CECAccreditation_DesignGuidelinesFeb2013

download CECAccreditation_DesignGuidelinesFeb2013

of 20

Transcript of CECAccreditation_DesignGuidelinesFeb2013

  • 7/27/2019 CECAccreditation_DesignGuidelinesFeb2013

    1/20

    GRID-CONNECTEDSOLAR PV SYSTEMS

    NO BATTERY STORAGE

    Design Guidelines for Accredited Installers

    January 2013

    (Effective 1 February 2013)

  • 7/27/2019 CECAccreditation_DesignGuidelinesFeb2013

    2/20

    These guidelines have been developed by Clean Energy Council.They represent latest industry best practice for the design and installation

    of grid-connected PV systems. Copyright 2013

    While all care has been taken to ensure this guideline is free from omissionand error, no responsibility can be taken for the use of this information in the

    installation of any grid-connected power system.

  • 7/27/2019 CECAccreditation_DesignGuidelinesFeb2013

    3/20

    GRID-CONNECTED SOLAR PV SYSTEMS (no battery storage)

    Design guidelines for accredited installers

    Last update: January 2013 1 of18

    CONTENTS

    1 GENERAL 2

    2 DEFINITIONS 2

    3 DESIGNANDINSTALLATIONSTANDARDS 3

    4 LICENSING 3

    4.1 ExtraLowVoltage(ELV) 3

    4.2 LowVoltage(LV) 3

    5 DOCUMENTATION 4

    6 RESPONSIBILITIESOFSYSTEMDESIGNERS 4

    7 SITE-SPECIFICINFORMATION 5

    8 ENERGYYIELD 5

    8.1 EnergyYieldFormula 6

    8.2 Specificenergyyield 10

    8.3 Performanceratio 10

    9 INVERTERSELECTION 11

    9.1 Multipleinverters 11

    9.2 Invertersizing 11

    9.3 ArrayPeakPower 11

    9.4 Arraypeakpower-invertersizing 12

    9.5 Arrayde-ratingformula 13

    9.6 Matchinginverter/arrayvoltage 14

    9.7 Minimumvoltagewindow 15

    9.8 Maximumvoltagewindow 17

    9.9 InverterDCinputcurrent 18

    9.10 Effectsofshadows 18

  • 7/27/2019 CECAccreditation_DesignGuidelinesFeb2013

    4/20

    GRID-CONNECTED SOLAR PV SYSTEMS (no battery storage)

    Design guidelines for accredited installers

    Last update: January 2013 2 of18

    Theobjectivesoftheseguidelinesareto:

    improvethesafety,performanceandreliabilityofsolarphotovoltaicpowersystemsinstalled inthefield

    encourageindustrybestpracticeforalldesignandinstallationworkinvolvingsolar

    photovoltaicpowersystems

    provideanetworkofcompetentsolarphotovoltaicpowersystemsdesignersandinstallers

    toincreasetheuptakeofsolarphotovoltaicpowersystems,bygivingcustomersincreased

    confidenceinthedesignandinstallationwork.

    Theperformanceofareliableinstallationthatfulfilscustomerexpectationsrequiresboth

    carefuldesignandcorrectinstallationpractice.Compliancewithrelevantstatehealthandsafetyregulationsisalsonecessary.

    ThisdocumentusesthesameterminologyasoutlinedinAS/NZS5033.Twoimportantdefinitionsare:

    2.1.1 Wherethewordshallisused,thisindicatesthatastatementismandatory.

    2.1.2 Wherethewordshouldisused,thisindicatesthatastatementisarecommendation.

    1 GENERAL

    2 DEFINITIONS

    NOTE:Theseguidelinesalonedonotconstituteafullydefinitivesetofrulesand aretobereadinconjunctionwithallrelevantAustralianstandards.Where theseguidelineshaveadditionalrequirementsabovethatstatedinthe Australianstandardsthentheseguidelinesshouldbefollowed.

  • 7/27/2019 CECAccreditation_DesignGuidelinesFeb2013

    5/20

    GRID-CONNECTED SOLAR PV SYSTEMS (no battery storage)

    Design guidelines for accredited installers

    Last update: January 2013 3 of18

    Accreditedinstallersshallcomplywiththefollowingstandardswhereapplicable:

    3.1.1 Thegrid-interactiveinvertershallbetestedinaccordancewiththeAS4777(parts2and3) andlistedontheCleanEnergyCouncilsapprovedinverterlist.

    3.1.2 Thesystemshallcomplywiththerelevantelectricalserviceandinstallationrulesforthe

    statewherethesystemisinstalled. (NOTE:thelocalelectricitydistributormayhaveadditionalrequirements.)

    3.1.3 Theseguidelinessetadditionalrequirementstothestandards.Anaccreditedinstaller orsupervisorisexpectedtofollowtheseguidelinesinadditiontotherequirementswithin therelevantstandards.

    3.1.4 Theseguidelineswillbecomemandatoryon1February2013.

    3 STANDARDSFORINSTALLATION

    AS/NZS3000 WiringRules AS4777.1 Gridconnect-InstallationAS/NZS5033 InstallationofPhotovoltaic

    (PV)ArraysAS/NZS1768 LightningProtection

    AS/NZS4509.2 Stand-alonePowerSystems-Design

    AS/NZS3008 Selectionofcables

    AS1170.2 WindLoads

    4.1 ExtraLowVoltage(ELV)

    4.1.1 Allextralowvoltagewiringshouldbeperformedbyacompetentperson,whichis definedbytheAustralianStandardAS/NZS4509.1stand-alonepowersystemsas: apersonwhohasacquiredthroughtraining,qualifications,experienceoracombination ofthese,knowledgeandskillenablingthatpersontocorrectlyperformthetaskrequired.

    4.2 LowVoltage(LV)

    4.2.1 Alllowvoltagework:>120VDCor>50VACshallbeperformedbyalicensedelectrician.

    4.2.2 Alicensedelectricianisrequiredtoberesponsibleforthesafetyofthesystemwiringprior toconnectionofthesystemtothegrid.IfthesystemcontainsELVwiringinstalledby anon-licensedperson,thenaminimumlevelofinspectionbytheelectricianpriorto closingthePVarrayisolatorswouldinclude:anopencircuitvoltagetestoneachPV

    stringandonthetotalarray.AvisualinspectionofanopenPVjunctionbox(randomly selected)andthemasterarrayjunctionboxisrequiredtocompleteajob.

    Theseinspections/checksshallconfirm:

    thearrayvoltagesareasdesignedandspecified

    theappropriatecables(CSAandinsulation),junctionfittingsand enclosureshavebeenused.

    Boththenon-electricianELVinstaller,aswellasthelicensedelectrician, areexpectedtocarryoutthechecksontheELVwiring.

    4 LICENSING

  • 7/27/2019 CECAccreditation_DesignGuidelinesFeb2013

    6/20

    GRID-CONNECTED SOLAR PV SYSTEMS (no battery storage)

    Design guidelines for accredited installers

    Last update: January 2013 4 of18

    Thedesignerisrequiredtoprovidethefollowingdocumentationtotheinstaller:

    Alistofequipmentsupplied.

    Alistofactionstobetakenintheeventofanearthfaultalarm.

    Theshutdownandisolationprocedureforemergencyandmaintenance.

    AbasicconnectiondiagramthatincludestheelectricalratingsofthePVarray,andtheratingsof

    allovercurrentdevicesandswitchesasinstalled.

    Site-specificsystemperformanceestimate.

    Recommendedmaintenanceforthesystem.

    Maintenanceprocedureandtimetable.

    Systemdesignersmustcomplywiththefollowingresponsibilities.

    Providefullspecificationsofthesystemincludingquantity,makeandmodelnumberofthesolar modulesandinverter.

    Provideasitespecificfullsystemdesignincludingallshadingissues,orientationandtilt,alongwith thesystemssite-specificenergyyield,includingaveragedailyperformanceestimateinkWhfor eachmonthofsolargeneration.

    Ensurearraydesignwillfitonavailableroofspace.

    EnsurearraymountingframeinstallationwillcomplywithAS1170.2.

    Ensurearrayconfigurationiscompatiblewiththeinverterspecification.

    Ensureallequipmentisfitforpurposeandcorrectlyrated.

    Obtainwarrantyinformationonallequipment.

    Whendesigningagridconnectbatterybackupsystemthedesignshallbeperformedbyaperson(s) withCECgridconnecteddesignaccreditationandCECstand-alonedesignaccreditation.

    5 DOCUMENTATION

    6 RESPONSIBILITIES OFSYSTEMDESIGNERS

  • 7/27/2019 CECAccreditation_DesignGuidelinesFeb2013

    7/20

    GRID-CONNECTED SOLAR PV SYSTEMS (no battery storage)

    Design guidelines for accredited installers

    Last update: January 2013 5 of18

    Todesignasystemthefollowingsite-specificinformationisrequiredasaminimum:

    occupationalsafetyrisksofthesite(scaffolding,fallprotect,elevatedworkplatformrequired)

    whethertheroofissuitableformountingthearray

    solaraccessforthesite

    whetheranyshadingwilloccuranditsestimatedeffectonperformance

    orientationandtiltangleoftheroof

    wheretheinverterwillbelocated

    locationofACswitchboards

    whetheranyswitchboardormeteringalterationsarerequired.

    Australiansystemsaretypicallysoldbasedonpriceorthesizethatwillfitontotheavailableroofspace.Oncethesize,inkWp,isselectedthenthedesignershalldeterminethesystemsenergyoutputoveroneyear(knownastheenergyyield).

    7 SITE-SPECIFICINFORMATION

    8 ENERGYYIELD

    Therearemanycommercialtoolsavailabletoassistincalculatingenergyyield,forexamplePV-GC,SunEye,PVSyst,SolarPathfinder,etc.Someofthesemakeanallowanceforshading.

    Itisrecommendedtouseoneofthesetoolsonthesitevisittoprovideaccurateestimatesofenergyyield.

  • 7/27/2019 CECAccreditation_DesignGuidelinesFeb2013

    8/20

    GRID-CONNECTED SOLAR PV SYSTEMS (no battery storage)

    Design guidelines for accredited installers

    Last update: January 2013 6 of18

    8 ENERGYYIELD

    NOTE:Theaboveformulaforenergyyieldcouldberearrangedtodetermine

    thesizeofthearray,ifthesystemistobedesignedtoprovidea predeterminedamountofenergyperyear,forexamplewhena customerwantsasystemthatmeetstheirtotalannualenergyusage.

    8.1 ENERGYYIELDFORMULA

    Theaverageyearlyenergyyieldcanbeestimatedasfollows:

    Esys=Parray_STCxmanxdirtxtempxHtiltxpv_invx invx inv_sb

    where:

    8.1.1 Manufacturersoutputtolerance

    TheoutputofaPVmoduleisspecifiedinwatts,withamanufacturingtoleranceand isbasedonacelltemperatureof25C(STC). Example: A160Wmodulehasamanufacturerstoleranceof3%.Theworstcaseadjusted outputofthePVmoduleistherefore160Wx0.97=155.2W.

    8.1.2 De-ratingduetodirt

    TheoutputofaPVmodulecanbereducedasaresultofabuild-upofdirtonthesurface ofthemodule.Theactualvalueofthisde-ratingwillbedependentontheactuallocation butinsomecitylocationsthiscouldbehighduetotheamountofpollutionintheair.Ifin doubt,anacceptablede-ratingwouldbe5%.

    Example: Thede-ratedmoduleof155.2Wwouldbede-ratedbyafurther5%duetodirt: 155.2Wx0.95=147.4W.

    Esys = averageyearlyenergyoutputofthePVarray,inwatt-hours

    Parray_STC = ratedoutputpowerofthearrayunderstandardtestconditions,inwatts

    man = de-ratingfactorformanufacturingtolerance,dimensionless(refertosection4.2.1)

    dirt = de-ratingfactorfordirt,dimensionless(refertosection4.2.2)

    temp = temperaturede-ratingfactor,dimensionless(refertosection4.2.3)

    Htilt = Yearly(monthly)irradiationvalue(kWh/m2)fortheselectedsite

    (allowingfortilt,orientation)

    pv_inv = efficiencyofthesubsystem(cables)betweenthePVarrayandtheinverter

    inv = efficiencyoftheinverterdimensionless

    inv_sb = efficiencyofthesubsystem(cables)betweentheinverterandtheswitchboard.

  • 7/27/2019 CECAccreditation_DesignGuidelinesFeb2013

    9/20

    GRID-CONNECTED SOLAR PV SYSTEMS (no battery storage)

    Design guidelines for accredited installers

    Last update: January 2013 7 of18

    8.1.3 De-ratingduetotemperature

    Asaminimum,inaccordancewithAS4059.2,theaveragetemperatureofthecellwithin

    thePVmodulecanbeestimatedbythefollowingformula:

    Tcell.eff =Ta.day+25oC

    where:

    Tcell.eff =averagedailyeffectivecelltemperature,indegreesC

    Ta.day =daytimeaverageambienttemperature(forthemonthofinterest),indegreesC.

    Arrayframesinstand-alonepowersystemsaretypicallytiltedathigheranglesand themoduleshavegoodairflow.Withrooftopgrid-connectedsystems,highertemperatures havebeenobserved.

    Forgrid-connectsystemstheeffectivecelltemperatureisdeterminedbythe

    followingformula: Tcell.eff =Ta.day+Tr where:

    Tr =effectivetemperatureriseforspecifictypeofinstallation

    Ta.day =thedaytimeambienttemperatureinC.

    Solarmoduleseachhavedifferenttemperaturecoefficients.Thesetypicallyrangefrom +0.2%/Cto-0.5%/Cdependantonmoduletechnology.(Refertothemanufacturers datasheetforexactvalues). Thede-ratingofthearrayduetotemperaturewillbedependentonthetypeofmodule

    installedandtheaverageambientmaximumtemperatureforthelocation.

    8 ENERGYYIELD

    Itisrecommendedthatthefollowingtemperaturerise(Tr)appliesfordifferentarrayframes:

    paralleltoroof(150mmstandoff):+30C top-of-polemount,freestandingframeandframeonroofwithtiltangle ofabout+20degreestoslopeofroof:+25C.

  • 7/27/2019 CECAccreditation_DesignGuidelinesFeb2013

    10/20

    GRID-CONNECTED SOLAR PV SYSTEMS (no battery storage)

    Design guidelines for accredited installers

    Last update: January 2013 8 of18

    Example continued:

    Assumetheaverageambienttemperatureis25C(Ta.day)andthemodule ispolycrystallineandframeisparalleltoroofbutlessthan150mmoffroof.

    Theaveragedailyeffectivecelltemperatureis:

    Tcell.eff=Ta.day+35=25+35=60C Intheaboveformulatheabsolutevalueofthetemperaturecoefficient()is applied,thisis-0.5%/Candcelltemperatureatstandardtestconditionsis

    25C(Tstc) Thereforetheeffectivede-ratingfactorduetotemperatureis: 1+[-0.5%X(6025)]=1-17.5%=0.825 Thetemperaturede-ratingbecomes82.5%of147.4Wor121.6W.

    8.1.4 Solarirradiationdata

    Solarirradiationdataisavailablefromvarioussources,suchastheAustralianSolar RadiationDataHandbookortheMeteorologicalBureau.Theunitsusedareoften

    MJ/m/day.ToconverttokWh/m/day(PSH)divideby3.6.

    8 ENERGYYIELD

    8.1.3a Temperaturede-ratingformula Thetemperaturede-ratingfactoriscalculatedasfollows:

    temp =1+((Tcell.eff-Tstc)) where:

    temp =temperaturede-ratingfactor,dimensionless =valueofpowertemperaturecoefficientperdegreesC(seeabove)

    Tcell.eff =averagedailycelltemperature,indegreesC Tstc =celltemperatureatstandardtestconditions,indegreesC.

    NOTE:Themanufacturersspecifiedvalueofpowertemperaturecoefficient isappliedincludethe-vesignasshownonthedatasheet.Theformula determineswhetherthetemperaturefactorisgreaterorlessthan1due toactualeffectivetemperatureofthecell.

    NOTE:Grid-connectedsolarPVsystemsaretypicallymountedontheroofof thehouseorbuilding.Theroofmightnotbefacingtruenorthoratthe optimumtiltangle.ThePSHfigurefortherooforientation(azimuth) andpitch(tiltangle)shallbeusedwhenundertakingthedesign.

  • 7/27/2019 CECAccreditation_DesignGuidelinesFeb2013

    11/20

    GRID-CONNECTED SOLAR PV SYSTEMS (no battery storage)

    Design guidelines for accredited installers

    Last update: January 2013 9 of18

    8.1.5 Effectoforientationandtilt

    Whentheroofisnotorientatedtruenorthand/ornotattheoptimuminclination,

    theoutputfromthearraywillbelessthanthemaximumpossible.

    Tablesareavailabletodownloadfromsolaraccreditation.com.authatcontain thefollowinginformation:

    averagedailytotalirradiationforvariousorientationsandinclinationanglesfor eachmonthoftheyear,representedasapercentageofthetotaldailyirradiation fallingonahorizontalsurface.

    Thetablesprovidethedesignerwithinformationontheexpectedaveragedailytotal irradiationforvariousorientationsandinclinationanglesforeachmonthoftheyearas apercentageofthetotaldailyirradiationfallingonahorizontalsurface(whenthearray islocatedflatonahorizontalsurface).Thetablesalsoprovidethedesignerwith informationtocalculatetheenergyyieldoftheaveragedailyperformanceestimate

    inkWhforeachmonthofsolargeneration.

    Tablesareavailabletodownloadfrom solaraccreditation.com.auforthefollowing majorcities:

    Hobart Melbourne Canberra Sydney Brisbane Cairns Adelaide AliceSprings Darwin Perth

    8.1.6 DCcableloss ItisrecommendedthatthemaximumvoltagedropbetweenthePVarrayandtheinverter isnogreaterthan3%. Example continued: Thede-ratedmoduleof121.6Wwouldbede-ratedbyafurther3%duetoDCcableloss: 121.6Wx0.97=118W.

    8.1.7 Inverterefficiency Thisisobtainedfromtheinverterspecifications. Example continued (using an inverter efficiency specification of 90%): Thede-ratedmoduleof118Wwouldbede-ratedbyafurther10%duetoinverterefficiency: 118Wx0.90=106.2W.

    8.1.8 ACCableloss Itisrecommendedthatthevoltagedropbetweentheinverterandthemainswitchboard notgreaterthan1%

    Example continued: Thede-ratedmoduleof106.2Wwouldbede-ratedbyafurther1%duetoACcableloss: 106.2Wx0.99=105.1W.

    8 ENERGYYIELD

  • 7/27/2019 CECAccreditation_DesignGuidelinesFeb2013

    12/20

    GRID-CONNECTED SOLAR PV SYSTEMS (no battery storage)

    Design guidelines for accredited installers

    Last update: January 2013 10 of18

    8 ENERGYYIELD

    8.2 SPECIFICENERGYYIELD

    ThespecificenergyyieldisexpressedinkWhperkWpandiscalculatedasfollows:

    SY=

    EsysParray_STC

    Tocomparetheperformanceofsystemsindifferentregions,shadinglossmustbeeliminated fromthecalculationofenergyyieldforthesitesbeingcompared.

    8.3 PERFORMANCERATIO

    Theperformanceratio(PR)isusedtoassesstheinstallationquality.Theperformanceratio iscalculatedasfollows:

    PR=

    EsysEideal

    where:

    Esys =actualyearlyenergyyieldfromthesystem

    Eideal =theidealenergyoutputofthearray.

    ThePVarraysidealenergyyieldEidealcandeterminedtwoways.

    Method1:

    Eideal=Parray_STCxHtilt where:

    Htilt =yearlyaveragedailyirradiation,inkWh/m2forthespecifiedtiltangle

    Parray_STC=ratedoutputpowerofthearrayunderstandardtestconditions,inwatts

    Method2:

    Eideal=Hpvxpv where:

    Hpv =actualirradiationthatfallsonthearraysurfacearea

    pv =efficiencyofthePVmodules

    and

    Hpv=HtiltxApv where:

    Htilt =yearlyaveragedailyirradiation,inkWh/m2forthespecifiedtiltangle

    Apv = totalareaofthePVarray.

  • 7/27/2019 CECAccreditation_DesignGuidelinesFeb2013

    13/20

    GRID-CONNECTED SOLAR PV SYSTEMS (no battery storage)

    Design guidelines for accredited installers

    Last update: January 2013 11 of18

    Theselectionoftheinverterfortheinstallationwilldependon:

    theenergyoutputofthearray

    thematchingoftheallowableinverterstringconfigurationswiththesizeofthearrayinkW andthesizeoftheindividualmoduleswithinthatarray

    whetherthesystemwillhaveonecentralinverterormultiple(smaller)inverters.

    9.1 MULTIPLEINVERTERS

    9.1.1 Ifthearrayisspreadoveranumberofroovesthathavedifferentorientationsand/ortilt anglesthenthemaximumpowerpointsandoutputcurrentswillvary.Ifeconomic,installing aseparateinverterforeachsectionofthearraywhichhasthesameorientationandangle willmaximisetheoutputthetotalarray. Thiscouldalsobeachievedbyusinganinverterwithmultiplemaximumpowerpoint trackers(MPPTs).

    9.1.2 Multipleinvertersallowaportionofthesystemtocontinuetooperateevenif oneinverterfails.

    9.1.3 Multipleinvertersallowthesystemtobemodular,sothatincreasingthesysteminvolves addingapredeterminednumberofmoduleswithoneinverter.

    9.1.4 Multipleinvertersbetterbalancephasesinaccordancewithlocalutilityrequirements.

    Thepotentialdisadvantageofmultipleinvertersisthatingeneral,thecostofanumberofinverters withlowerpowerratingsisgenerallymoreexpensive.

    9.2 INVERTERSIZING

    Inverterscurrentlyavailablearetypicallyratedfor:

    maximumDCinputpoweri.e.thesizeofthearrayinpeakwatts

    maximumDCinputcurrent maximumspecifiedoutputpoweri.e.theACpowertheycanprovidetothegrid.

    9.3 ARRAYPEAKPOWER

    Thepeakpowerofthearrayiscalculatedusingthefollowingformula:

    ArrayPeakPower=Numberofmodulesinthearrayxtheratedmaximumpower(Pmp) oftheselectedmoduleatSTC.

    9 INVERTERSELECTION

  • 7/27/2019 CECAccreditation_DesignGuidelinesFeb2013

    14/20

    GRID-CONNECTED SOLAR PV SYSTEMS (no battery storage)

    Design guidelines for accredited installers

    Last update: January 2013 12 of18

    SYSTEM 1 SYSTEM 2 SYSTEM 3 SYSTEM 4

    a)Proposedarraypeakpower(eg10x200W) 2000 2000 2000 2000

    b)75%ofproposedarraypeakpower(Watts) 1500 1500 1500 1500

    c)Invertermanufacturersmaximumallowablearraysizespec(Watts)

    2100 1900 2100 1900

    d)InvertermanufacturersnominalACpower

    rating(Watts)

    1700 1700 1200 1200

    Ismanufacturersmaxallowablearraysizespecgreaterthanarraypeakpower(c>a)?

    YES NO YES NO

    IsinverternominalACpowergreaterthan75%ofproposedarraypeakpower(d>b)

    YES YES NO NO

    ProposedarraypeakpowerInvertersizingacceptable

    YES NO NO NO

    Worked example:

    Usingthedesignguidelinesithasbeendeterminedthatanarrayof6080Wpeak(32X190Wpanels) willmeetthecustomersneeds(offsetenergyusage,fitonavailableroofspace,meets customersbudget).

    Thereforeweneedtocalculatewhat75%ofthearrayis: 6080WX0.75=4560W.

    ThismeanstheinverterforthisarraycannothaveanominalACpoweroutputoflessthan 4560Wandthemanufacturerallowsanarrayof6080Wpeaktobeconnectedtoit.

    Wherethemaximumallowablearraysizespecificationisnotspecifiedbytheinvertermanufacturer thedesignershallmatchthearraytotheinverterallowingforthede-ratingofthearray (seesection8.1.1to8.1.4).

    9.4 ARRAYPEAKPOWERINVERTERSIZING

    InordertofacilitatetheefficientdesignofPVsystemstheinverternominalACpoweroutput

    cannotbelessthan75%ofthearraypeakpoweranditshallnotbeoutsidetheinverter manufacturersmaximumallowablearraysizespecifications.

    Example of a 2kW array and 4 inverters with different specification

    9 INVERTERSELECTION

    NOTE:Theinvertermanufacturersspecificationshallbeadheredto.

  • 7/27/2019 CECAccreditation_DesignGuidelinesFeb2013

    15/20

    GRID-CONNECTED SOLAR PV SYSTEMS (no battery storage)

    Design guidelines for accredited installers

    Last update: January 2013 13 of18

    9.5 ARRAYDE-RATINGFORMULA

    Inthesectiononde-ratingmoduleperformance,thetypicalPVarrayoutputinwattsisde-rated

    dueto:

    manufacturerstoleranceofthemodules dirtandtemperature.

    9.5.1 Inverterwithcrystallinemodules

    Basedonfiguresof:

    0.97formanufacture

    0.95fordirt

    0.825fortemperature(basedonambientof35C).(Refertosection8.1.3)

    Thede-ratingofthearrayis:

    0.97x0.95x0.825=0.76 Asaresultofthistypeofde-ratingbeingexperiencedinthefield,theinvertercan berated76%ofthepeakpowerofthearray.

    9.5.2 Inverterwiththinfilmmodules

    Thetemperatureeffectonthinfilmmodulesislessthanthatoncrystallinemodules. Assumingthetemperaturecoefficientisonly0.1%thenthetemperaturede-ratingat ambienttemperatureof35Cis0.965. Basedonfiguresof:

    0.97formanufacturer 0.95fordirt

    0.965fortemperature(basedonambientof35C. Thede-ratingofthearrayis:0.97x0.95x0.965=0.889

    Asaresultofthistypeofde-ratingbeingexperiencedinthefield,theinvertercaneasily berated89%ofthepeakpowerofthearray.

    Example: Assumethearraycomprises16ofthe160Wpcrystallinemodulesthenthearraypeak power=16x160=2.56kW.TheinvertershouldhaveamaximumDCinputratingofat leastof2.56kWandanominalACpoweroutputratingof1.92kW(2.56kWX75%).

    IfthemanufacturerdoesnotprovideDCinputspecificationsthenfollowingthe aboveguidelines.

    Thisarraycanbeconnectedtoaninverterwithanoutputratingof: 0.76x2.56kW=1.95kW(forcrystallinemodules)

    Ifthinfilmmodulesareusedthentheinvertercouldhaveanoutputratingof: 0.889x2.56kW=2.27kW

    9 INVERTERSELECTION

  • 7/27/2019 CECAccreditation_DesignGuidelinesFeb2013

    16/20

    GRID-CONNECTED SOLAR PV SYSTEMS (no battery storage)

    Design guidelines for accredited installers

    Last update: January 2013 14 of18

    9.6 MATCHINGINVERTER/ARRAYVOLTAGE Theoutputpowerofasolarmoduleisaffectedbythetemperatureofthesolarcells.Incrystalline

    PVmodulesthiseffectcanbeasmuchas-0.5%forevery1degreevariationintemperature. (NOTE:forotherPVcelltechnologiesthemanufacturersdatamustbeused).

    Thetemperaturede-ratingfactorfortheoutputpoweris:

    Ftemp=1+[ x (Tcell_eff-TSTC)] where:

    Ftemp=temperaturede-ratingfactor,dimensionless =powertemperatureco-efficientperC(typically0.005forcrystallinecells)

    Tcell_eff=averagedailycelltemperature,inC(seesectionontemperatureeffectonmodules) TSTC =celltemperatureatstandardtestconditions,measuredinC.

    Themaximumpowerpointvoltageandopencircuitvoltageareaffectedbytemperatureandthe temperatureco-efficientasa%istypicallyverysimilartothepowercoefficient. The-maximum-effectivecelltemperatureC

    Tcell_eff=Tave_amb+Tr where:

    Tcell_eff =theeffectivecelltemperatureinCTave_amb=thedaytimeambienttemperatureinCTr =thetemperaturerisedependentonarrayframetypeinC

    (refertosectionontemperaturede-ratingofsolararrayfortypicalvalues)

    Theformulaonpage13canalsobeappliedasthede-ratingfactorforopencircuitvoltageand maximumpowerpointvoltage.Withtheoddexception,grid-interactiveinvertersincludemaximum powerpointtrackers(MPPTs).

    Manyoftheinvertersavailablewillhaveavoltageoperatingwindow.Ifthesolararrayvoltage isoutsidethiswindowtheneithertheinverterwillnotoperateortheoutputpowerofthesystemwill begreatlyreduced.Minimumandmaximuminputvoltageswillbespecifiedbythemanufacturer. Themaximumvoltageisthevoltagewhereabovethistheinvertercouldbedamaged.Some inverterswillnominateavoltagewindowwheretheywilloperateandthenamaximumvoltage, higherthanthemaximumoperatingvoltageofthewindow,whichisthevoltagewheretheinverter couldbedamaged.

    Forthebestperformanceofthesystemtheoutputvoltageofthesolararrayshouldbematchedto

    theoperatingvoltagesoftheinverter.Tominimisetheriskofdamagetotheinverter,themaximum voltageoftheinvertershallneverbereached.

    Asstatedearlier,theoutputvoltageofamoduleiseffectedbycelltemperaturechangesinasimilar wayastheoutputpower.

    ThePVmodulemanufacturerswillprovideavoltagetemperatureco-efficient.Itisgenerally specifiedinV/C(ormV/C)butitcanbeexpressedasa%/C.

    Todesignsystemswheretheoutputvoltagesofthearraydonotfalloutsidetherangeofthe invertersDCoperatingvoltagesandmaximumvoltage(ifdifferent),theminimumandmaximum daytimetemperaturesforthatspecificsitearerequired.

    9 INVERTERSELECTION

  • 7/27/2019 CECAccreditation_DesignGuidelinesFeb2013

    17/20

  • 7/27/2019 CECAccreditation_DesignGuidelinesFeb2013

    18/20

    GRID-CONNECTED SOLAR PV SYSTEMS (no battery storage)

    Design guidelines for accredited installers

    Last update: January 2013 16 of18

    9.7 MINIMUMVOLTAGEWINDOW

    Worked example: Assumethattheminimumvoltagewindowforaninverteris140V.Themoduleselectedhasarated

    MPPvoltageof35.4Vandavoltage(Vmp)co-efficientof-0.177V/C UsingequationforVmp_cell.effabove,theminimumMPPvoltageatamaximumeffectivecell temperatureof70C,thetemperaturede-ratingis:

    Vmin_mpp= 35.4+[-0.177 x (70-25)] = 27.4V

    Ifweassumeamaximumvoltagedropinthecablesof3%thenthevoltageattheinverterforeach modulewouldbe

    0.97x27.4=26.6V

    ThisistheeffectiveminimumMPPvoltageinputattheinverterforeachmoduleinthearray,

    Vmin_mpp_inv

    Theminimumnumberofmodulesinthestringcanbedeterminedbythefollowingequation:

    N

    min_per_string=

    Vinv_min(V)Vmin_mpp_inv(V)

    where:

    Vinv_min =theminimuminverterinputvoltage

    Vmin_mpp_inv =theeffectiveminimumMPPvoltageofamoduleattheinverterat maximumeffectivecelltemperature Theminimumvoltageallowedattheinverter,inthisexample,is140V. TheMPPvoltageriseswithincreasesinirradiance.Sincethearrayistypicallyoperatingwith irradiancelevelslessthan1kW/mthentheactualMPPvoltagewouldbereduced.

    Intheworkedexampleabove,aminimuminvertervoltageof1.1x140V=154Vshouldbeused. Theminimumnumberofmodulesinastringis:

    Nmin_per_string=154/26.6=5.8roundedupto6modules.

    9 INVERTERSELECTION

    NOTE:Theexactvariationisdependentonthequalityofthesolarcellsoit isrecommendedthatasafetymarginof10%isused

  • 7/27/2019 CECAccreditation_DesignGuidelinesFeb2013

    19/20

    GRID-CONNECTED SOLAR PV SYSTEMS (no battery storage)

    Design guidelines for accredited installers

    Last update: January 2013 17 of18

    9.8 MAXIMUMVOLTAGEWINDOW

    Atthecoldestdaytimetemperaturetheopencircuitvoltageofthearrayshallneverbegreaterthan themaximumallowedinputvoltagefortheinverter.Theopencircuitvoltage(Voc)isusedbecause thisisgreaterthantheMPPvoltageanditistheappliedvoltagewhenthesystemisfirstconnected (priortotheinverterstartingtooperateandconnectingtothegrid).

    Inearlymorning,atfirstlight,thecelltemperaturewillbeveryclosetotheambienttemperature becausethesunhasnothadtimetoheatupthemodule.Therefore,thelowestdaytimetemperature fortheareawherethesystemisinstalledshallbeusedtodeterminethemaximumVoc. Thisisdeterminedbythefollowingequation:

    Vmax_oc= Voc_STC+[v x (Tmin- TSTC)]

    where:

    Vmax_oc =Opencircuitvoltageatminimumcelltemperature,volts Voc_STC =OpencircuitvoltageatSTC,volts

    v =voltagetemperatureVocco-efficient,-V/C Tmin =expectedmin.dailycelltemperature,C TSTC =celltemperatureSTC,C

    InmanyareasofAustralia,theminimumdaytimeambienttemperaturecanbelessthan0Cwhile thereareareaswhereitneverfallsbelow20C.

    9 INVERTERSELECTION

    NOTE:Someinvertersprovideamaximumvoltageforoperationandahigher voltageasthemaximumallowedvoltage.Inthissituation,theMPPvoltage isusedfortheoperationwindowandtheopencircuitvoltageforthe maximumallowedvoltage.

    NOTE:Itisrecommendedthatthedesignerusetheminimumtemperaturefor theareawherethesystemwillbeinstalled.

  • 7/27/2019 CECAccreditation_DesignGuidelinesFeb2013

    20/20

    GRID-CONNECTED SOLAR PV SYSTEMS (no battery storage)

    Design guidelines for accredited installers

    9.8 MAXIMUMVOLTAGEWINDOW

    Intheworkedexample,assumetheminimumeffectivecelltemperatureis0C:Voc_STCis43.2V

    andthemaximumopencircuitvoltage-atminimumeffectivetemperatureis:

    Voc_max =43.2+(-0.16(0-25)) =43.26+(-0.16x-25) =43.2+4 =47.2V

    Forourexample,assumingthemaximumvoltageallowedbytheinverteris400V(Vinv_max)

    Themaximumnumberofmodulesinthestring,Nmax_per_string,isdeterminedby thefollowingequation:

    N

    max_per_string=

    Vinv_max(V)Voc_max(V)

    =400/47.2=8.47roundeddownto8modules

    Intheexamplepresented,thePVstringmustconsistofbetween6-8modulesonly. Intheworkedexample,forsizingtheinverter16moduleswererequired.

    Thereforewecouldhavetwoparallelstringsof8modules.

    9.9 INVERTERDCINPUTCURRENT EnsurethatthetotalshortcircuitcurrentofthearraydoesnotexceedthemaxDCinputcurrent specificationoftheinverter.

    9.10 EFFECTSOFSHADOWS

    Intownsandcitieswheregrid-connectedPVsystemswillbedominant,theroofofthehouseor buildingwillnotalwaysbefreeofshadowsduringpartsoftheday.Careshouldbetakenwhen selectingthenumberofmodulesinastringbecauseshadingcouldresultinthemaximumpower pointvoltageathightemperaturesbeingbelowtheminimumoperatingvoltageoftheinverter.

    9 INVERTERSELECTION