Cavitation in Microfliuidcs_rev1_43_share

18
in Microfluidic s Kavitace v mikrofluidice Academic Year: 2015 / 2016 Martin HOLUB Supervisor: doc. Ing. Pavel RUDOLF, Ph.D. „Time is the most valuable thing a man can spend.“ Theophrastus (370–285 BC)

Transcript of Cavitation in Microfliuidcs_rev1_43_share

Page 1: Cavitation in Microfliuidcs_rev1_43_share

Cavitation in Microfluidics

Kavitace v mikrofluidice

Academic Year:2015 / 2016

Martin HOLUBSupervisor:

doc. Ing. Pavel RUDOLF, Ph.D.

„Time is the most valuable thing a man can spend.“Theophrastus (370–285 BC)

Page 2: Cavitation in Microfliuidcs_rev1_43_share

Cavitation Microfluidics

Cavitation on hydrofoil [1] Microfluidic chip [2]

Page 3: Cavitation in Microfliuidcs_rev1_43_share

Thesis Goals

• Introduction, definition of fundamental terms

• Literature research and report on the state-of-the-art technology

• CFD for the flow in micrometer-sized channel

• Design of experiment

Page 4: Cavitation in Microfliuidcs_rev1_43_share

Cavitation Chemistry & Other Effects

Luminescence [5]

Single bubble collapse near the wall [4]

…… 𝐻2𝑂2

𝐻 • 𝑂𝐻•

𝐻2𝑂Energy

Mechanical, heat and chemical effects→ Applications

Page 5: Cavitation in Microfliuidcs_rev1_43_share

Luminescence [5]

Single bubble collapse near the wall [4]

Cavitation Chemistry & Other Effects

…… 𝐻2𝑂2

𝐻 • 𝑂𝐻•

𝐻2𝑂Energy

Mechanical, heat and chemical effects→ Applications

Page 6: Cavitation in Microfliuidcs_rev1_43_share

Luminescence [5]

Single bubble collapse near the wall [4]

…… 𝐻2𝑂2

𝐻 • 𝑂𝐻•

𝐻2𝑂Energy

Cavitation Chemistry & Other Effects

Mechanical, heat and chemical effects→ Applications

Page 7: Cavitation in Microfliuidcs_rev1_43_share

Microscale Cavitation

Bubbles completely filling microchannel [6]

Cases relevant for comparison [6], inception,

choking

𝜎=𝑝𝐷𝑆−𝑝𝑣

12𝜌𝑣𝑐

2

Device Description

0.284 0.242

0.38 0.299

0.24 0.171

0.301 0.252

Page 8: Cavitation in Microfliuidcs_rev1_43_share

Microchannel

𝑅𝑒𝑐=𝜌𝑣 ∙𝐿𝑐

𝜇 [− ]

Case No.

#1 102.5 0.365#2 130 0.415#3 158 0.465#4 186.5 0.515#5 213 0.565#6 241 0.615

Dimensions of microchannel, given in micrometers. BCs locations and types are indicated

Overview of solved cases

Page 9: Cavitation in Microfliuidcs_rev1_43_share

Solution Monitor – Vapor Fraction Fast Fourier Transform

Microchannel

Page 10: Cavitation in Microfliuidcs_rev1_43_share

Stable liquid jet surrounded by two broad and long vapor bubbles that

touch the walls [7]

Wavy pattern of cavity boundary [6]

𝜎=0.365

Microchannel

Page 11: Cavitation in Microfliuidcs_rev1_43_share

Vapor Volume Fraction Frequency

Microchannel

Page 12: Cavitation in Microfliuidcs_rev1_43_share

Millichannel

Millichannel geometry and BCs, all dimensions in micrometers

Case No.#1 14 5.67#2 20 2.95#3 60 0.53

Overview of solved cases

Page 13: Cavitation in Microfliuidcs_rev1_43_share

Vapor fraction = 0.2 in brick-

shaped chamber

𝜎=0.53

Vapor fraction in constriction,

high void fraction in red

Millichannel

Page 14: Cavitation in Microfliuidcs_rev1_43_share

Pressure dropTemperature of bubble

collapse

Source: [8]

Millichannel

Page 15: Cavitation in Microfliuidcs_rev1_43_share

Design of Experiment

Microfluidic channel with packaging module (Courtesy of D. Jasikova TUL)

Page 16: Cavitation in Microfliuidcs_rev1_43_share

Schematics of experimental setup

Design of Experiment

Page 17: Cavitation in Microfliuidcs_rev1_43_share

Main Outcomes• Recommendations for

future research work• Periodicity of solution• Strengths and weaknesses

of laminar model• Design of experimental

setup and procedure with μ-PIV

• Phases distribution• Regions of recirculation

and potential mixing• Overview of state-of-the-art

research• CFD guidelines for future

students

Page 18: Cavitation in Microfliuidcs_rev1_43_share

Sources of Images[1] FRANC, Jean-Pierre a Jean-Marie MICHEL. Fundamentals of cavitation. Dordrecht: Springer Netherlands, 2005, xxii, 300 p. ISBN 978-904-8166-183.

[2] news.stanford.edu/news/2006/january18/gifs/fluidicschip.jpg

[3] GOGATE, Parag, Irfan SHIRGAONKAR, M. SIVAKUMAR, P. SENTHILKUMAR, Nilesh VICHARE and Aniruddha PANDIT Cavitation reactors: Efficiency assessment using a model reaction. AIChE Journal [online]. Hoboken: Wiley Subscription Services, Inc., A Wiley Company, 2001, 47(11), 2526-2538 [cit. 2015-12-19]. DOI: 10.1002/aic.690471115. ISSN 00011541.

[4] brookbubble.weebly.com/uploads/7/8/1/6/78160850/5575735.gif

[5] DUPLAT, Jérôme a Emmanuel VILLERMAUX. Luminescence from Collapsing Centimeter Bubbles Expanded by Chemical Reaction. Physical review letters [online]. 2015, 115(9), 094501 [cit. 2016-

06- 06].

[6] MISHRA, C. a Y. PELES Size scale effects on cavitating flows through microorifices entrenched in rectangular microchannels. Microelectromechanical Systems, Journal of [online]. USA: IEEE, 2005, 14(5), 987-999 [cit. 2015-12-19]. DOI: 10.1109/JMEMS.2005.851800. ISSN 10577157.

[7] MISHRA, Chandan a Yoav PELES. Flow visualization of cavitating flows through a rectangular slot micro-orifice ingrained in a microchannel. Physics of Fluids [online]. AIP, 2005, 17(11), 13602-13616 [cit. 2016-04- 10]. DOI: 10.1063/1.2132289. ISSN 10706631.

[8] ROOZE, Joost, Matthieu ANDRÉ, Gert-Jan GULIK, David FERNÁNDEZ-RIVAS, Johannes GARDENIERS, Evgeny REBROV, Jaap SCHOUTEN a Jos KEURENTJES. Hydrodynamic cavitation in microchannels with channel sizes of 100 and 750 micrometers. Microfluidics and Nanofluidics [online]. Berlin/Heidelberg: Springer-Verlag, 2012, 12(1), 499-508 [cit. 2015-12-19]. DOI: 10.1007/s10404-011-0891-5. ISSN 16134982.