CE371 HW6 Solutions

download CE371 HW6 Solutions

of 9

description

sasa

Transcript of CE371 HW6 Solutions

  • CE 371 - Section 02

    Homework No. 6 - Solutions

    8-3

    Determine the equations of the elastic curve for the beam using the x1 and x2 coordinates.

    Specify the slope at A and the maximum deflection. EI is constant

    Sol:

    M (x) = Px1

    x

    1

    P

    1

    P

    a x - a2

    M (x) = Pa2

    P

    P

    2

    2

    dx

    vdEI = M(x)

    For M1(x) = Px1

    EI d2v1/dx1

    2 = Px1

    EI dv1/dx1 = Px12/2 + C1 (1)

    EIv1 = Px12/6 + C1x1 + C2 (2)

    For M2(x) = Pa

    EId2v2/dx2

    2 = Pa

    EIdv2/dx2 = Pax2 + C3 (3)

    EIv2 = Pax22/2 + C3x2 + C4 (4)

  • Boundary Conditions

    v1 = 0 at x = 0

    From eq. (2)

    C2 = 0

    Due to symmetry:

    dv2/dx2 = 0 at x2 = L/2

    From eq.(3)

    0 = PaL/2 + C3

    C3 = -PaL/2

    Continuity conditions:

    v1 = v2 at x1 = x2 = a

    Pa3/6 + C1a = Pa

    3/2 Pa2L/2 + C4

    C1a - C4 = Pa3/3 Pa2L/2 (5)

    dv1/dx1 = dv2/dx2 at x1 = x2 = a

    Pa2/2 + C1 = Pa

    2 PaL/2

    C1 = Pa2/2 PaL/2

    Subtitute C1 into eq. (5)

    C4 = Pa3/6

    dv1/dx1 = P(x12 + a

    2 aL) /2EI

    A = dv1/dx1 x1=0 = Pa(a L)/2EI Ans (Points 3)

    v1 = Px1{(x12 + 3a(a L)}/6EI Ans (Points 3)

    v2 = Pa{(3x(x L) + a2}/6EI Ans (Points 3)

    vmax = v2 x= L/2 = Pa(4a2 3L2)/24EI Ans (Point 1)

  • 8-4

    Determine the equations of the elastic curve for the beam using the x1 and x2 coordinates.

    Specify beams maximum deflection. EI is constant

    Sol:

    P

    P/2 3P/2

    L L/2

    M(x ) = -P/2x1 1

    V(x )1

    P/2

    x1

    P

    V(x )2

    M(x ) = -Px2 2

    x2

    Slope and Elastic Curve

    EId2v/dx

    2 = M(x)

    For M(x1) = -Px1/2,

    EId2v1/dx

    21 = - Px1/2

    EIdv1/dx1 = -Px12/4 + C1 (1)

    EIv1 = -Px13/12 + C1x1 +C2 (2)

    For M(x2) = -Px2,

    EId2v2/dx2

    2 = -Px2

    EIdv2/dx2 = -Px22/2 + C3 (3)

    EIv2 = -Px23/6 = C3x2 + C4 (4)

    Boundary Conditions:

    v1= 0 at x1 = 0

  • From eq.(2), C2 = 0

    v1 = 0 at x1 = L

    From eq. (2)

    0 = -PL3/12 + C1L C1 = PL

    2/12

    v2 = 0 at x2 = L/2

    From eq. (4),

    0 = -PL3/48 + LC3/2 + C4 (5)

    Continuity Conditions:

    At x1 = L and x2 = L/2, dv1/dx1 = -dv2/dx2

    From eqs (1) and (3),

    -PL2/4 + PL

    2/12 = -(PL

    2/8 + C3)

    C3 = 7PL2/24

    From eq. (5)

    C4 = -PL3/8

    The Slope:

    Substitute the value of C1 into eq. (1)

    dv1/dx1 = P(L2 3x1

    2)/12EI

    dv1/dx1 = 0 = P(L2 3x1

    2)/12EI

    x1 = L/3

    The Elastic Curve:

    Substitute the values of C1, C2, C3 and C4 into eqs (2) and (4), respectively,

    v1 = Px1(-x12 + L

    2) /12EI Ans (Points 4)

    vD = v1 x1 = L/3 = P(L/3)(-L2/3 + L

    2)/12EI = 0.0321 PL

    3/EI

    v2 = P(-4x23 + 7L

    2x2 3L

    3)/24EI Ans (Points 4)

    vc = v2 x2 = 0 = -PL3/8EI

    Hence,

    vmax = vc = PL3/8EI Ans (Points 2)

  • 8-12

    Use the moment- area theorems to determine the slope and deflection at C. EI is constant

    Sol:

    15 kip

    CA B

    7.5 kip 22.5 kip

    30' 15'C

    tan A

    tC/A

    tan B

    tan C

    B/At

    C/A

    -225/EI

    M/EI

    A = tB/A /30

    tB/A = (-225/EI)(30)(10) = -33750/EI

    A = 1125/EI

    C/A = (-225/EI)(30) + (-225/EI)(15) = -5062.5/EI = 5062.5/EI

    C = C/A + A

    C = 5062.5/EI 1125/EI = 3937.5/EI Ans (Points 5)

  • C = tC/A - 45/30 tB/A

    tC/A = (-225/EI)(30(25) + (-225/EI)(15)(10) = -101250/EI

    C = 101250/EI 45/30(33750/EI) = 50625/EI Ans (Points 5)

  • 8-20

    Use the moment- area theorems and determine the deflection at C and the slope of the beam

    at A, B and C. EI is constant.

    Sol:

    CA B

    1.333kN

    6m 3m

    tan AtC/A

    tan B

    tan C

    B/At

    -8/EI

    M/EI

    1.333kN

    8kN.m

    tB/A = (-8/EI)(6)(2) = -48/EI

    tC/A = (-8/EI)(6)(3+2) + (-8/EI)(3)(1.5) = -156/EI

    C = tC/A - 9/6 tB/A = 156/EI 9(48)/6EI = 84/EI Ans (Points 3)

    A = tB/A /6 = 8/EI Ans (Points 3)

    B/A = (-8/EI)(6) = -24/EI = 24/EI

    B = B/A + A

    B = 24/EI 8/EI = 16/EI Ans (Points 2)

    C/A = (-8/EI)(6) + (-8/EI)(3) = -48/EI = 48/EI

    C = C/A + A

    C = 48/EI 8/EI = 40/EI Ans (Points 2)

    A

    C/A B/A

    C

  • 8-24

    Use the moment- area theorems and determine the slope at B and the displacement at C. The

    member is an A-36 steel structure Tee for which I = 76.8in4.

    Sol:

    CA B

    B/C

    tan B

    tan C

    750kip.ft/EIM/EI

    3' 3'

    5kip

    1.5(6) = 9.0kip

    7.0kip 7.0kip

    6.75kip.ft/EIM/EI

    3 6

    3 6

    t

    Moment Area Theorems:

    Due to symmetry, the slope at midspan C is zero. Hence the slope at B is

    B = B/C = (7.50/EI) (3) + 2/3(6.75/EI) (3)

    = 24.75kip.ft2/EI

    = 24.75(144)/ {29(103) (76.8)}

    = 0.00160 rad Ans (Points 5)

    C

  • The displacement at C is

    C = tA/C = (7.50/EI)(3)(2/3)(3) + 2/3(6.75/EI)(3)(5/8)(3)

    = 47.8125 kip.ft3/EI

    = 47.8125(1728)/ {29(103)(76.8)}

    = 0.0371 in Ans (Points 5)