemsbeingsolved (witha range from

simpleproblemstocomplexproblems),or intermsofthesupervisionthat isneededwhen

doingscientificwork(witharangefromfullysupervisedtocompletelyindependent).Inthis

sectionwewilldescribeadifferentapproach.

Whendevelopingthe3TUsystemofacademiccompetences,fourtypesofactivitywerethought

tobeespeciallycharacteristicofanacademicwayofthinkingandacting.Theseareanalyzing,

synthesizing,abstractingandconcretizing.Anacademicengineerneedstomasterthemat

anadequatelevel. Inordertodefinethatlevel,thefollowingoperationaldefinitionshave

beendevelopedfortheseactivities,whicharemeanttobegenericforallscientificdisciplines:

• Analysing is theunravellingofphenomena,systemsorproblems intosub-phenomena,

sub-systems or sub-problems with a certain intention. The greater the number of

elementsinvolved,orthelessclearitiswhattheelementsoftheresultinganalysisare,

themorecomplextheanalysis.

• Synthesizing is the combining of elements into a coherent structure which serves a

certainpurpose.Theresultcanbeanartefact,butalsoatheory,interpretationormodel.

The greater the number of elements involved, or the more closely knit the resulting

structure,themorecomplexthesynthesis.

• Abstractingisthebringingtoahigheraggregationlevelofaviewpoint(statement,model,

theory)throughwhichitcanbemadeapplicabletomorecases.Thehighertheaggregation

level,themoreabstracttheviewpoint.

• Concretizing is theapplicationof ageneral viewpoint toa caseor situationathand.

Themoreaspectsofasituationareinvolved,themoreconcretetheviewpoint.

��b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6

Table 1: Examples of Competences

The resulting set of academic competences has gained a lot of support. In the

Netherlands it has been adopted by the three Universities of Technology (Delft,

EindhovenandTwente),hence itsname3TUsystem,aswellasbytheUniver-sityof

Nijmegen3. In Europe, German research univer-sities intend to integrate the set of

competences in their future system of quality assurance, while Swedish and Italian

universities of technology are seriously looking into this possibility. CESAER, the

societyofuniversitiesoftechnologyinEurope,hasexpressedexplicitsupportforthe

approachtakenbytheDutchuniversities.

�2 b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6

�5b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6�� b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6

Theseactivitiesandthecorrespondingcompetencetoperformthem,haveaspecialstatus

inthattheyarenotjustfurtheritemsonthelist,butareorthogonaltotheearlierdefined

competenceareas.Beingabletoanalyse,synthesize,abstractorconcretizeisanessential

partofmanyofthekeycompetencesofthesevencompetenceareas.Thatcanbeusedto

identifythelevelonwhichcompetencesaremastered.

Foreachofthesefourtypesofactivityascalehasbeenconstructed.Thisscaleisdiscipline-

specific, since it ranges from the lowest level of these activities to thehighest level in a

particulardiscipline.Thescalesareconstructedonthebasisofexamplesinthediscipline.

Theseexamplesarenotarbitrarilychosen,butaredevelopedonthebasisofaconstruction

principle.Thescaleisconstructedwithrecurrentsteps,wheretheresultofapreviousstep

becomestheobjectoftheactivityinthesubsequentstep.Fortheactivityofabstractingthe

scalelooksasfollows,whereAistheexampleonthebasisofwhichthescaleisconstructed,

andB,CandDarereformulationsoftheexampleonahigherlevelofabstraction:

Figure 2: Construction of the Scale of Abstraction

Thesescaleshavetobedevelopedtogetherwithexpertsinthescientificfield.Therangeof

thescaledefinesthescopeofadisciplineintermsoftheactivitiesofanalysing,synthesizing,

abstractingandconcretizing. InTable2examplesaregiven thatactuallyhavebeenused

intheevaluationofthemathematicsprogrammeatEindhovenUniversity.Therearethree

stepsonthescaleofana-lysisinmathematics.

Table 2: Scale for Analysis in Mathematics

Whenevaluatingastudyprogrammeitisimportanttorealizethatthereareatleastthree

studyprogrammes:(i)theprogrammeasintendedbythelecturers,(ii)theprogrammeas

realized in the learning situation, and (iii) theprogrammeas realized in the students. In

theempiricalpartofour researchwehave focusedon thedescriptionandevaluationof

(i)and(iii).Itisonlypossibletodescribeandevaluate(ii)onthebasisofobservationsin

classroomsituations.

TheIntendedStudyProgrammeGivingananswertothequestionwhetheracurriculumhastherightprofile,orhowastudy

programme(asintendedbythelecturers)contributestothedevelopmentofthestudents’

competences, is not a trivial matter. It requires empirical research into the aims and

ambitionsoflecturersteachingcoursesinthecurriculum,andamethodofcombiningthe

resultsintoanoverallpictureoftheprogramme.Oneoftheproblemshereistodevelopa

measurefortheimportanceofaimsandambitionsthatisintersubjective.

Intheresearchproject,dataaboutthelecturers’intentionswerecollectedwithinterviews.

Therelativeimportanceofaimsandambitionswas‘measured’intermsofthetimespentin

acourseonsuchaimsandambitions.Thishadtheadditionaladvantageofmakingitpossible

toconstructaprofileofastudyprogrammeonthebasisof informationabout individual

courses.Specialattentionwasgivenintheinterviewstothestandardizationoflanguage,

forexamplewithrespecttotermsasanalyzing,abstracting,synthesizingandconcretizing.

Notonlywasthisamethodologicalrequirement, italsohadtheadvantageofdeveloping

a common language and frame of reference among themembers of the scientific staff

withrespecttothestudyprogramme.Theinterviewsalsogavestaffmembersadifferent

perspectiveontheir individualcourses,sincetheyhadtothinkaboutthecontributionof

thesecoursestothedevelopmentofkeycompetencesofstudents.

Allmandatorycoursesinthebachelorprogramme(threeyears)andthemasterprogramme

(twoyears)wereincludedintheresearchproject(togetherabout70courses).Afterapilot

projectwith two study programmes (Industrial Engineering&Management Science, and

InnovationSciences),threeprogrammeswereevaluated(AppliedMathematics,Computer

ScienceandElectricalEngineering),whiletwomoreprogrammesinIndustrialDesignand

Architecture,Building&Planningareintheprocessofbeingevaluated.

�7b i e n n i a l r e p o r t 2 0 0 3 - 2 0 0 4�� b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6

Anotherexampleistakenfromcomputerscience,inthiscasethescalefortheactivityof

concretizing.Inthisexample,therearefivesteps.Thisillustratesthefactthatthenumber

ofstepsonthescaleneednotbethesameforthefouractivities,andtheymaydifferfor

variousdisciplines.Wehavefound,however,that3-5stepsareusuallyenoughfortherange

ofascale.

Table 3: Scale for Concretizing Computer Science

Themethodused for theconstructionof thescalesverymuchdependson thestrength

oftheexamples.Theyneedtoberepresentativeforthedisciplineasawhole.Incaseofa

disciplinewithsubfieldswhicharerathersimilar,thisshouldnotbeaproblem.Butincase

thedisciplineconsistsofsubfieldsthatdonotshareobjectsofinquiryoramethodology,

this becomes increasingly difficult. In mechanical engineering, for example, process

technologyisverydifferentfromstructuralmechanicsandanexamplethatischaracteristic

forbothmaybedifficult tofind.Multidisciplinaryfieldsareevenmoredifficult. In these

casesitwouldbeadvantageoustohaveamethodtodefinelevelsofcompetencesthatis

notdisciplinespecific.

TheConceptualFrame-workAppliedQuality assurance at universities and the accreditation of study programmes require an

answertoquestionsofthefollowingtype:Whatdolecturersaimforintheirindividualcourses

andhowdoesthiscontributetothedevelopmentofthestudents’endqualifications?How

welldostudentsperformattheendofthebachelor/masterprogramme?Doesthestudy

programmehavetherightprofile,i.e.doesitputtheemphasisonwhatisconsideredtobe

mostimportantintermsoflearningoutcomes?Thesequestionscanbemademoreprecise

onthebasisofthedescribedsystemoflearningoutcomes,togetherwiththemethodology

fordefininglevelsofcompetences.

The histogram gives information about the completeness of the study programme with

respecttothediscipline(thescaleshowsthescopeofthatdiscipline).Italsogivesinformation

abouttherelativeweightofthelevelsintheprogramme.Thisinformationisagainusefulfor

adiscussionaboutdesiredlevelsandstandards,andforfutureevaluations.

CompetencesofStudentsThe secondpart of our empirical research concerned the competencesof students. The

mainquestionherewas:Howwell do studentsperform in termsof thedefined learning

outcomes or end qualifications? In order to find out, a blueprint was developed that

containsquestions,assignments,andtaskscorrespondingtoeachofthekeycompetences

withinacertaincompetencearea.Thisblueprintisstillgeneric.Manyoftheassignments,

especially the ones in the competence areas 1-4, need to be ‘localized’ for a particular

disciplineinordertobeuseful.Thisworkwasdonebylecturersinthefield.

Apilotprojectwascarriedoutwithmasterstudentsofthreestudyprogrammes(computer

scienceandelectricalengineering),twoatEindhovenandoneatNijmegen.Theassessment

took two fulldays. Itsmainpurposewas todevelopa tool for theoverallassessmentof

students’competences.Thedesignwassuchthatitwouldgenerateinformationaboutthe

performanceofstudentsatthe levelofthepopulationofstudents,notonthe individual

level. The latter requires much stronger requirements in terms of the reliability of

thetest.

On thebasis of suchanassessmentprofilesof studentpopulations canbe constructed,

similartotheprofilesdiscussedbefore.Thesecanthenbeusedtodiscussdesiredprofiles

andtosetstandardswhichcanbeusedinfutureevaluations.

Thepilotprovedtheprinciplethatit is indeedpossibletodevelopanassessmentforthe

evaluation of students in terms of the described system of learning outcomes. It also

showedthatadditionaldevelopmentworkisneeded,especiallywithrespecttothelevels

ofcomplexityofquestionsandassignments.Theinitialaimofcomparingthecompetences

of studentsof theprogrammes involved,made thedevelopmentof theassessmentvery

labourintensive4.

ConclusionQualityassuranceatuniversitiesusuallyconcernsindividualcourseevaluations,efficiency

evaluationsofthestudyprogrammeasawhole(averagestudytime,studentdropout,etc.),

and(sometimes)staffcompetences.Atthecurriculumlevelthereisnotooltoevaluatethe

contentoftheprogrammeortheendqualificationsofstudentsintermsofasystematicset

ofdesiredlearningoutcomes.Thestandardproblemsofqualityassurancearewell-known:

thereisalackofclearevaluationcriteria,thereisnoproperevaluationmethod,theresults

oftheevaluationarenotfedbackintothesystem,andtheresponsibilitiesofthevarious

actorsarenotclearlyassigned.

The set of learning outcomes and the methodology for levels described in this paper

can remedy twoof theseshortcomings.Firstly, theycanbeusedasacommon frameof

referenceandasatooltosetstandards,bothforthecontentofacurriculumandforthe

learningoutcomesofstudents.Secondly,theycanbeusedtoevaluatestudyprogrammes

in these terms. Promising as they are, their full implementation in quality assurance

systemsatuniversitiesstillrequiresalotofadditionalresearch.

��b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6�� b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6

In the interview, lecturers were asked to indicate how much time they intended to

spend during their course on each of the seven competence areas, and whether these

competenceareasarepartoftheexamination.Forthekeycompetencesintheseareasa

yes/noindicationneededtobegiven.Thesamequestionswereaskedaboutthetimethey

intendedtospendoneachofthelevelsofthefourscalesearlierdiscussed,bycomparing

theircourseswithexamplesonthesescales.Theinterviewtookaboutanhourandahalf.

Onthebasisofthesedata,profilesofstudyprogrammescanbeconstructed.Forexample,

aprofileofthefirstyearoftheprogramme,ofaparticulartrackoftheprogramme,orof

theprogrammeasawhole.Withthedevelopedsoftwareaprogrammedirectorcanmake

anyprofileheis interestedin.AtypicalresultforabachelorprogrammeatEindhovenis

giveninthefollowingfigure:

Figure 3: Bachelor Profile in Terms of Ects per Competence Area

These profiles can give information aboutmissing competence areas in the programme

ormissingkeycompetences.Itcanalsogiveinformationabouttherelativeweightofthe

sevencompetenceareas.Onthebasisofthisameaningfuldiscussioncantakeplaceabout

thedesiredprofileofaprogrammeandastandardcanbeset.Suchastandardcanthenbe

usedinfutureevaluationcycles.

Alongthesamelineshistogramscanbeconstructedforthe levelsofanalysis,synthesis,

abstraction and concreteness in the study programme. Such a histogram shows the

intendedtimespentoneachlevelofthescale.Thehistogramcanbeconstructedagainfor

partoftheprogramme,foraparticulartrackoftheprogramme,orfortheprogrammeas

awhole.Anexamplefortheactivityofconcretizingisgivenbelow.

Figure 4: Relative Time Spent on the Levels of Concretizing

1 competentinadiscipline

2 competentinresearch

3 competentindesigning

4 ascientificapproach

5 basicintellectualskills

6 competentincooperating/

communicating

7 takesaccountofthetemporal

andsocialcontext

�1b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6�0 b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6

References• BorghuisV.,VanOverveldC.&MeijersA.,FourDimensionsofAcademicEducation,Eindhoven

UniversityofTechnology,internalreport(inDutch).

• MeijersA.,OverveldC.,van&PerrenetJ.(2005),CriteriaforAcademicBachelor’sand

Master’sCurricula,EindhovenUniversityofTechnology(revisedsecondedition).

Availableonlineat:http://w3.tm.tue.nl/en/capaciteitsgroepen/av/platform_academic_education/

• PerrenetJ.C.,L.Wolters&D.deGruijter,“Sure,theyareedu-cated;butaretheyacademics?

Exploringthemeasurementoftheacademicprofileofuniversitystudents”,submittedpaper.

Notes* Thispaperisbasedonpresentationsatvariousoccasions,includingtheCESAERannualmeeting

inLisbon2005,severalClustermeetings,andtheABETAnnualMeetinginFlorida2006.

Thepaperreportstheresultsofthecolla-borativeworkofaprojectgroupatEindhoven

UniversityofTechnology,consistingofPaulBezembinder,TijnBorghuis,AnthonieMeijers,

LoesMutsaers,KeesvanOverveldandJacobPerrenet.Itfirstappearedinaslightlydifferent

formintheproceedingsoftheABETconferencein2006.

1 Seewww.jointquality.org

2 SeealsoMeijers,OverveldandPerrenet,CriteriaforAcademicBachelorandMasterCurricula.

3 Thesetofcompetenceshasalsoapplicationsoutsidetheengineeringdomain.Thesetismeant

tobegenericforacademicprograms.Studyprograms,then,haveaprofileintermsofthisset,

wheresomecompetencesareconsideredtobemoreimportantthanothers.

4 SeeforanelaborateaccountPerrenetJ.C.,L.Wolters&D.deGruijter.

BiographyAnthonieW.M.Meijers isprofessor in thephilosophyandethicsof technologyatEindhovenUniversity

ofTechnologyandheadofthedepartmentofphilosophy.AtEindhovenheisalsotheprojectleaderofa

grouponqualityassuranceandacademiceducation.He iseditor inchiefoftheforthcominghandbook

PhilosophyofTechnologicalSciences(Elsevier2007),andeditorofthejournalPhilosophicalExplorations.

��b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6

research,withassistanceandguidancefromstaff.Attheendofthemaster’sprogramme

thefinalthesisshouldbetheultimateproofthatthestudentshavethecapabilitytowork

independently,completeresearch,draftreports,andpresentanddefendtheirownfindings.

Itarenotonlytheproductandtheresultsthatarevaluable,itisalsotheprocess.Bygoing

throughtheprocess,i.e.bydoingresearch,thestudentsnotonlyacquirenewknowledge,

butalsoacquireimportantskills.

Including research at undergraduate level (Bachelor programmes) is less obvious.

“Research at undergraduate level has for a long time been neglected” (Boyden, 1998).

Now, “undergraduate research is the staple of most American universities’ curricular

vocabulary”(Boyden,2001).Engineeringisaheadofmanyotherdisciplines.

Traditionallylecturersorganizetheircoursesinalinearway,incorporatinganincremental

progressioninwhichresearchcomesneartheendofadegreecourse.Intheiropinion,the

studentneedsfirst toacquireknowledgeandthentodevelopmoreofacritical thinking

stance in the postgraduate phase and to start the creation of knowledge. Research

componentsarethenreservedforthegraduatelevel.

However,theintroductionof“research”atundergraduatelevel,mayalsoincreasethequality

oftheteachingandthelearningprocess:“It’smyviewthatinengagingwithadiscipline,

whichiswhatanundergraduateprogrammeshouldbedoingforanundergraduate,almost

necessarily they should be engaging with the ways in which that discipline or field of

enquiryisadvanced,thewaysinwhichpeoplecontributetoitsadvancement,andtheways

inwhichyoucancontributecriticallyandcreatively toasubject. It isn’t justabout,as it

were,learningtheproductsofthescholarshipofthepastage,thoughitoughttoinclude

that,butitisaboutengagingwiththedynamismofthesubject,whichistoengagewiththe

subjectasoneinwhichresearchplaysacentralrole”(Zamorski,2002).

Therelationshipbetweenresearchandresearch-basedteachingdependsonhowtheterms

“research” and “teaching and learning” are conceptualised. There are differentways of

introducingresearchintoacurriculum:

1. Studyingresearchresultsinindividualcoursesor throughouttheentirecurriculum

Studentsgainknowledge fromstudying the resultsof recentscientific research through

taught courses, seminars and project work. The emphasis is on understanding research

results,ratherthanontheresearchprocessitself.Academicstalktostudentsabouttheir

researchinlecturesanddiscussions.Theyuseanecdotesandexamplestoillustrateaspects

ofthesubject indevelopment.Theyshare issues,questionsandconcernsthatarebeing

debatedwithintheresearchcommunitywithstudents.

2. Learningbyresearch(exploration)

Atundergraduatelevel,explorationbythestudentsiscentral.Studentslearnbysearching

existingresearchresults ina libraryoronthe internet (Anon,2005). Insteadofbuilding

acurriculumon (a logicalsequenceof)contents, it isorganisedaroundresearch-related

activities.Studentsparticipate in the teacher’s researchbyworkingonaparticular sub-

topic,butbydoingsotheygainan insight intothewidercontext.“Learningbyresearch

has a clear impact on the intellectual development of the students: it improves their

self-confidence and their capability to think independently. Their “absolute” vision on

knowledgebecomesa“contextual”vision”(Jenkinsetal.,2003).

Aparticularwayof learningbyresearch is“learningbydesign”.“Researchbydesign” is

notsearchingfornewknowledge,butfornewsolutionsbasedonnewinsights,introducing

Prof. dr. ir. Jean E. BerlamontK.U.Leuven, Belgium

Research is essential in institutions that claim to educate academic engineers. Active

participation by university staff in research “at the cutting edge” guarantees that the

teachingstaffandthematerialtheypresentareuptodate.“Studentsexpecttheirteachers

tobeactivelyinvolvedinresearch.Researchcontributestotheenthusiasmandcredibility

oftheteacher”(Jenkinsetal.,1998).

AtUniversities, research is interwovenwith teaching.Teaching isprovidedby thosewho

createnewknowledgeandwhoareincloseandcontinuouscontactwithandinteractwith

theirpeersthroughouttheworld.Universitiesare,andhavealwaysbeena“universitas”:

a“community”ofteachersandstudents,whosharequestionsandanswers,learnfromeach

otherand,together,searchfornewknowledgeandnewanswerstonewandoldquestions.

Involvingstudents inresearchguaranteesthat theydevelopthenecessaryattitudesand

skillsforthecreationofnewknowledgeandtechnologies,innovation,andproblem-solving.

Universityeducationislargelyaneducationthroughresearch.

ForCESAERuniversities it is obvious that PhD programmes should consist of individual

andoriginal research, facilitatedbyanumberof supporting initiativessuchas: research

seminars;highlyspecialisedcourses;andinternationalworkshops.PhDstudentsareinfact

juniorresearchers.

Researchshouldalsoplayanimportantroleatmasterslevel:mostofthecoursesshouldbe

taughtbyprojectordesignwork,enablingstudentstoperformalargeamountofindividual

TherelationshipbetweenResearchandEducationinCESAER(Technical)Universities

�5b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6

writeareportorascientificpaperandtopresentresearchresults.(Anon,2005).They“get

acquaintedwithscientificandethicalprinciples,projectmanagementtechniques,teamwork,

documentationandpresentationsskills,and…discipline”(BEST,2005).

“Theparticipationofundergraduatestudentsinresearchactivitiesisofgreatimportanceas

atooltoimproveundergraduateeducation.ForEngineeringstudents,researchexperiences

allowthemtolearntheEngineeringconceptsin-depth,whileemphasizingexperiencesand

practical applications. Rather than learning about the skills individually throughmodules

or lectures, they experience them through their project processes and work. Besides,

participatinginfundedresearchprojectsstrengthensthestudent'sresume,andfulfilsthe

requirementsofemployers.Activeparticipationinreal-liferesearchhasbeenconsidereda

sourceofstrongmotivationfortheundergraduates”(Gür,2005).Thismaybeanimportant

argument to attract more capable youngsters, and in particular women, to studies and

careersinengineering.

“An active research experience is one of the most effective ways to attract talented

undergraduatestograduatestudies,andretainthemincareersinScienceandEngineering”

(Gür,2005).

“Theresearchexperiencesprovidethemwithexposuretomoderntechnologyandequipment.

Theone-to-onediscussionsandcommunicationbetweenprofessorsandstudents increases

students’ confidence levels. They also gain valuable technical knowledge by conducting

literature searches, industry visits, and discussions with engineers and other technical

professionals.Throughtheexperiencesofindependentresearch,studentsarebetterprepared

intheareasofcriticalthinkingandlife-longlearning.Consequently,participationinresearch

byEngineeringstudentsgreatlyincreasestheirpotentialforemployment”(Gür,2005).

One should realise that research-based curricula can only be offered if the faculty is

organisedarounditsresearchstrengthsandtheinterestsofthestaff,andifthecurriculum

is alignedwith those research strengths. Themore research-led the faculty is, themore

pervasiveistheinfluenceoftheseresearchareasonthecurriculum.

ConclusionsResearch is essential in institutions that claim to educate academic engineers. Active

participation in “cutting edge” research guarantees that teaching staff are up to date.

Involvementofstudentsinresearch(e.g.throughMScthesiswork,projectworkorPhDs)

guarantees that they develop the necessary attitudes towards knowledge creation, new

technologies,innovationandproblemsolving.

Universityeducationislargelyaneducationthroughresearch.Thereisalargeconsensus

onthefactthatPhDprogrammesshouldconsistprimarilyofindividualoriginalresearch,

andthatmaster’sprogrammesshouldcontainanimportantresearchcomponent,e.g.the

finalthesisresearch,orprojects.

Theneedforundergraduate(bachelor)programmestoberesearch-basedislessobvious.

Thereare, however,manyargumentswhy itwouldbeadvantageous to include research

graduallyintoundergraduateprogrammes:firstbylettingstudentsstudyresearchresults;

second by teaching themhow to perform research; and third by allowing them to learn

through research. In Engineering schools “learning by design” is a particular and very

interestingwayoflearningbyresearch.

Researchbasedcurriculacanonlybeofferedifthefacultyisorganisedarounditsresearch

strengthsandtheinterestsofthestaff,andifthecurriculumisalignedwiththoseresearch

strengths.Themoreresearch-ledthefacultyis,themorepervasivetheinfluenceofthese

researchareasonthecurriculum.

new materials, new technologies, and new models. “Learning by design” is probably

typical in Engineering, traditionally in Civil Engineering andArchitecture, but also in all

otherEngineeringdisciplinessuchasMechanicalEngineering,SoftwareEngineeringand

ElectronicEngineering.Learninghowto“design”isatthecoreofEngineering.Bytryingto

designasmallcarforexample,drivenbysolarenergy,aminisubmarine,arocket,abridge

orabuilding,thestudentisobligedcontinuallytoaskquestions,makechoices,searchfor

alternatives,lookforinformation,learnandstudynewsubjects,etc.Ifsuchdesignexercises

areproperlysupportedandcloselymonitoredbystaff,theycanbecomeanexcellentand

complete(inter-disciplinary)learningactivitysincetheyalsochallengestudents’abilityto

workinteams,toreportandpresentresultsandtoincludeeconomicfactors.

�. Learninghowtoundertakeresearch

Studentsshouldlearnhowtoundertakeresearchandshoulddevelopvariousresearchskills

during specific courses (e.g. “researchmethodology” courses) or as part of projectwork

(learningbydoingresearch)alreadyincludedatundergraduatelevel.Studentslearnhowto

formulateresearchquestionsandhowtouseresearchmethodsbyworkingoutcomponents

of the research process such as literature searches, fund-raising, project management,

data collection and critical analysis of measurement results (identifying and quantifying

sourcesoferrorsanduncertainties)orresults fromnumericalmodels.They learnhowto

�7b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6�� b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6

References• Anon.,'Research-ledTeachingandtheScholarshipofTeaching'at

http://www.itl.usyd.edu.au/rlt/issues/dimensions.htm2005.

• BEST,BestSymposiumoneducation,Ljubiljana,12–19thSept.2005.

• BoydenCommissiononEducatingUndergraduatesintheResearchUniversity,

'Reinventingundergraduateeducation:ablueprintforAmerica’sResearchUniversities',1998.

• BoydenCommissiononEducatingUndergraduatesintheResearchUniversity,

'Reinventingundergraduateeducation:ThreeyearsaftertheBoydenReport',2001.

• Gür,C.Hakan,'ResearchandUndergraduateEducation',contributiontotheSIGB1report

on'Synergiesbetweenresearchandeducationactivities',November2005.

• Jenkins,A.,Blackman,T.,Lindsay,R.&Paton-Saltzberg,R.'Teachingandresearch:

studentperceptionsandpolicyimplication',StudiesinHigherEducation,23(2),127-141,1998.

• Jenkins,A.,Breen,R.&Linday,R.:'Reshapingteachinginhighereducation,

Linkingteachingwithresearch',London,Kogan,2003.

• Zamorski,B.:'Research-ledTeachingandLearninginHigherEducation:acase',

TeachinginHigherEducation,Vol.7,no4,2002.

AcknowledgmentsThispaperisbasedonadraftdocument“Synergiesbetweenresearchandeducationactivities”,

preparedwithintheSpecialInterestGroup(SIG)B1ofTREE(TeachingandResearchinEngineering

inEurope),aSOCRATES/ErasmusThematicNetwork,2005-2007.

The Conference of European Schools for Advanced Engineering Education and Research,

CESAERhas discussed the idea to establish a European Institute of Technology (EIT) and

drawsthefollowingconclusionsalongthelineofthepublishedquestionnaireconcerningEIT:

• CESAER sees the necessity of increased financial support of excellent research and

educationinEuropeforthesakeofcompetitivenessandinnovation.

• CESAERpointsouttheexistenceinEuropeofexcellentinstitutionsactiveinresearchand

educationaswellasrespectivenetworks(e.g.CESAER)andthereforeseesnonecessity

ofestablishingasinglenewentity/institution/institute.

• CESAERvaluesthecrossfertilisationofresearchandeducationandthereforesupports

theunityofbothactionsingeneral.

• CESAER recognizes thematrix scheme of different active disciplines and innovative

subjectsleadingtomultidisciplinaryinteractions.

• CESAER supports the idea of further enhancement of interdisciplinary and inter-

institutionalresearchactivitiesinopennetworksbasedonmediumtolong-termbudgets

toenhanceresearch.

• CESAERpoints out the necessity of creating an attractive environment for excellent

scientistsandengineersfromallaroundtheworld, including infrastructure,graduate

stipends,andperformancerelatedsalaries.

• CESAER underlines the importance of science driven decisions by international peers

aboutresourceallocationinsteadofpolitical/geographicalbaseddistributionprocedures.

• CESAERrecommendstheuseofthenewlyestablishedERC(EuropeanResearchCouncil)

to take the responsibility for organizing respective actions, including distribution of

funding,supportofspecificnetworksandincentivesforindividualresearchers.

ThispositionwasadoptedbytheGeneralAssembly(Lisbon,October29,2005).

CESAER’sPositionontheEuropeanInstituteofTechnology

�� b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6 ��b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6

1. TheUniversitiesofCESAERaimtoproducehighlyqualifiedengineersable:

(a) toworkbeyondtheboundsofexistingknowledgeandtechnology,

(b) topromoteinnovation,and

(c) toassumeleadingpositionsinindustryandacademia.

Suchresearch-andinnovation-basedengineershaveacrucialroleincontributingtothe

competitivenessof theeconomyofEuropeand inparticular in furthering theLisbon

Agenda. Their formation depends on an educationwith a strong scientific basis and

requiresaqualificationatthe2ndcyclelevel(Master)orabove.

2. In addition, Europeneedsdifferent educational programmes,which foster the ability

to work within existing technologies and which emphasise an application- and skill-

orientatedcapability,ratherthanthemorescientificandresearch-basedapproach.In

thesecases,qualificationsatthe1stcyclelevelmaybesufficientbutmayneedtobe

supplementedbya2ndcyclequalificationdevotedtoparticulartechnicaltopicsrelated

tospecificapplications.

Studentsfromtheapplied1stcycleprogrammescannotbeadmittedautomaticallyto

thescientificallybasedprogrammes.CESAERissupportinginitiativestoofferbridging

programmes for those students inorder tomeet theCESAER-based requirements in

achievingtheLearningOutcomesoftheirsecondcycle.

3. CESAER advocates the creation of a European accord for academic accreditation of

engineeringeducationsolongasitsafeguardsthevarietyandflexibilityofengineering

educationandallowstheresearch-baseduniversitiesinEuropetodefinetheirprogrammes

inawaywhichfavourstheformationofengineerswithastrongscientificbackground,as

describedinthefirstparagraphabove.

4.CESAERfullysupportstheintentiontobasestudyprogrammesonwell-definedLearning

Outcomes. It is the responsibility of universities to define Learning Outcomes. This

impliesalso fullaccountability. It is the taskof theacademicaccreditationagencies to

validatetheLearningOutcomes.Onlywhenfullresponsibilityisgiventotheuniversities

independentlytodefineLearningOutcomeswillEuropebeenabledtomoveforwardto

newareasoftechnology,producingnewtalentsandnewprofessions.

CESAERisinfavouroffurtherdevelopingsystems,likethesystemadvocatedbytheDutch

universities of technology, for defining and validating Learning Outcome at European

Engineering Universities. CESAER further states that the European Quality Framework

(EQF)doesnot capture theessential elementsof theengineeringeducationasdefined

above.Therefore,itneedstobechangedinordertomeettherequirementsofengineering

education.

5.CESAERfullysupportstheintentionoftheECthattheEuropeaneducationandtraining

systemshouldbecomea”worldqualityreference”,whichwillrequirestrengtheningof

QualityAssuranceandQualityManagementprocesses.

AdoptedattheGeneralAssembly,Lisbon,October29,2005.

TheEQFisbasicallyadevelopmentoftheDublinDescriptorsextendedtoapplytolifelong

learningandincludinglearningprocessesfromelementaryschooltoPhD.Itdistinguishes

between8levelsofknowledge,skillsandcompetences.ForCESAERlevels6,7and8are

important,sincetheycorrespondtothefirst,secondandthirdcyclesinhighereducation.

Thestatementsbelowapplymainlytothe6thand7thlevel,i.e.tothelearningoutcomes

ofthebachelorandmasterprogrammes.

1. CESAERbelievesthatonthebasisofEQFitisnotpossibletomakeacleardistinction

betweentwotypesofengineers:

a. engineerswhohavecompletedabachelorand/ormasterprogrammeatavocational

institutionforhighereducation

b.engineerswhohavecompletedabachelorand/ormasterprogrammeata(research)

university.

2. CESAERbelievesthattheproposedqualificationsframeworkismainlyorientedtowards

thosesciencesorfieldsofknowledgethataimatabetterunderstandingof(naturalor

social)phenomena,i.e.attheoriesandconcepts.Itcapturesonlyinaweaksensethose

scientificactivitiesthataimat innovation: thedesignandproductionofnewartefacts

andsystems.Thisisalreadyapparentintheverydefinitioninthedocumentofthenotion

ofcognitivecompetence.

3. Giventheseimportantdeficiencies,CESAERbelievesthatinitscurrentformtheproposed

EQFcannotperformitsintendedfunctionasatranslationtoolbetweennationalsystems

oflearningoutcomes.Itsconceptualframeworkisnotrichenoughtocapturedifferences

that CESAER believes are essential for engineering educational programs. These

differenceswillgetlostinthetranslationfromonenationalsystemtoanother.Therefore,

theproposedEQFneedstobechangedintheserespects.

CESAER’sPositionontheEuropeanQualificationsFramework(EQF)

CESAERStatementonQualityAssuranceandAccreditationofEngineeringEducation

50 b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6 51b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6

Governingbodies

ManagementCommittee2005–200�

President

Prof.Johann-DietrichWörner

PresidentofTechnischeUniversitätDarmstadt

Vice-President

Prof.Jan-EricSundgren

PresidentofChalmersUniversityofTechnology

Secretary

Prof.HervéBiausser

DirectorofEcoleCentraleParis

Treasurer

Prof.JeanBerlamont

FormerDirectorInternationalRelationsOffice

K.U.Leuven

ManagementCommittee2007

President

Prof.Johann-DietrichWörner

PresidentofTechnischeUniversitätDarmstadt

ChairmanoftheGermanAerospaceCenter(DLR)

asfrom01.03.07

Vice-President

Prof.HervéBiausser

DirectorofEcoleCentraleParis

Secretary

Prof.KarinMarkides

PresidentofChalmersUniversityofTechnology

Treasurer

Prof.JeanBerlamont

FormerDirectorInternationalRelationsOffice

K.U.Leuven

PresidentsofCESAER

1990-1993

Prof.JacquesLévy

DirectorParisTech

1994-1996

Prof.PatrickHolmes

ImperialCollegeLondon

1997-1998

Prof.KarelWakker,

RectorTechnischeUniversiteitDelft

1999-2000

Prof.KonradOsterwalder

RectorEidgenössischeTechnischeHochschuleZürich

2001-2002

Prof.JaumePagès

RectorUniversitatPolitècnicadeCatalunya

2003-2004

Prof.PaavoUronen

RectorHelsinkiUniversityofTechnology

2005-2007

Prof.Johann-DietrichWörner

PresidentTechnischeUniversitätDarmstadt

ChairmanDLR

CESAEROffice

Mr.JanGraafmans,SecretaryGeneral–until31.12.2006

Mrs.LieveConinx,LiaisonandCommunicationsOfficer

CorporateFeatures

Poznan University of Technology – Poland

• Prof.Dr.AdamHamrol,Rector

• Prof.Dr.AleksandraRakowska,

ProrectorforResearchandInternationalRelations

• Mr.EdwardSzmaus,OfficeofInternationalRelations

Universidad Politécnica de Madrid – Spain

• Prof.Dr.JavierUcedaAntolín,RectorMagnificus

• Prof.Dr.JoséManuelPáezBorrallo,

Vice-RectorforInternationalRelations

• Prof.Dr.ÁngelÁlvarezRodríguez,

AssociateVice-RectorforInternationalRelations

KTH, The Royal Institute of Technology – Sweden

• Prof.AndersFlodström,President

• Prof.RamonWyss,

Vice-PresidentInternationalEducation

Ecole Polytechnique Fédérale de Lausanne –

Switzerland

• Prof.MartinVetterli,

Vice-PresidentforInternationalRelations

• Dr.AntoineFromentin,

HeadoftheInternationalRelationsUnit

Technische Universiteit Eindhoven –

The Netherlands

• Prof.dr.ir.C.J.vanDuijn,RectorMagnificus

• Prof.Dr.SytseW.Douma,

DeanDepartmentofTechnologyManagement

Imperial College London – United Kingdom

• Prof.W.GarethJones,

ImperialCollegeDelegateforEurope

• Prof.DavidJ.Ewins,

ProRectorInternationalRelations

5�b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 652 b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6

NTNU, The Norwegian University of Science

and Technology – Norway

• Prof.BjørnTorgerStokke,

DeanofEngineeringstudies

• Mr.ÅgeSøsveen,SeniorAdviser

Chalmers University of Technology – Sweden

• Prof.KarinMarkides,PresidentandCEO

• Dr.JörgenSjöberg,SeniorAdviser

KTH, The Royal Institute of Technology – Sweden

• Prof.AndersEriksson,President

• Prof.RamonWyss,Vice-PresidentInternational

Education

Eidgenössische Technische Hochschule Zürich –

Switzerland

• Prof.Dr.KonradOsterwalder,Rector

• Dr.phil.ChristophNiedermann,ScientificSecretary

totheRector

Technische Universiteit Eindhoven –

The Netherlands

• Prof.dr.ir.C.J.vanDuijn,RectorMagnificus

• Prof.Dr.SytseW.Douma,

DeanDepartmentofTechnologyManagement

Imperial College London – United Kingdom

• Prof.JeffreyKramer,Dean,FacultyofEngineering

• Prof.MaryA.Ritter,

ProRectorforPostgraduateandInternationalAffairs

CorporateFeatures

BoardofDirectors2005–200�

Technische Universität Wien – Austria

• Prof.Dr.PeterSkalicky,Rector

• Prof.Dr.HansK.Kaiser,

Vice-RectorforAcademicAffairs

Katholieke Universiteit Leuven,

Faculteit Ingenieurswetenschappen – Belgium

• Prof.dr.ir.JeanBerlamont,

FormerDirectorInternationalRelationsOffice

• Prof.dr.ir.LudoFroyen,DeanFacultyofEngineering

Czech Technical University in Prague –

Czech Republic

• Prof.Ing.VáclavHavlícek,Rector

• Prof.RNDr.MiroslavVlcek,

Vice-RectorforInternationalRelations

Institut National des Sciences Appliquées

de Lyon – France

• Prof.AlainStorck,Director

• Prof.MartinRaynaud,

DirectorofInternationalRelations

Ecole Centrale Paris – France

• Prof.HervéBiausser,Director

• Prof.DanielGrimm,DeputyDirector

Rheinisch-Westfälische Technische Hochschule

Aachen – Germany

• Prof.Dr.BurkhardRauhut,Rector

• Dr.HeideNaderer,

DirectorInternationalRelationsOffice

Budapest University of Technology and

Economics – Hungary

• Prof.Dr.KárolyMolnár,Rector

• Prof.Dr.MiklósZrínyi,

ViceRectorforResearchandInternationalAffairs

Politecnico di Torino – Italy

• Prof.FrancescoProfumo,Rector

• Prof.CarloNaldi,

ViceRectorforInternationalRelations

^

^

BoardofDirectors2007-200�

Technische Universität Wien – Austria

• Prof.Dr.PeterSkalicky,Rector

• Prof.Dr.HansK.Kaiser,

Vice-RectorforAcademicAffairs

Katholieke Universiteit Leuven,

Faculteit Ingenieurswetenschappen – Belgium

• Prof.dr.ir.JeanBerlamont,

FormerDirectorInternationalRelationsOffice

• Prof.dr.ir.LudoFroyen,DeanFacultyofEngineering

Czech Technical University in Prague –

Czech Republic

• Prof.Ing.VáclavHavlícek,Rector

• Prof.RNDr.MiroslavVlcek,

Vice-RectorforInternationalRelations

Institut National des Sciences Appliquées

de Lyon – France

• Prof.AlainStorck,Director

• Prof.MartinRaynaud,

DirectorofInternationalRelations

Rheinisch-Westfälische Technische Hochschule

Aachen – Germany

• Prof.Dr.BurkhardRauhut,Rector

• Dr.HeideNaderer,

DirectorInternationalRelationsOffice

Technische Universität Ilmenau – Germany

• Prof.Dr.PeterScharff,Rector

• Prof.Dr.JürgenPetzold,Vice-RectorforEducation

Budapest University of Technology and

Economics – Hungary

• Prof.Dr.KárolyMolnár,Rector

• Prof.Dr.MiklósZrínyi,

ViceRectorforResearchandInternationalAffairs

Universita' degli Studi di Firenze,

Faculty of Engineering – Italy

• Prof.AugustiMarinelli,Rector

• Prof.Ing.ClaudioBorri,

ViceDeanforInternationalRelations

^

^

5� b i e n n i a l r e p o r t 2 0 0 5 - 2 0 0 6

Overall annual budget including Institution infrastructure Mio. 3

Austria TU Wien 157.71

Belgium UGent 402

KUL n.a.

UCL 324.00

Czech Republic Brno UT 85.00

CTU Prague 77.00

Denmark Aalborg U 77.20

DTU 230.80

Estonia Tallinn UT 42.48

Finland TKK 205.00

France ECP 37.00

SUPELEC 31.50

INP Grenoble 114.00

INSA Lyon 112.00

ParisTech n.a.

GEA 86.14

INSA Toulouse 36.72

Germany RWTH Aachen 548.00

TU Berlin 262.14

TU Braunschweig 155.00

TU Darmstadt 196.40

TU Dresden 344.10

TUHH 78.00

Leibniz U Hannover 212.00

TU Ilmenau 82.00

U Karlsruhe TH 254.08

TU München 415.60

U Stuttgart 191.35

Greece NTU Athens n.a.

TU Crete 9.73

AU Thessaloniki n.a.

Hungary BME 96.39

Ireland UC Dublin 300.00

Israel Technion IIT 137.00

Italy U Firenze 540.00

PoliMi 270.00

PoliTo 223.00

Lithuania Kaunas UT 50.00

Norway NTNU 457.36

Poland Poznan UT 5.57

Warsaw UT n.a.

Portugal IST Lisboa 106.62

U Porto 44.77

Romania UP Bucharest 45.94

Russia Tomsk PU 54.09

Spain UPC 267.19

UPM 360.00

UPV 218.61

Sweden Chalmers 220.00

KTH 296.00

Switzerland EPF Lausanne 370.00

ETH Zürich 660.00

The Netherlands TU Delft 470.00

TU Eindhoven 251.00

U Twente 321.00

Turkey Istanbul TU 90.00

United Kingdom Queen's 280.00

Heriot-Watt 128.41

Imperial 674.74

U Southampton 417.00

Remark: Numbers refer to the entire university.

AcademicFigures

F.T.E. F.T.E. scientific non-academic staff staff

1,466 863

633 128

1,232 186

1,015 1,186

1,015 1,274

1,563 1,707

1,093 439

854 889

907 813

2,533 614

200 280

168 127

421 414

569 520

n.a. n.a.

749 418

222 233

2,417 2,009

1,206 843

1,600 1,000

3,118 715

2,415 1,527

550 643

1,663 1,423

683 649

2,308 1,851

2,981 2,458

2,254 1,659

n.a. n.a.

260 120

354 257

1,192 1,788

285 88

573 1,150

2,368 1,577

2,809 1,031

890 800

1,318 1,578

2,606 1,715

1,177 691

2,430 n.a.

798 622

418 295

1,651 1,479

710 2,020

3,088 1,294

3,800 2,500

2,097 1,856

1,500 745

1,982 899

2,250 978

3,937 2,072

2,428 1,775

1,602 982

1,409 979

2,093 1,146

301 323

550 910

2,904 2,921

2,125 2,752

Institution

Overall number of enrolled full time undergraduate students (ba+ma)

National Non national

Male Female Male Female Total males Total females Grand total

Austria TU Wien 10403 2883 2328 1016 12731 3899 16630

Belgium UGent 2204 607 10 4 2214 611 2825

KUL 2249 723 456 212 2705 935 3640

UCL 1307 210 57 10 1364 220 1584

Czech Republic Brno UT 15487 3815 1009 252 16496 4067 20563

CTU Prague 17395 3541 1003 188 18398 3729 22127

Denmark Aalborg U 3616 1237 831 294 4447 1531 5978

DTU 4326 1308 442 198 4768 1506 6274

Estonia Tallinn UT 4662 3738 430 306 5092 4044 9136

Finland TKK 10041 2800 547 199 10588 2999 13587

France ECP 878 154 284 78 1162 232 1394

SUPELEC 1010 195 265 50 1275 245 1520

INP Grenoble 2737 820 434 153 3171 973 4144

INSA Lyon 3000 1300 1000 200 4000 1500 5500

ParisTech 11310 1690 n.a n.a 13000

GEA 2281 524 186 50 2467 574 3041

INSA Toulouse 1130 624 187 109 1317 733 2050

Germany RWTH Aachen 11899 3057 2857 913 14756 3970 18726

TU Berlin 15178 8579 3712 2347 18890 10926 29816

TU Braunschweig 11400 1500 n.a. n.a. 12900

TU Darmstadt 10986 4051 2998 1320 13984 5371 19355

TU Dresden 11370 4564 1064 577 12434 5141 17575

TUHH 3175 845 1008 372 4183 1217 5400

Leibniz U Hannover 10808 9705 2111 2124 12919 11829 24748

TU Ilmenau 4621 1598 457 219 5078 1817 6895

U Karlsruhe TH 10535 3626 2078 873 12613 4499 17112

TU München 8444 2767 2192 916 10636 3683 14319

U Stuttgart 10380 4383 2468 1919 12848 6302 19150

Greece NTU Athens 5830 1071 232 73 6062 1144 7206

TU Crete 3721 533 86 35 3807 568 4375

AU Thessaloniki 3220 3121 66 32 3286 3153 6439

Hungary BME 13588 4060 967 91 14555 4151 18706

Ireland UC Dublin 656 252 36 24 692 276 968

Israel Technion IIT 5736 2954 1844 1082 7580 4036 11616

Italy U Firenze 10308 7316 303 282 10611 7598 18209

PoliMi 37315 1028 n.a. n.a. 38343

PoliTo 26000 n.a. n.a. 26000

Lithuania Kaunas UT 5451 2793 29 12 5480 2805 8285

Norway NTNU 3934 2235 315 132 4249 2367 6616

Poland Poznan UT 14330 4415 84 6 14414 4421 18835

Warsaw UT 30521 n.a. n.a. 30521

Portugal IST Lisboa 6477 1836 236 59 6713 1895 8608

U Porto 4380 1113 140 56 4520 1169 5689

Romania UP Bucharest 24743 217 n.a. n.a. 24960

Russia Tomsk PU 11320 9261 767 627 12087 9888 21975

Spain UPC n.a. n.a. n.a. n.a. 20298 7380 27678

UPM 28300 13300 2700 700 31000 14000 45000

UPV 16337 9663 947 815 17284 10478 27762

Sweden Chalmers 4806 1514 874 276 5680 1790 7470

KTH 8702 3216 562 210 9264 3426 12690

Switzerland EPF Lausanne 2530 770 1270 330 3800 1100 4900

ETH Zürich 5887 2521 884 380 6771 2901 9672

The Netherlands TU Delft 12076 1487 10868 2695 13563

TU Eindhoven 5830 1071 232 73 6062 1144 7206

U Twente 3721 533 86 35 3807 568 4375

Turkey Istanbul TU 9433 3595 383 70 9816 3665 13481

United Kingdom Queen's 444 196 130 42 574 238 812

Heriot-Watt 1871 702 428 193 2299 895 3194

Imperial 3889 2991 4729 2,151 6880

U Southampton 1823 898 407 144 2230 1042 3272

Remarks:

1) Not all CESAER members are able to separate student numbers into male and female or national and non-national.

2) Numbers refer to 'engineering disciplines'. Disciplines included are: architecture, biology, chemistry, computer science, engineering, mathematics and physics.

AcademicFigures

Institution Degrees awarded

Masters PhD

Austria TU Wien 1,514 240

Belgium UGent 285 51

KUL 378 95

UCL 265 42

Czech Republic Brno UT 1,626 146

CTU Prague 1,906 117

Denmark Aalborg U 825 82

DTU 1,075 150

Estonia Tallinn UT 294 31

Finland TKK 1,017 150

France ECP 388 50

SUPELEC 469 43

INP Grenoble 867 183

INSA Lyon 1,140 130

ParisTech n.a. n.a.

GEA 1,058 73

INSA Toulouse 114 54

Germany RWTH Aachen 432 179

TU Berlin 2,130 420

TU Braunschweig 1,000 250

TU Darmstadt 1,262 253

TU Dresden 1,322 258

TUHH 448 82

Leibniz U Hannover 81 371

TU Ilmenau 727 53

U Karlsruhe TH 1,523 338

TU München 2,001 670

U Stuttgart 1,700 326

Greece NTU Athens 860 163

TU Crete 482 132

AU Thessaloniki 1,033 66

Hungary BME 1,519 10

Ireland UC Dublin 31 37

Israel Technion IIT 751 125

Italy U Firenze 85 177

PoliMi 1,688 197

PoliTo n.a. n.a.

Lithuania Kaunas UT 672 100

Norway NTNU 1,295 126

Poland Poznan UT 3,279 66

Warsaw UT n.a. n.a.

Portugal IST Lisboa 864 95

U Porto 722 52

Romania UP Bucharest 3,676 182

Russia Tomsk PU 3,591 80

Spain UPC 3,484 197

UPM 230 1,800

UPV 2,140 173

Sweden Chalmers 1,311 161

KTH 1,572 224

Switzerland EPF Lausanne 556 248

ETH Zürich 1,144 506

The Netherlands TU Delft 890 225

TU Eindhoven 860 163

U Twente 482 132

Turkey Istanbul TU 87 100

United Kingdom Queen's 303 118

Heriot-Watt 588 81

Imperial 1,732 340

U Southampton 263 223

Numbers refer to 'engineering disciplines'. Disciplines included are:

architecture, biology, chemistry, computer science, engineering, mathematics and physics

Member Institutions (*) status 01.01.2007 city country

Technische Universität Wien (TU Wien) Vienna Austria

Universiteit Gent – Faculteit Ingenieurswetenschappen (UGent) Ghent Belgium

Katholieke Universiteit Leuven – Faculteit Ingenieurswetenschappen (KUL) Leuven Belgium

Université catholique de Louvain – Faculté des Sciences Appl. (UCL) Louvain-la-Neuve Belgium

Brno University of Technology (Brno UT) Brno Czech Republic

Czech Technical University in Prague (CTU Prague) Prague Czech Republic

Aalborg Universitet – Faculty of Engineering and Science (Aalborg U) Aalborg Denmark

Technical University of Denmark (DTU) Lyngby Denmark

Tallinn University of Technology (Tallinn UT) Tallinn Estonia

Helsinki University of Technology (TKK) Helsinki Finland

École Centrale Paris (ECP) Chatenay-Malabry France

École Supérieure d’Électricité (SUPELEC) Gif-sur-Yvette France

Institut National Polytechnique de Grenoble (INP Grenoble) Grenoble France

Institut National des Sciences Appliquées de Lyon (INSA Lyon) Lyon France

ParisTech (ParisTech) Paris France

Groupe des Ecoles Aéronautiques et Spatiales (GEA) (SUPAERO, ENSICA, ENSMA, ENAC) Toulouse France

Institut National des Sciences Appliquées de Toulouse (INSA Toulouse) Toulouse France

Rheinisch-Westfälische Technische Hochschule (RWTH Aachen) Aachen Germany

Technische Universität Berlin (TU Berlin) Berlin Germany

Technische Universität Carolo-Wilhelmina zu Braunschweig (TU Braunschweig) Braunschweig Germany

Technische Universität Darmstadt (TU Darmstadt) Darmstadt Germany

Technische Universität Dresden (TU Dresden) Dresden Germany

Technische Universität Hamburg-Harburg (TUHH) Hamburg Germany

Gottfried Wilhelm Leibniz Universität Hannover (Leibniz U Hannover) Hannover Germany

Technische Universität Ilmenau (TU Ilmenau) Ilmenau Germany

Universität Karlsruhe (U Karlsruhe TH) Karlsruhe Germany

Technische Universität München (TU München) Munich Germany

Universität Stuttgart (U Stuttgart) Stuttgart Germany

National Technical University of Athens (NTU Athens) Athens Greece

Technical University of Crete (TU Crete) Chania, Crete Greece

Aristotle University of Thessaloniki – School of Engineering (AU Thessaloniki) Thessaloniki Greece

Budapest University of Technology and Economics (BME) Budapest Hungary

University College Dublin (UC Dublin) Dublin Ireland

Technion – Israel Institute of Technology (Technion IIT) Haifa Israel

Universita' degli Studi di Firenze – Facolta' di Ingegneria (U Firenze) Florence Italy

Politecnico di Milano (PoliMi) Milan Italy

Politecnico di Torino (PoliTo) Turin Italy

Kaunas University of Technology (Kaunas UT) Kaunas Lithuania

Norges Teknisk-naturvitenskapelige Universitet (NTNU) Trondheim Norway

Politechnika Poznanska (Poznan UT) Poznan Poland

Warsaw University of Technology (Warsaw UT) Warsaw Poland

Instituto Superior Técnico (IST Lisboa) Lisbon Portugal

Universidade do Porto, Faculdade de Engenharia (U Porto) Porto Portugal

Universitatea Politehnica Bucuresti (UP Bucharest) Bucharest Romania

Tomsk Polytechnic University (Tomsk PU) Tomsk Russia

Universitat Politècnica de Catalunya (UPC) Barcelona Spain

Universidad Politécnica de Madrid (UPM) Madrid Spain

Universidad Politécnica de Valencia (UPV) Valencia Spain

Chalmers University of Technology (Chalmers) Göteborg Sweden

The Royal Institute of Technology (KTH) Stockholm Sweden

Ecole Polytechnique Fédérale de Lausanne (EPF Lausanne) Lausanne Switzerland

Eidgenössische Technische Hochschule Zürich (ETH Zürich) Zürich Switzerland

Technische Universiteit Delft (TU Delft) Delft The Netherlands

Technische Universiteit Eindhoven (TU Eindhoven) Eindhoven The Netherlands

Universiteit Twente (U Twente) Enschede The Netherlands

Istanbul Technical University (Istanbul TU) Istanbul Turkey

Queen's University Belfast (Queen's) Belfast United Kingdom

Heriot-Watt University (Heriot-Watt) Edinburgh United Kingdom

Imperial College London (Imperial) London United Kingdom

University of Southampton (U Southampton) Southampton United Kingdom

(*)AbbreviationusedinAcademicFigures

CESAERMembers

Kasteelpark Arenberg 1 – B-3001 Leuven – BelgiumT +32 16 32 16 87 – F +32 16 32 85 [email protected] – www.cesaer.org De

sign

& la

yout

: d.c

om.p

ress

, Ker

n02

– Al

l im

ages

cou

rtes

y of

CES

AER

Mem

ber i

nstit

utio

ns