CE472 - KSUfac.ksu.edu.sa/sites/default/files/one way solid slab_1.pdfΒ Β· CE472 Eng.ALI ALQARNI...

19
CE472 Eng.ALI ALQARNI Page 1

Transcript of CE472 - KSUfac.ksu.edu.sa/sites/default/files/one way solid slab_1.pdfΒ Β· CE472 Eng.ALI ALQARNI...

Page 1: CE472 - KSUfac.ksu.edu.sa/sites/default/files/one way solid slab_1.pdfΒ Β· CE472 Eng.ALI ALQARNI Page 6 Example 1: The figure shown below shows the architectural plan for 3-story building.

CE472

Eng.ALI ALQARNI Page 1

Page 2: CE472 - KSUfac.ksu.edu.sa/sites/default/files/one way solid slab_1.pdfΒ Β· CE472 Eng.ALI ALQARNI Page 6 Example 1: The figure shown below shows the architectural plan for 3-story building.

CE472

Eng.ALI ALQARNI Page 2

Page 3: CE472 - KSUfac.ksu.edu.sa/sites/default/files/one way solid slab_1.pdfΒ Β· CE472 Eng.ALI ALQARNI Page 6 Example 1: The figure shown below shows the architectural plan for 3-story building.

CE472

Eng.ALI ALQARNI Page 3

Page 4: CE472 - KSUfac.ksu.edu.sa/sites/default/files/one way solid slab_1.pdfΒ Β· CE472 Eng.ALI ALQARNI Page 6 Example 1: The figure shown below shows the architectural plan for 3-story building.

CE472

Eng.ALI ALQARNI Page 4

One way Solid Slab formula:

𝑅𝑛 =𝑀𝑒 0.9

1000 βˆ— 𝑑2βˆ— 106 = ___π‘€π‘π‘Ž , 𝑑 = 𝑕 βˆ’ 20βˆ’

𝑑𝑏2

= ___π‘šπ‘š

π‘š =𝑓𝑦

0.85 βˆ— 𝑓𝑐= __ , 𝜌 =

1

π‘š 1βˆ’ 1βˆ’

2 βˆ— 𝑅𝑛 βˆ— π‘š

𝑓𝑦 = __

𝐴𝑠 = 𝜌 βˆ— 1000 βˆ— 𝑑 = __ π‘šπ‘š2 , 𝐴𝑠 π‘šπ‘–π‘› = 0.0018 βˆ— 1000 βˆ— 𝑕 = __ π‘šπ‘š2

π‘†π‘šπ‘Žπ‘₯ = min π΄π‘π΄π‘ βˆ— 1000 , 300π‘šπ‘š , 2 βˆ— 𝑕 = __ π‘šπ‘š

π‘“π‘œπ‘Ÿ 𝑓𝑙𝑒π‘₯π‘’π‘Ÿπ‘Žπ‘™ β†’ 𝑒𝑠𝑒 βˆ…π‘‘π‘@π‘†π‘šπ‘Žπ‘₯

𝐴𝑠 π‘šπ‘–π‘› = 0.0018 βˆ— 1000 βˆ— 𝑕 = ___ π‘šπ‘š2

π‘†π‘šπ‘Žπ‘₯ = min π΄π‘π΄π‘ βˆ— 1000 , 300π‘šπ‘š , 4 βˆ— 𝑕 = __π‘šπ‘š

π‘“π‘œπ‘Ÿ π‘ π‘•π‘Ÿπ‘–π‘›π‘˜π‘Žπ‘”π‘’ β†’ 𝑒𝑠𝑒 βˆ…π‘‘π‘@π‘†π‘šπ‘Žπ‘₯

Beam formula:-

𝑅𝑛 =𝑀𝑒 0.9

1000 βˆ— 𝑑2βˆ— 106 = ___π‘€π‘π‘Ž

𝑑 = 600βˆ’ 40βˆ’ 𝑑𝑠 βˆ’π‘‘π‘2

= ___ π‘šπ‘š π‘œπ‘›π‘’ π‘™π‘Žπ‘¦π‘’π‘Ÿ

𝑑 = 600βˆ’ 40βˆ’ 𝑑𝑠 βˆ’ 25βˆ’π‘†

2= ___ π‘šπ‘š π‘‘π‘€π‘œ π‘™π‘Žπ‘¦π‘’π‘Ÿ

π‘š =𝑓𝑦

0.85 βˆ— 𝑓𝑐= ___ , 𝜌 =

1

π‘š 1βˆ’ 1βˆ’

2 βˆ— 𝑅𝑛 βˆ— π‘š

𝑓𝑦 = ___

𝐴𝑠 = 𝜌 βˆ— 𝑏 βˆ— 𝑑 = __ π‘šπ‘š2 ,

𝐴𝑠 π‘šπ‘–π‘› (1) =1.4

420βˆ— 𝑏𝑀 βˆ— 𝑑 = __π‘šπ‘š2

𝐴𝑠 π‘šπ‘–π‘› (2) = 𝑓𝑐

4 βˆ— 420βˆ— 𝑏𝑀 βˆ— 𝑑 = ___ π‘šπ‘š2

𝐴𝑠 π‘šπ‘–π‘› = max 𝐴𝑠 π‘šπ‘–π‘› 1 ,𝐴𝑠 π‘šπ‘–π‘› 2 = __π‘šπ‘š2

π‘π‘•π‘’π‘π‘˜ 𝐴𝑠 > 𝐴𝑠 π‘šπ‘–π‘› π‘œπ‘˜

Page 5: CE472 - KSUfac.ksu.edu.sa/sites/default/files/one way solid slab_1.pdfΒ Β· CE472 Eng.ALI ALQARNI Page 6 Example 1: The figure shown below shows the architectural plan for 3-story building.

CE472

Eng.ALI ALQARNI Page 5

𝑛 =𝐴𝑠

𝐴𝑏 = π‘Ÿπ‘’π‘Žπ‘™ π‘›π‘’π‘šπ‘π‘’π‘Ÿ

π‘π‘•π‘’π‘π‘˜ π‘π‘šπ‘–π‘› = 80 + 60 + 𝑛 βˆ’ 1 𝑑𝑏 + 25 > 𝑏 π‘œπ‘˜

𝑖𝑓 π‘Žπ‘π‘‘

= 𝛽1 600

600 + 𝑓𝑦 >

π‘Ž

𝑑 ∴ 𝑓𝑠=𝑓𝑦

𝑖𝑓 π‘Žπ‘‡πΆπΏπ‘‘π‘‘

= 0.375 𝛽1 >π‘Ž

𝑑𝑑 ∴ π‘‡π‘’π‘›π‘ π‘–π‘œπ‘› βˆ’ π‘π‘œπ‘›π‘‘π‘Ÿπ‘œπ‘™π‘™π‘’π‘‘ π‘ π‘’π‘π‘‘π‘–π‘œπ‘›

βˆ…π‘‰π‘ = 0.75 βˆ— 𝑓𝑐

6βˆ— 𝑏𝑀 βˆ— 𝑑 βˆ— 10βˆ’3 = ___π‘˜π‘›

𝑉𝑠 =𝑉𝑒 βˆ’ βˆ…π‘‰π‘

0.75= __π‘˜π‘›

𝐴𝑣 = 2 βˆ— πœ‹π‘‘π‘ 

2

4= ___ π‘šπ‘š2 (π‘‘π‘€π‘œ 𝑙𝑒𝑔)

𝑆 =𝐴𝑣 βˆ— 𝑓𝑦 βˆ— 𝑑

π‘‰π‘ βˆ— 10βˆ’3___π‘šπ‘š

𝑖𝑓 𝑉𝑠 ≀ 2𝑉𝑐

π‘†π‘šπ‘Žπ‘₯ = min(600 ,𝑑

2 )

𝑖𝑓 2𝑉𝑐 < 𝑉𝑠 ≀ 4𝑉𝑐

π‘†π‘šπ‘Žπ‘₯ = min 300 ,𝑑

4

𝑖𝑓 𝑉𝑠 > 4𝑉𝑐

𝑛𝑒𝑒𝑑 π‘‘π‘œ π‘–π‘›π‘π‘Ÿπ‘’π‘ π‘’ 𝑑𝑕𝑒 π‘ π‘’π‘π‘‘π‘–π‘œπ‘›

𝑖𝑓 𝑉𝑒 <1

2βˆ…π‘‰π‘

π‘›π‘œ 𝑛𝑒𝑒𝑑 π‘“π‘œπ‘Ÿ π‘ π‘•π‘’π‘Žπ‘Ÿ π‘Ÿπ‘’π‘–π‘›π‘“π‘œπ‘Ÿπ‘π‘šπ‘’π‘›π‘‘

𝑖𝑓 βˆ…π‘‰π‘ > 𝑉𝑒 >1

2βˆ…π‘‰π‘

𝑛𝑒𝑒𝑑 π‘‘π‘œ π‘π‘Ÿπ‘œπ‘£π‘–π‘‘π‘’ π‘šπ‘–π‘›π‘šπ‘’π‘šπ‘’

π‘Žπ‘£ π‘šπ‘–π‘› = max{ 1

16 𝑓𝑐 βˆ— 𝑏𝑀 βˆ—

𝑠

𝑓𝑦 , (

𝑏𝑀 βˆ— 𝑠

3𝑓𝑦 )}

Page 6: CE472 - KSUfac.ksu.edu.sa/sites/default/files/one way solid slab_1.pdfΒ Β· CE472 Eng.ALI ALQARNI Page 6 Example 1: The figure shown below shows the architectural plan for 3-story building.

CE472

Eng.ALI ALQARNI Page 6

Example 1:

The figure shown below shows the architectural plan for 3-story building. The slab will be designed to carry super imposed dead load (2.5KN/m2) and Live load (3KN/ m2) by compressive strength 25 Mpa and steel yield strength 420 Mpa.

Given data:

The one way solid slab is used.

Weight of Wall =15Kn/m

The slab thickness= 130mm

The beams dimensions = (300,600) mm

The columns dimensions= (300,500) mm

B

7m

7m

Strip strip

3m 3m 3m 3m A

C

1-m slab strip

Page 7: CE472 - KSUfac.ksu.edu.sa/sites/default/files/one way solid slab_1.pdfΒ Β· CE472 Eng.ALI ALQARNI Page 6 Example 1: The figure shown below shows the architectural plan for 3-story building.

CE472

Eng.ALI ALQARNI Page 7

Determine the following:

1- Check if Slab thickness meets SBC304.

2- Design the slab for Max +Ve moment.

3- Design the slab for Max -Ve moment.

4- Check the slab for Shear reinforcement.

5- Draw the details and show all value.

6- Design the beam (A-B) for flexure and shear.

7- Calculate the axial load acting on column C.

Solution:

π‘•π‘šπ‘–π‘› =𝑙

28=

3000

28= 107.14 π‘šπ‘š

π‘•π‘šπ‘–π‘› =𝑙

24=

3000

24= 125 π‘šπ‘š

π‘•π‘šπ‘–π‘› = max(107.14,125) = 125 π‘šπ‘š

𝑕 > π‘•π‘šπ‘–π‘› β†’ π‘œπ‘˜

𝐷𝐿 = π‘œπ‘€π‘› 𝑀𝑒𝑖𝑔𝑕𝑑 + π‘ π‘’π‘π‘’π‘Ÿπ‘–π‘šπ‘π‘œπ‘ π‘’π‘‘

𝐷𝐿 = 0.13 βˆ— 25 + 2.5 = 5.75 π‘˜π‘› π‘š2

𝐿𝐿 = 3 π‘˜π‘› π‘š2

π‘Šπ‘’ = 1.4𝐷𝐿 + 1.7𝐿𝐿

π‘Šπ‘’ = 1.4 5.75 + 1.7 3 = 13.15π‘˜π‘› π‘š2

Lu (m) 3m 3m 3m 3m

Ln (m) 2.7m 2.7m 2.7m 2.7m

Cm 1/12 1/14 1/12 1/12 1/16 1/12 1/12 1/16 1/12 1/12 1/14 1/12

Wu(kn/m2) 13.15 13.15 13.15 13.15 13.15 13.15 13.15 13.15 13.15 13.15 13.15 13.15

Mu(kn.m) 7.99 6.85 7.99 7.99 5.99 7.99 7.99 5.99 7.99 7.99 6.85 7.99

D (mm) 104 104 104 104 104 104 104 104 104 104 104 104

Rn (Mpa) 0.821 0.704 0.821 0.821 0.615 0.821 0.821 0.615 0.821 0.821 0.704 0.821

Ξ‘ 0.002 0.0017 0.002 0.002 0.0015 0.002 0.002 0.0015 0.002 0.002 0.0017 0.002

As (mm2) 208 176.8 208 208 156 208 208 156 208 208 176.8 208

3m

m

3m

m

3m

m

3m

m

Page 8: CE472 - KSUfac.ksu.edu.sa/sites/default/files/one way solid slab_1.pdfΒ Β· CE472 Eng.ALI ALQARNI Page 6 Example 1: The figure shown below shows the architectural plan for 3-story building.

CE472

Eng.ALI ALQARNI Page 8

As min(mm2) 234 234 234 234 234 234 234 234 234 234 234 234

As (mm2) 234 234 234 234 234 234 234 234 234 234 234 234

S max (mm) 260 260 260 260 260 260 260 260 260 260 260 260

As rinkashge (mm2)

234 234 234 234 234 234 234 234 234 234 234 234

S max (mm) 300 300 300 300 300 300 300 300 300 300 300 300

Cv 1 1.15 1 1 1 1 1 1

Vu (kn) 17.75 20.42 17.75 17.75 17.75 17.75 20.42 17.75

Ο†Vc (kn) 65 65 65 65 65 65 65 65

π’”π’‚π’Žπ’‘π’π’† 𝒐𝒇 π’„π’‚π’„π’π’–π’‚π’•π’Šπ’π’π’”

𝐿𝑒 = 3π‘š , 𝐿𝑛 = 3 βˆ’ 0.15βˆ’ 0.15 = 2.7π‘š

πΆπ‘š =1

12 , 𝑀𝑒 =

1

12βˆ— 13.15 βˆ— 2.72 = 7.99 π‘˜π‘›.π‘š

𝑑 = 130βˆ’ 20βˆ’12

2= 104π‘šπ‘š , 𝑅𝑛 =

7.99 0.9

1000 βˆ— 1042βˆ— 106 = 0.821 π‘€π‘π‘Ž

π‘š =420

0.85 βˆ— 25= 19.765 , 𝜌 =

1

19.765 1βˆ’ 1 βˆ’

2 βˆ— 0.985 βˆ— 19.765

420 = 0.002

𝐴𝑠 = 0.002 βˆ— 1000 βˆ— 104 = 208 π‘šπ‘š2 , 𝐴𝑠 π‘šπ‘–π‘› = 0.0018 βˆ— 1000 βˆ— 130 = 234 π‘šπ‘š2

π‘†π‘šπ‘Žπ‘₯ = min 113.04

234βˆ— 1000 = 483.1 π‘šπ‘š, 300π‘šπ‘š, 2 βˆ— 130 = 260 = 260π‘šπ‘š

π‘“π‘œπ‘Ÿ 𝑓𝑙𝑒π‘₯π‘’π‘Ÿπ‘Žπ‘™ β†’ 𝑒𝑠𝑒 βˆ…12@260 π‘šπ‘š

𝐴𝑠 π‘ π‘•π‘Ÿπ‘–π‘›π‘˜π‘Žπ‘”π‘’ = 0.0018 βˆ— 1000 βˆ— 130 = 234 π‘šπ‘š2

π‘†π‘šπ‘Žπ‘₯ = min 113.04

234βˆ— 1000 = 483.1π‘šπ‘š, 300π‘šπ‘š, 4 βˆ— 130 = 520 = 300π‘šπ‘š

π‘“π‘œπ‘Ÿ π‘ π‘•π‘Ÿπ‘–π‘›π‘˜π‘Žπ‘”π‘’ β†’ 𝑒𝑠𝑒 βˆ…12@300 π‘šπ‘š

𝐢𝑣 = 1.15 , 𝑉𝑒 =1.15 βˆ— 13.15 βˆ— 2.7

2= 20.42 π‘˜π‘›

βˆ…π‘‰π‘ = 0.75 βˆ— 25

6βˆ— 1000 βˆ— 104 βˆ— 10βˆ’3 = 65 π‘˜π‘›

βˆ…π‘‰π‘ > 𝑉𝑒 β†’ π‘ π‘•π‘’π‘Žπ‘Ÿ π‘Ÿπ‘’π‘–π‘›π‘“π‘œπ‘Ÿπ‘π‘šπ‘’π‘›π‘‘ 𝑖𝑠 π‘›π‘œπ‘‘ 𝑛𝑒𝑒𝑑𝑒𝑑

Page 9: CE472 - KSUfac.ksu.edu.sa/sites/default/files/one way solid slab_1.pdfΒ Β· CE472 Eng.ALI ALQARNI Page 6 Example 1: The figure shown below shows the architectural plan for 3-story building.

CE472

Eng.ALI ALQARNI Page 9

Page 10: CE472 - KSUfac.ksu.edu.sa/sites/default/files/one way solid slab_1.pdfΒ Β· CE472 Eng.ALI ALQARNI Page 6 Example 1: The figure shown below shows the architectural plan for 3-story building.

CE472

Eng.ALI ALQARNI Page 10

Design of beam (A-B) :-

Load acting on the beam (A-B)

1- Dead load:

𝐷𝐿 = 5.75 βˆ— 1.5 + 1.5 + 15 + 0.47 βˆ— 0.3 βˆ— 25 = 35.775π‘˜π‘› π‘š

2- Live load

𝐿𝐿 = 3 βˆ— 1.5 + 1.5 = 9π‘˜π‘› π‘š

π‘Šπ‘’ = 1.4 35.775 + 1.7 9 = 65.385 π‘˜π‘› π‘š

B

7m

7m

Strip strip

3m 3m 3m 3m A

Page 11: CE472 - KSUfac.ksu.edu.sa/sites/default/files/one way solid slab_1.pdfΒ Β· CE472 Eng.ALI ALQARNI Page 6 Example 1: The figure shown below shows the architectural plan for 3-story building.

CE472

Eng.ALI ALQARNI Page 11

π’”π’‚π’Žπ’‘π’π’† 𝒐𝒇 π’„π’‚π’„π’π’–π’‚π’•π’Šπ’π’π’”

𝐿𝑒 = 7π‘š , 𝐿𝑛 = 7 βˆ’ 0.15βˆ’ 0.15 = 6.7π‘š

πΆπ‘š =1

9 , 𝑀𝑒 =

1

9βˆ— 65.385 βˆ— 6.72 = 326.13 π‘˜π‘›.π‘š

𝑑 = 600βˆ’ 40βˆ’ 10βˆ’20

2= 540 π‘šπ‘š π‘œπ‘›π‘’ π‘™π‘Žπ‘¦π‘’π‘Ÿ

𝑅𝑛 =326.13 0.9

300 βˆ— 5402βˆ— 106 = 4.14 π‘€π‘π‘Ž

π‘š =420

0.85 βˆ— 25= 19.765 , 𝜌 =

1

19.765 1βˆ’ 1 βˆ’

2 βˆ— 4.41 βˆ— 19.765

420 = 0.0111

𝐴𝑠 = 0.0111 βˆ— 300 βˆ— 540 = 1798.2 π‘šπ‘š2 ,

Lu (m) 7m 7m

Ln(m) 6.7m 6.7m

Wu(kn/m) 65.385

Cm 1/16 1/14 1/9 1/9 1/14 1/16

Mu (kn.m) 210 326.13 326.13 210

d(mm) 540 (one layer) 517.5(two layer) 517.5(two layer) 540 (one layer)

Rn(Mpa) 2.667 4.51 4.51 2.667

Ξ‘ 0.00681 0.01221 0.01221 0.00681

As(mm2) 1103.2 1896 1896 1103.2

As min (mm2) 540 517.5 517.5 540

n 3.51β‰ˆ4 6.03β‰ˆ7 6.03β‰ˆ7 3.51β‰ˆ4

Fs=Fy Ok Ok Ok Ok

TCL Ok Ok Ok Ok

b min (mm) 275 275 275 275

Use 4βˆ…20 7βˆ…20 7βˆ…20 4βˆ…20

Cv 1 1.15 1.15 1

Vu (kn) 219.04 252 252 219.04

Ο†Vc (kn) 101.25 97.03 97.03 101.25

Vs (kn) 157.05 206.67 206.67 157.05

Av (mm2) 157 157 157 157

S (mm) 226.72 165.1 165.1 226.72

S max (mm) 270 258.75 258.75 270

Use βˆ…10@270 βˆ…10@160 βˆ…10@160 βˆ…10@270

Page 12: CE472 - KSUfac.ksu.edu.sa/sites/default/files/one way solid slab_1.pdfΒ Β· CE472 Eng.ALI ALQARNI Page 6 Example 1: The figure shown below shows the architectural plan for 3-story building.

CE472

Eng.ALI ALQARNI Page 12

𝐴𝑠 π‘šπ‘–π‘› =1.4

420βˆ— 300 βˆ— 540 = 540 π‘šπ‘š2

𝐴𝑠 π‘šπ‘–π‘› = 25

4 βˆ— 420βˆ— 300 βˆ— 540 = 483 π‘šπ‘š2

𝐴𝑠 π‘šπ‘–π‘› = max 540,483 = 540π‘šπ‘š2

𝑛 =1798.2

314= 5.72 β‰ˆ 6

π‘π‘šπ‘–π‘› = 80 + 60 + 5 20 + 25 = 365π‘šπ‘š > 𝑏 = 300 ∴ 𝑒𝑠𝑒 π‘‘π‘€π‘œ π‘™π‘Žπ‘¦π‘’π‘Ÿ

𝑑 = 600βˆ’ 40βˆ’ 10βˆ’ 20βˆ’25

2= 517.5 π‘šπ‘š π‘‘π‘€π‘œ π‘™π‘Žπ‘¦π‘’π‘Ÿ

𝑅𝑛 =326.65 0.9

300 βˆ— 517.52βˆ— 106 = 4.51 π‘€π‘π‘Ž

π‘š =420

0.85 βˆ— 25= 19.765 , 𝜌 =

1

19.765 1βˆ’ 1βˆ’

2 βˆ— 4.51 βˆ— 19.765

420 = 0.01221

𝐴𝑠 = 0.01224 βˆ— 300 βˆ— 517.5 = 1896 π‘šπ‘š2 ,

𝐴𝑠 π‘šπ‘–π‘› =1.4

420βˆ— 300 βˆ— 517.5 = 517 π‘šπ‘š2

𝐴𝑠 π‘šπ‘–π‘› = 25

4 βˆ— 420βˆ— 300 βˆ— 517.5 = 462.1 π‘šπ‘š2

𝐴𝑠 π‘šπ‘–π‘› = max 517,462.1 = 517π‘šπ‘š2

𝑛 =1900.3

314= 6.03 β‰ˆ 7

π‘Ž =7 βˆ— 314 βˆ— 420

0.85 βˆ— 25 βˆ— 300= 144.81 π‘šπ‘š

π‘Žπ‘π‘‘

= 0.5 >π‘Ž

𝑑= 0.28 ∴ 𝑓𝑠=𝑓𝑦

π‘Žπ‘‡πΆπΏπ‘‘π‘‘

= 0.31875 >π‘Ž

𝑑𝑑= 0.268 ∴ π‘‡π‘’π‘›π‘ π‘–π‘œπ‘› βˆ’ π‘π‘œπ‘›π‘‘π‘Ÿπ‘œπ‘™π‘™π‘’π‘‘ π‘ π‘’π‘π‘‘π‘–π‘œπ‘›

π‘“π‘œπ‘Ÿ 𝑓𝑙𝑒π‘₯π‘’π‘Ÿπ‘’ 𝑒𝑠𝑒 7βˆ…20

𝐢𝑣 = 1.15 , 𝑉𝑒 =1.15 βˆ— 65.385 βˆ— 6.7

2= 252 π‘˜π‘›

Page 13: CE472 - KSUfac.ksu.edu.sa/sites/default/files/one way solid slab_1.pdfΒ Β· CE472 Eng.ALI ALQARNI Page 6 Example 1: The figure shown below shows the architectural plan for 3-story building.

CE472

Eng.ALI ALQARNI Page 13

βˆ…π‘‰π‘ = 0.75 βˆ— 25

6βˆ— 300 βˆ— 517.5 βˆ— 10βˆ’3 = 97.03π‘˜π‘›

𝑉𝑠 =252.3βˆ’ 97.03

0.75= 206.67π‘˜π‘›

𝐴𝑣 = 2 βˆ— πœ‹102

4= 157 π‘šπ‘š2 (π‘‘π‘€π‘œ 𝑙𝑒𝑔)

𝑆 =157 βˆ— 420 βˆ— 517.5

206.67βˆ— 10βˆ’3 = 165.1 π‘šπ‘š

𝑉𝑠 ≀ 2𝑉𝑐

π‘†π‘šπ‘Žπ‘₯ = π‘šπ‘–π‘› 300,517.5

2= 258.75 = 258.75 π‘šπ‘š

𝑒𝑠𝑒 βˆ…10@160π‘šπ‘š

Axial load on column C:-

Beam s in x- direction:

𝐷𝐿 = 0.3 βˆ— 0.47 βˆ— 25 + 15 βˆ—3

2 + 0.3 βˆ— 0.47 βˆ— 25 + 15 βˆ—

3

2 = 55.575 π‘˜π‘›

𝐿𝐿 = 0 + 0 = 0 π‘˜π‘›

Beams in y- direction:

𝐷𝐿 = 0.3 βˆ— 0.47 βˆ— 25 + (15) + 5.75 βˆ— 3 βˆ—7

2 + 0.3 βˆ— 0.47 βˆ— 25 + (15) + 5.75 βˆ— 3 βˆ—

7

2

= 250.425 π‘˜π‘›

𝐿𝐿 = 3 βˆ— 3 βˆ—7

2 + 3 βˆ— 3 βˆ—

7

2 = 63 π‘˜π‘›

π‘Šπ‘’ = 1.4 55.575 + 250.425 + 1.7 63 = 388.5 π‘˜π‘›

Page 14: CE472 - KSUfac.ksu.edu.sa/sites/default/files/one way solid slab_1.pdfΒ Β· CE472 Eng.ALI ALQARNI Page 6 Example 1: The figure shown below shows the architectural plan for 3-story building.

CE472

Eng.ALI ALQARNI Page 14

Example 2:

Given data:-

𝑓𝑐 = 30 π‘€π‘π‘Ž ,𝑓𝑦 = 420 π‘€π‘π‘Ž

π‘ π‘’π‘π‘’π‘Ÿ π‘–π‘šπ‘π‘œπ‘ π‘’π‘‘ = 2.5π‘˜π‘›/π‘š2 , 𝐿𝐿 = 3π‘˜π‘›/π‘š2

𝑀𝑒𝑖𝑔𝑕𝑑 π‘œπ‘“ π‘€π‘Žπ‘™π‘™ = 12π‘˜π‘›/π‘š

𝑕𝑠 = 170π‘šπ‘š , π‘π‘’π‘Žπ‘š 𝑠𝑖𝑧𝑒 = 700,400 , π‘π‘œπ‘™π‘’π‘šπ‘›π‘  𝑠𝑖𝑧𝑒 (500,400)

Required:-

Design the one way solid slab for flexure and shear.

Design the beam (A-D) for flexure and shear.

Compute the axial load on column C.

B

4.4m 4.4m 4.4m 4.4m

C

9 m

9 m

9 m

A

Page 15: CE472 - KSUfac.ksu.edu.sa/sites/default/files/one way solid slab_1.pdfΒ Β· CE472 Eng.ALI ALQARNI Page 6 Example 1: The figure shown below shows the architectural plan for 3-story building.

CE472

Eng.ALI ALQARNI Page 15

π‘•π‘šπ‘–π‘› =𝑙

28=

4400

28= 157.14 π‘šπ‘š

π‘•π‘šπ‘–π‘› =𝑙

24=

4400

24= 183.33 π‘šπ‘š

π‘•π‘šπ‘–π‘› = max(157.14 , 183.33) = 183.33 π‘šπ‘š

𝑕 < π‘•π‘šπ‘–π‘› β†’ π‘›π‘œπ‘‘ π‘ π‘Žπ‘‘π‘–π‘ π‘“π‘–π‘’π‘‘ π‘‘π‘’π‘“π‘™π‘’π‘π‘‘π‘–π‘œπ‘› π‘Ÿπ‘’π‘žπ‘’π‘–π‘Ÿπ‘’π‘šπ‘›π‘‘

𝐷𝐿 = π‘œπ‘€π‘› 𝑀𝑒𝑖𝑔𝑕𝑑 + π‘ π‘’π‘π‘’π‘Ÿπ‘–π‘šπ‘π‘œπ‘ π‘’π‘‘

𝐷𝐿 = 0.17 βˆ— 25 + 2.5 = 6.75 π‘˜π‘› π‘š2

𝐿𝐿 = 3 π‘˜π‘› π‘š2

π‘Šπ‘’ = 1.4𝐷𝐿 + 1.7𝐿𝐿

π‘Šπ‘’ = 1.4 6.75 + 1.7 3 = 14.55π‘˜π‘› π‘š2

Lu (m) 4.4m 4.4m 4.4m 4.4m

Ln (m) 4m 4m 4m 4m

Cm 1/24 1/14 1/10 1/11 1/16 1/11 1/11 1/16 1/11 1/10 1/14 1/24

Wu(kn/m2) 14.55 14.55 14.55 14.55 14.55 14.55

Mu(kn.m) 16.63 23.28 23.28 16.63

d (mm) 144 144 144 144

Rn (Mpa) 0.891 1.25 1.25 0.891

Ξ‘ 0.00216 0.0031 0.0031 0.00216

As (mm2) 311 446.4 446.4 311

As min(mm2) 306 306 306 306

As (mm2) 311 446.9 446.9 311

S max (mm) 300 253 253 300

As rinkashge (mm2)

306 306 306 306

S max (mm) 300 300 300 300

Cv 1.15 1.15

Vu (kn) 33.465 33.465

Ο†Vc (kn) 98.59 98.59

Page 16: CE472 - KSUfac.ksu.edu.sa/sites/default/files/one way solid slab_1.pdfΒ Β· CE472 Eng.ALI ALQARNI Page 6 Example 1: The figure shown below shows the architectural plan for 3-story building.

CE472

Eng.ALI ALQARNI Page 16

π’”π’‚π’Žπ’‘π’π’† 𝒐𝒇 π’„π’‚π’„π’π’–π’‚π’•π’Šπ’π’π’”

𝐿𝑒 = 4.4π‘š , 𝐿𝑛 = 4.4βˆ’ 0.2βˆ’ 0.2 = 4π‘š

πΆπ‘š =1

10 , 𝑀𝑒 =

1

10βˆ— 14.55 βˆ— 42 = 23.28π‘˜π‘›.π‘š

𝑑 = 170βˆ’ 20βˆ’12

2= 144π‘šπ‘š , 𝑅𝑛 =

23.28 0.9

1000 βˆ— 1442βˆ— 106 = 1.25 π‘€π‘π‘Ž ,

π‘š =420

0.85 βˆ— 30= 16.471 , 𝜌 =

1

16.471 1βˆ’ 1 βˆ’

2 βˆ— 1.25 βˆ— 16.471

420 = 0.0031

𝐴𝑠 = 0.0031 βˆ— 1000 βˆ— 144 = 446.4 π‘šπ‘š2 , 𝐴𝑠 π‘šπ‘–π‘› = 0.0018 βˆ— 1000 βˆ— 170 = 306 π‘šπ‘š2

π‘†π‘šπ‘Žπ‘₯ = min 113.04

446.4βˆ— 1000 = 253.22π‘šπ‘š, 300π‘šπ‘š, 2 βˆ— 170 = 340 = 253.22π‘šπ‘š

π‘“π‘œπ‘Ÿ 𝑓𝑙𝑒π‘₯π‘’π‘Ÿπ‘Žπ‘™ β†’ 𝑒𝑠𝑒 βˆ…12@250 π‘šπ‘š

𝐴𝑠 π‘ π‘•π‘Ÿπ‘–π‘›π‘˜π‘Žπ‘”π‘’ = 0.0018 βˆ— 1000 βˆ— 170 = 306 π‘šπ‘š2

π‘†π‘šπ‘Žπ‘₯ = min 113.04

306βˆ— 1000 = 452.88π‘šπ‘š, 300π‘šπ‘š, 4 βˆ— 170 = 680 = 300π‘šπ‘š

π‘“π‘œπ‘Ÿ π‘ π‘•π‘Ÿπ‘–π‘›π‘˜π‘Žπ‘”π‘’ β†’ 𝑒𝑠𝑒 βˆ…12@300 π‘šπ‘š

𝐢𝑣 = 1.15 , 𝑉𝑒 =1.15 βˆ— 14.55 βˆ— 4

2= 33.465 π‘˜π‘›

βˆ…π‘‰π‘ = 0.75 βˆ— 30

6βˆ— 1000 βˆ— 144 βˆ— 10βˆ’3 = 98.59 π‘˜π‘›

βˆ…π‘‰π‘ > 𝑉𝑒 β†’ π‘ π‘•π‘’π‘Žπ‘Ÿ π‘Ÿπ‘’π‘–π‘›π‘“π‘œπ‘Ÿπ‘π‘šπ‘’π‘›π‘‘ 𝑖𝑠 π‘›π‘œπ‘‘ 𝑛𝑒𝑒𝑑𝑒𝑑

Page 17: CE472 - KSUfac.ksu.edu.sa/sites/default/files/one way solid slab_1.pdfΒ Β· CE472 Eng.ALI ALQARNI Page 6 Example 1: The figure shown below shows the architectural plan for 3-story building.

CE472

Eng.ALI ALQARNI Page 17

Load acting on the beam (A-B)

1- Dead load:

𝐷𝐿 = 6.75 βˆ— 2.2 + 2.2 + 12 + 0.53 βˆ— 0.4 βˆ— 25 = 47π‘˜π‘› π‘š

2- Live load

𝐿𝐿 = 3 βˆ— 2.2 + 2.2 = 13.2π‘˜π‘› π‘š

π‘Šπ‘’ = 1.4 47 + 1.7 13.2 = 88.24 π‘˜π‘› π‘š

Lu (m) 9m 9m 9m

Ln(m) 8.6m 8.6m 8.6m

Wu(kn/m) 88.24

Cm 1/16 1/14 1/10 1/11 1/16 1/11 1/10 1/16 1/11

Mu (kn.m) 466.2 652.6 652.6 466.2

d(mm) 615.5 615.5 615.5 615.5

Rn(Mpa) 3.4 4.8 4.8 3.4

Ξ‘ 0. 009 0.0128 0.0128 0. 009

As(mm2) 2215.8 3151.4 3151.4 2215.8

As min (mm2) 821 821 821 821

N 7.05β‰ˆ8 10.03β‰ˆ11 7.05β‰ˆ8 10.03β‰ˆ11

b min (mm)

Fs =Fy Ok Ok Ok Ok

TCL Ok Ok Ok Ok

Use 8Ρ„20 11Ρ„20 8Ρ„20 11Ρ„20

Cv 1.15 1.15

Vu (kn) 436.35 436.35

Ο†Vc (kn) 168.56 168.56

Vs (kn) 357.1 357.1

Av (mm2) 226.08 226.08

S (mm) 163.7 163.7

S max (mm) 307.75 307.75

Use Π€12@160 Π€12@160

Page 18: CE472 - KSUfac.ksu.edu.sa/sites/default/files/one way solid slab_1.pdfΒ Β· CE472 Eng.ALI ALQARNI Page 6 Example 1: The figure shown below shows the architectural plan for 3-story building.

CE472

Eng.ALI ALQARNI Page 18

π’”π’‚π’Žπ’‘π’π’† 𝒐𝒇 π’„π’‚π’„π’π’–π’‚π’•π’Šπ’π’π’”

𝐿𝑒 = 9π‘š , 𝐿𝑛 = 9βˆ’ 0.2βˆ’ 0.2 = 8.6π‘š

πΆπ‘š =1

10 , 𝑀𝑒 =

1

10βˆ— 88.24 βˆ— 8.62 = 652.6 π‘˜π‘›.π‘š

𝑑 = 600βˆ’ 40βˆ’ 12βˆ’ 20βˆ’25

2= 615.5 π‘šπ‘š π‘‘π‘€π‘œ π‘™π‘Žπ‘¦π‘’π‘Ÿ

𝑅𝑛 =652.6/0.9

400 βˆ— 615.52βˆ— 106 = 4.8 π‘€π‘π‘Ž

π‘š =420

0.85 βˆ— 30= 16.471 , 𝜌 =

1

16.471 1βˆ’ 1βˆ’

2 βˆ— 4.8 βˆ— 16.471

420 = 0.0128

𝐴𝑠 = 0.0128 βˆ— 400 βˆ— 615.5 = 3151.4 π‘šπ‘š2 ,

𝐴𝑠 π‘šπ‘–π‘› =1.4

420βˆ— 400 βˆ— 615.5 = 821 π‘šπ‘š2

𝐴𝑠 π‘šπ‘–π‘› = 30

4 βˆ— 420βˆ— 400 βˆ— 615 = 803 π‘šπ‘š2

𝐴𝑠 π‘šπ‘–π‘› = max 821,803 = 821π‘šπ‘š2

𝑛 =3151.4

314= 10.03 β‰ˆ 11

π‘Ž =11 βˆ— 314 βˆ— 420

0.85 βˆ— 30 βˆ— 400= 142.22 π‘šπ‘š

π‘Žπ‘π‘‘

= 0.5 >π‘Ž

𝑑= 0.23 ∴ 𝑓𝑠=𝑓𝑦

π‘Žπ‘‡πΆπΏπ‘‘π‘‘

= 0.31875 >π‘Ž

𝑑𝑑= 0.222 ∴ π‘‡π‘’π‘›π‘ π‘–π‘œπ‘› βˆ’ π‘π‘œπ‘›π‘‘π‘Ÿπ‘œπ‘™π‘™π‘’π‘‘ π‘ π‘’π‘π‘‘π‘–π‘œπ‘›

π‘“π‘œπ‘Ÿ 𝑓𝑙𝑒π‘₯π‘’π‘Ÿπ‘’ 𝑒𝑠𝑒 11βˆ…20

𝐢𝑣 = 1.15 , 𝑉𝑒 =1.15 βˆ— 88.24 βˆ— 8.6

2= 436.35 π‘˜π‘›

βˆ…π‘‰π‘ = 0.75 βˆ— 30

6βˆ— 400 βˆ— 615.5 βˆ— 10βˆ’3 = 168.56 π‘˜π‘›

𝑉𝑠 =436.35βˆ’ 168.56

0.75= 357.1π‘˜π‘›

Page 19: CE472 - KSUfac.ksu.edu.sa/sites/default/files/one way solid slab_1.pdfΒ Β· CE472 Eng.ALI ALQARNI Page 6 Example 1: The figure shown below shows the architectural plan for 3-story building.

CE472

Eng.ALI ALQARNI Page 19

𝐴𝑣 = 2 βˆ— πœ‹122

4= 226.08π‘šπ‘š2 (π‘‘π‘€π‘œ 𝑙𝑒𝑔)

𝑆 =226.08 βˆ— 420 βˆ— 615.5

357.1βˆ— 10βˆ’3 = 163.7π‘šπ‘š

𝑉𝑠 < 2𝑉𝑐

π‘†π‘šπ‘Žπ‘₯ = π‘šπ‘–π‘› 300,615.5

2= 307.75 = 300 π‘šπ‘š

𝑒𝑠𝑒 βˆ…12@160π‘šπ‘š

Axial load on column C:-

Beams in x- direction:

𝐷𝐿 = 0.4 βˆ— 0.53 βˆ— 25 + 12 βˆ—4.4

2 + 0.4 βˆ— 0.53 βˆ— 25 + 12 βˆ—

4.4

2 = 76.12 π‘˜π‘›

𝐿𝐿 = 0 + 0 = 0 π‘˜π‘›

Beams in y- direction:

𝐷𝐿 = 0.4 βˆ— 0.53 βˆ— 25 + 12 + 6.75 βˆ— 4.4 βˆ—9

2 + 0.4 βˆ— 0.53 βˆ— 25 + 12 + 6.75 βˆ— 4.4 βˆ—

9

2

= 423 π‘˜π‘›

𝐿𝐿 = 3 βˆ— 4.4 βˆ—9

2 + 3 βˆ— 4.4 βˆ—

9

2 = 118.8π‘˜π‘›

π‘Šπ‘’ = 1.4 76.12 + 423 + 1.7 118.8 = 900.728 π‘˜π‘›