Case study of a tornado in the Upper Rhine valley · Case study of a tornado in the Upper Rhine...

25
Meteorol. Z., N. F. 7, 163–170 (1998) Case study of a tornado in the Upper Rhine valley Ronald Hannesen, Nikolai Dotzek, Hermann Gysi, and Klaus D. Beheng FZK–Institut für Meteorologie und Klimaforschung, Postfach 3640, D–76021 Karlsruhe, Germany Received 5 November 1997, in final form 2 February 1998 Corresponding author’s address: Dr. R. Hannesen Gematronik GmbH Raiffeisenstr. 10, D–41470 Neuss–Rosellen, Germany. E–mail: [email protected], Tel: +49–2137–782–0, Fax: +49–2137–782–11.

Transcript of Case study of a tornado in the Upper Rhine valley · Case study of a tornado in the Upper Rhine...

Page 1: Case study of a tornado in the Upper Rhine valley · Case study of a tornado in the Upper Rhine valley Ronald Hannesen, Nikolai Dotzek, Hermann Gysi, and Klaus D. Beheng ... LFC,

Meteorol.Z., N. F. 7, 163–170(1998)

Case study of a tornado in the Upper Rhine valley

RonaldHannesen,Nikolai Dotzek,HermannGysi,andKlausD. Beheng

FZK–Institutfür MeteorologieundKlimaforschung,

Postfach3640,D–76021Karlsruhe,Germany

Received5 November1997,in final form2 February1998

Corresponding author’s address:

Dr. R. Hannesen

GematronikGmbH

Raiffeisenstr. 10,D–41470Neuss–Rosellen,Germany.

E–mail: [email protected],

Tel: +49–2137–782–0,Fax: +49–2137–782–11.

Page 2: Case study of a tornado in the Upper Rhine valley · Case study of a tornado in the Upper Rhine valley Ronald Hannesen, Nikolai Dotzek, Hermann Gysi, and Klaus D. Beheng ... LFC,

Meteorol. Z., N. F. 7, 163–170(1998)

Case study of a tornado in the Upper Rhine valley

RonaldHannesen,Nikolai Dotzek,HermannGysi,andKlausD. Beheng

FZK–Institutfür MeteorologieundKlimaforschung,

Postfach3640,D–76021Karlsruhe,Germany

Summary. On9 September1995ashort–livedtornadooccurredin theUpperRhinevalley

nearOberkirch–Nußbach,uprootingseveral treesaswell asdamagingbuildingsandcars.

Thestorm,confirmedby eyewitnessesanddamageanalysesperformedby WetteramtFrei-

burg of theGermanWeatherService,wasalsodetectedby theIMK C–bandDopplerradar

in Karlsruhe.Thedatashow a well–definedmesocyclonic rotationin thetornado’s parent

Cb cloud. The orographydistinctly influencedthe developmentof a wind field suitable

for supercellformation. This pointsto preferredareasof tornadicactivity. Thedominant

effects of vertical wind shearcomparedto convective energy during tornadogenesisare

evident for this storm. Its small scaleconfirmsthe existenceof small supercellstorms

beingstudiedin theUSA in recentyears.

Fallstudie eines Tornados im Oberrheingraben

Zusammenfassung. Am 9. September1995bildetesich im Oberrheingrabenbei Ober-

kirch–NußbacheinkurzlebigerTornado,dereinegrößereAnzahlvonBäumenentwurzelte

sowie GebäudeundAutosbeschädigte.Der durchAugenzeugenberichteundSchadenana-

lysendesWetteramtsFreiburg belegte Tornadoist auchin denDatendesIMK C–Band

Doppler–Radarsin Karlsruhenachzuweisen.Die Beobachtungenbelegeneineausgeprägte

Mesozyklonein der Cb–Mutterwolke desTornados.Die Orographiehat die Ausbildung

einesfür Superzellen–EntstehunggünstigenStrömungsfeldesentscheidendbeeinflußt,was

einenHinweis auf bevorzugteTornadogebieteim Oberrheingrabenliefert. Bei diesem

SturmdominiertebeiderTornadogenesedievertikaleWindscherunggegenüberderpoten-

tiellen Auftriebsenergie. SeinegeringeAusdehnunguntermauertdie Existenzderkleinen

Superzellen–Gewitter, die in denUSA seiteinigenJahrenstudiertwerden.

1

Page 3: Case study of a tornado in the Upper Rhine valley · Case study of a tornado in the Upper Rhine valley Ronald Hannesen, Nikolai Dotzek, Hermann Gysi, and Klaus D. Beheng ... LFC,

1 Introduction

In the TornadoandStormResearchOrganizationTORRO 1 statisticsof 1995,two tornadoes

in southernGermany are recorded(26/ 27 Januaryand9 September1995), yet still lacking

distinctmeteorologicalconfirmation.

Whereasthereporton theJanuaryeventis rathersketchyandcouldnot becorroboratedby

newspaperarticles,inquiriesat forestauthoritiesandby othersources,theeventof September

1995couldbeverified. ThetornadooccurrednearOberkirch–Nußbachandwasconfirmedby

eye witnessesandnewspaperarticlesaswell asby damageanalysesfrom theGermanWeather

Service(DWD), performedby WetteramtFreiburg (DWD 1995a).Theeventwasalsorecog-

nizedin thedataobtainedby a C–bandDopplerradarlocated70 km northof the tornadosite

at the Institutefor MeteorologyandClimateResearchin Karlsruhe(IMK). Due to the small

distancebetweenthetornadoandtheradar, detailedanalysesof thatparticulartornadicstorm

couldbeperformed.Theresultsof theseinvestigationsarepresentedhere.As amainpoint it is

anticipatedthat theorographyof theRhinevalley areastronglyinfluencedthedevelopmentof

thesmallsupercellstormtowardsits tornadicphase.

The article is divided into the following sections:in Sec.2 a brief generaloverview on

weatherconditionswhich may lead to tornadicactivity in the Upper Rhine valley is given.

Thesynopticsettingof 9 September1995includinga descriptionof thetornadois outlinedin

Sec.3. Analysisof theradardatais presentedin Sec.4 and(thermo-)dynamicprocessesduring

thevortex developmentareidentified. Theresultsarediscussedin Sec.5 andrelatedto other

recordedtornadiceventsin thecentralregionof theUpperRhinevalley.

2 Conditions for tornadogenesis

This sectiongivesa brief andexemplaryoverview on typical weatherfactorswhich favor tor-

nadogenesisin theUpperRhinevalley region duringthewarmseasonandrelatesthemto rel-

evant meteorologicalparameters.For a broaderdescriptionof thunderstorms,especiallysu-

percellsexhibiting mesocyclonic rotationandtornadogenesisthe readeris referredto Klemp

(1987)andHouze(1993).

Data analysisof recordedtornadoesfrom past decadesreveals that during the summer

1http://www.torro.org.uk/

2

Page 4: Case study of a tornado in the Upper Rhine valley · Case study of a tornado in the Upper Rhine valley Ronald Hannesen, Nikolai Dotzek, Hermann Gysi, and Klaus D. Beheng ... LFC,

monthstornadicstormsin theUpperRhinevalley region aremostprobableif warmandmoist

air from theMediterraneanor from centralSpainis advectedacrosssouthernFrance(the“Span-

ish plume” (Morris 1986))throughtheRhônevalley, theSwissJuramountainsandtheBelfort

Gap2 into the Rhinevalley (cf. DessensandSnow 1989). If the synopticconditionsprevail

andtheadvectedair massages,thelow–level moisturecontentrisesin theRhinevalley dueto

evapotranspirationwith limited verticalmixing below a low–level inversionat a typical height

of about1.5 km. Simultaneously, the temperatureincreasesfrom dayto daydueto strongin-

put of solarradiation. As a consequencethe low–level equivalentpotentialtemperature,���

,

continuouslyattainslargervalues.

Lifting at a cold front approachingfrom W–NW or positive vorticity advectionwith the

passageof a short–wave upperlevel troughmay remove the inversionlayer above the near–

surfacehigh–���

air andinducedeepmoistconvection.Anotheringredientnecessaryfor severe

convection triggeringtornadogenesisis the occurrenceof strongmid- or upper–tropospheric

windsveeringwith height,e.g. low–level southerlywindsanda westerlyjet stream(Weisman

andKlemp1984).

In theUpperRhinevalley thedirectionalwind shearis strongestnearthetop of thebound-

ary layer. This is causedby aspecificinteractionof airflow andorography:theboundary–layer

air is channeledalongthevalley betweentheVosgesandtheBlackForest,leadingto southerly

flow in the lowest ������ km of the atmosphere(Adrian andFiedler1991). In higher levels

theflow regimeis considerablyinfluencedby anotherorographicfeature:betweentheVosges

andPalatinianmountainsthesaddle–like depressionof Saverneleadsto anenhancedwesterly

flow above ����� km. This flow systemis supportedby the terrainwestof the Savernede-

pressiongentlyrisingeastward,thusgraduallyacceleratingthewesterlywinds.Fartherinto the

Rhinevalley aconvergenceline forms,separatingtheair masseswith westerlyhigher–level and

southerlyboundary–layerwinds. This resultsin a large low–level shearsituationwhich may

continuein the vertical. The hodographthendisplaysveeringwinds becomingstrongerwith

height,anecessaryconditionfor supercellformationasstatedabove.

If the abovementionedsynopticandmeso–meteorologicalsettingoccursduring the warm

season,severethunderstormsproducinghail andsometimesspawning tornadoesarelikely to

developin theUpperRhinevalley region. ThestrongPforzheimtornadoof 10 July 1968is an

2For adepictionof geographicalnamescf. Fig.1 showing theorographysurroundingtheradarwith rangerings

addedat30km intervals.

3

Page 5: Case study of a tornado in the Upper Rhine valley · Case study of a tornado in the Upper Rhine valley Ronald Hannesen, Nikolai Dotzek, Hermann Gysi, and Klaus D. Beheng ... LFC,

impressiveexampleof suchasituation(Nestle1969).

Theprobabilityof supercellularstormscanbeestimatedby severalparameters(cf. Weisman

andKlemp1984,Brooksetal. 1994):� convectiveavailablepotentialenergy CAPE

CAPE �� LNB�LFC

�������������� ���defininganupperlimit of potentialenergy dueto buoyancy forcesavailableto anair par-

cel rising from thelevel of freeconvection,LFC, to thelevel of neutralbuoyancy, LNB.

While���

denotesvirtual potentialtemperatureof theascendingparcel,����

corresponds

to anenvironmentalsounding.NotethatCAPEis stronglydependentonthenear–surface

valuesof���

.� bulk–Richardsonnumber����� ��������� CAPE "!$# � !&%�')(estimatingthe degreeto which the moist convectionis dynamicallyor thermodynami-

cally dominated.Thewind vectors!$#

and!$%

refer to low andmid–troposphericlevels,

respectively.� storm–relativehelicity SRH

SRH � � *� +-,�.0/ "! �21 '4365 . ! �7�indicatinghelical componentsof the storm–relative flow field in the vertical. Positive

SRH correspondsto cyclonic senseof rotation. While1

is the stormmotionand!

the

environmentalwind vector, 8 is thatparticularlevel betweengroundand �:9 km which

yieldsthelargestSRH.Closelyrelatedto SRHis thecriterionthatasupercellstormmay

occur if the hodographshows veeringwinds with heightanda stormmotion vector1

situatedto theright of thehodograph.� energy–helicityindex EHI

EHI � CAPE3

SRHEHI

+accountingfor the probability of strong(EHI ; < ) or violent tornadoes(EHI ;=�7�>� )for anempiricalreferencevalueEHI

+. For GreatPlainstornadoesin the USA EHI

+�<?�A@ 3 <B�DC J

(kg E ( is assumed.

4

Page 6: Case study of a tornado in the Upper Rhine valley · Case study of a tornado in the Upper Rhine valley Ronald Hannesen, Nikolai Dotzek, Hermann Gysi, and Klaus D. Beheng ... LFC,

3 Synoptic conditions and storm parameters

On9 September1995thesynopticsettingwassimilar to thesituationdescribedabove. South–

westernGermany wasinfluencedby adeeplow centeredabout500km farthernorthwhichhad

originatedfrom tropicalhurricanIris. A weakcold front hadalreadypassedthe region under

consideration,but on the low’s southernflank warmandmoistair still movedinto thesouth–

westernpartsof Germany. Fig. 2 shows the correspondingsurfaceanalysisof 00:00 UTC

(adaptedfrom DWD 1995b).A mid–tropospherictroughpassedtheareaaroundnoonincreas-

ing theatmosphericinstability. A cold pool over theUpperRhinevalley canbeinferredfrom

therelative topography50/100kPa–chartof 12:00UTC (not shown here).

In theunstablystratifiedair massseveralrain showersdevelopedover south–westernGer-

many; afew thunderstormswerealsoobserved.At 12:55LST (localstandardtime,10:55UTC)

oneof thesestormsspawneda tornadonearOberkirch–Nußbachlocatedat theeasternflankof

the UpperRhinevalley. The funnel wasobserved by several persons.In the region affected

many large appleandplum treeswereuprootedandthrown away up to 20 m. Shingleswere

blown down from someNußbachhouses,damagingcars.The tornadoswathwasabout1 km

longand50m wide. Fromthetrees’fall patternacounterclockwiserotatingvortex couldbere-

constructed(DWD 1995a).Accordingto theTORRO andFujitaintensityscales(Meaden1976,

Fujita1981)thereporteddamagesindicatea T2/F1tornadointensity, i. e. a weaktornado.

For calculatingthevariousstormparametersacompletesetof meteorologicaldatanearthe

tornadosite is required.The datausedwerethoseof the 13:00LST rawinsondeascentfrom

Stuttgartlocated��FD� km eastof Nußbachat 330m ASL aswell asthoseof the IMK 200m

mastandtheC–bandDopplerradar, bothlocated10km northof Karlsruheand70km northof

Nußbachat110m ASL (cf. Fig. 1).

Mast temperatureanddewpoint dataareaddedto theStuttgartsoundingto considernear–

surfacemeteorologicalvariablesin theUpperRhinevalley. Thisprocedureleadsto theprofiles

shown in Fig.3. Theimportanceof thenear–surfacevaluesturnsoutin calculatingCAPE:using

the Stuttgartsoundingonly, CAPE amountsto 70 Jkg EHG whereastaking the mastdatain the

lowestlevelsinto accountyieldsaCAPEof 440Jkg EHG with LFC � 1.3km andLNB � 7.3km

ASL 3.

Theprofilesof horizontalwind speedanddirectionin Fig. 3 givenby theStuttgartrawin-

3For theUpperRhinevalley regionconsideredhere,ASL I AGL JLKMKON m.

5

Page 7: Case study of a tornado in the Upper Rhine valley · Case study of a tornado in the Upper Rhine valley Ronald Hannesen, Nikolai Dotzek, Hermann Gysi, and Klaus D. Beheng ... LFC,

sondedataandcalculatedfromIMK Dopplerradardataby theVVP (volumevelocityprocessing)–

method(WaldteufelandCorbin1979)show increasingwindsveeringwith heightin thelowest

3 km. A hodographrepresentative for theUpperRhinevalley region canbeobtainedby using

IMK mastandradardatafor lowerlevelsandStuttgartrawinsondedatafor upperheightswhere

no radardataareavailabledueto a lack of echoes.Theresultis shown in Fig. 4 by thesolid

line. The shearvectorcontinuouslyveerswith heightestablishinga situationsuitablefor the

developmentof stormswith embeddedcounterclockwiserotatingmesocyclones(Weismanand

Klemp1984).Denotedby theasteriskin Fig. 4 is thestormmotionvector. Evaluatingthewind

profile leadsto a SRHof 105Jkg EHG andEHI �:���9 , valuestypically foundin theenvironment

of weaktornadoes(Kerr andDarkow 1996). The obtained���P� of 25 is further evidencefor

possiblesupercellthunderstormformation(WeismanandKlemp1984).

For comparisonFig. 4 alsoshows the low–level winds of the Stuttgartsounding(dashed

line). Thathodographis of a morestraight–linetypewith thestormmotionvectorlying very

closeto it. TheresultingStuttgartvaluesof SRH � �RQJkgEHG andEHI � � ���A�?�S� provide no

evidencefor any possiblesupercellthunderstorms.

4 Analysis of Doppler radar data

SinceJanuary1994operationalC–bandDopplerradarmeasurementsareperformedat IMK,

comprisingpolarvolumeradarreflectivity andDopplervelocityvaluesin 16 elevationswithin

a rangeof 120km every10 to 12min (seeGysi (1995)for adetaileddescriptionof theradar).

Figs. 5 and6 provide valuableinformationof the stormdevelopment. For 12:33,12:45,

and12:57LST, respectively, Figs.5 a–cshow reflectivity PPIswithin theareamarkedby the

rectanglein Fig. 1 at an elevation of 1.5 deg correspondingto an altitudeof roughly 2.5 km

ASL. Thedevelopmentof anintenseprecipitationcorecanclearlybeseenwith thereflectivity

partially exceeding50 dBT . However, thehookechobeingtypical of tornadicsupercellswas

not observed. This maybedueto eitherthesmall sizeof thestormor the limited spatialand

temporalradardataresolution.Fig.6 isanechotopdisplayshowing thetopheightof the40dBTplaneat differenttimes. Its fastlifting to morethan4 km ASL furtherprovestheexistenceof

strongupdraftswithin the cloud. Closely resemblingthe temporalevolution of the 40 dBTechotop,radar–detectedcloudtopsreachedheightsof about8 km. This is in goodagreement

with theLNB of 7.3km givenabove.

6

Page 8: Case study of a tornado in the Upper Rhine valley · Case study of a tornado in the Upper Rhine valley Ronald Hannesen, Nikolai Dotzek, Hermann Gysi, and Klaus D. Beheng ... LFC,

Figs.7 a–dshow DopplervelocityPPIs(PlanPositionIndicator)within theareamarkedby

therectanglein Fig. 1 for 12:40LST atelevationsof 0.2,1.0,2.0and3.0deg, correspondingto

heightsof about1.0,2.0,3.1and4.3km ASL, respectively. Theenvironmentalwind velocities

anddirectionsin theseheights(SW–W flow of roughly15 msEHG , cf. Fig. 3) resultin Doppler

velocitiesof about� <B� msEHG (i. e. towardstheradar).This superposedmeanflow component

is givenby theverticallyhatchedareain Fig.7. Consideringdeviationsfrom thismeanflow, the

vortex signaturetypicalof a counterclockwiserotatingmesocyclone(Donaldson1970,Doviak

and Zrnic 1984) is visible in the PPIsof the lowest 3 elevations(Figs. 7 a–c) by pairwise

locationsof positive andnegative Dopplervelocity deviationscenteredroughlyon the75 km

rangering. The deviation extremaareseparatedby about3 km and their differenceequals

15msEHG . Thisyieldsameanshearof 0.005sEHG ; avaluesufficient for recognitionof significant

mesocyclonic vortex signaturesas definede. g. by Linder and Schmid(1996). The vortex

signaturehasaverticalextentof about3 km andis centeredroughly10km westof Nußbach4.

A tornadohadnotbeenobservedat thattime. Fig.7 d showsthatataheightof about4.3km the

vortex signatureno longerexists. Instead,a divergencesignatureappears:closerto theradar,

theDopplervelocitycomponenttowardstheradaris largerthanfartheraway. This divergence

in theuppercloudpartsimpliesanupdraftwithin themesocycloneunderneath,consistentwith

thereflectivity analysisgivenabove.

Fig. 8 shows the samescanareaasFig. 7 at an elevation of 1.0 deg 12 min later (12:52

LST); shortlybeforethetornadowasobservedatNußbach.Thevortex signatureis still present,

but superposedby a convergencesignature:the areaof positive Dopplervelocity deviation is

locateda little closerto the radarthanthe areaof negative deviation. A convergence–caused

horizontalshrinkingandverticalstretchingof thevortex mayfinally have initiatedthetornado.

Theintensificationof themesocycloneandthetornadotouchdown arein phasewith amax-

imum of updraftintensity, apparentfrom the temporalevolution of the40 dBT echotop.It is

thereforesuggestedthatvortex–stretchingbelow theovershootingcloudtop is themainsource

for theincreaseof vorticity andhelicity prior to formationof thetornadovortex. A similarcase

of a mesocyclonewith a fastdevelopmentandverticalextensionof high reflectivity areashas

alsobeenfoundby LinderandSchmid(1996)investigatingatornadicstormthatstrucknorthern

Switzerlandon 22 July 1995.On this day, severethunder- andhailstormsoccurredthroughout

4Dueto thesmallnessof thismesovortex theterm“misocyclone”asproposedby Fujita (1981)wouldbemore

appropriate.For simplicity, only themorecommonexpression“mesocyclone” is usedin thispaper.

7

Page 9: Case study of a tornado in the Upper Rhine valley · Case study of a tornado in the Upper Rhine valley Ronald Hannesen, Nikolai Dotzek, Hermann Gysi, and Klaus D. Beheng ... LFC,

theRhinevalley aswell, but no furthertornadoeswerereported.

For completenesswe mentionthat 3 additionalmesocyclonesasidefrom the one of the

Nußbachstormweredetectedon 9 September1995. Someof theseshowed even moredis-

tinct vortex signaturesleadingto a meanshearof about0.007sEHG . However, neitherwere

additionaltornadoesobservednor did theresponsibleforestauthoritiesgetany informationon

extraordinarywind damage.Fig. 9 shows the tracksandthe timesof initiation anddecayof

the4 mesocyclonesof 9 September1995. Thesemesocycloneswereidentifiedin theDoppler

radardataby vortex signaturesembeddedwithin persistentsingleupdraftsbeneathregionsof

upper–level horizontaldivergence.All thesecaseshave the following featuresin common: i)

the mesocyclonesdevelopedin a region betweenRastattandStrasbourg, and ii) they formed

inmidst thevalley’s flat region, propagatedeastwardanddecayedsoonafter reachingthehilly

terrainof the northernBlack Forest. In the remainderof the radar’s observation area,how-

ever, containingalmostthe completeUpperRhinevalley and large areasof the surrounding

mountainousregions,noothervortex signatureswerefound.

5 Discussion

In this casestudythe (thermo-)dynamicprocessesresponsiblefor the formationof a tornado

neartheeasternflankof theUpperRhinevalley wereinvestigatedby useof a C–bandDoppler

radarandrawinsondedata.Theresultsshow that the thunderstormspawning the tornadowas

a small supercellwith a well–definedmesocycloneat lower levels anddivergenceat higher

levelsof theCbcloud.Thiscanbeattributedto a strongupward–directedconvectivemassflux

throughtheupdraftcoreof thestorm.

Mostly undisturbedby orographiceffects,thestormdevelopedabove therelatively flat ter-

rainof theRhinevalley for thetransitionto thetornadicphase,while thedownwardgeneration

of thefunnelwasfacilitatedby a low–level vorticity increaseabove theupslopingterrainat the

easternflank of thevalley. However, thesmallsupercellwastoo weakto maintainthetornado

vortex on its way to thehilly terrainof thenorthernBlackForestfor longertimes.In effect,the

tornadopersistedfor only a few minutesandthesupercellalsodisappearedabout15min later.

Theradar–observedcloudtopsat �VU km ASL fit well in theanalysisof atmosphericstrati-

ficationconsideringthespecialheatandmoistureconditionsin theRhinevalley. Typicalsuper-

cell featureswereobservedwith theNußbachstorm.However, boththeverticalextentandthe

8

Page 10: Case study of a tornado in the Upper Rhine valley · Case study of a tornado in the Upper Rhine valley Ronald Hannesen, Nikolai Dotzek, Hermann Gysi, and Klaus D. Beheng ... LFC,

horizontaldimensionof themesocycloneshow that thestormwasabouta factorof 2 smaller

thanclassicalGreatPlainssupercells.In theUSA these“mini”–supercellularstormshavebeen

observedaswell (Kennedyetal. 1993).

The rathersmall valueof CAPE supportsanalysesof Kerr andDarkow (1996), limiting

themainrole of CAPEto thestrengthof convective initiation while stressingtherelevanceof

storm–relativewindsandhelicity for furtherevolution to a tornadicsupercell.Accordinglythe

UpperRhinevalley, especiallytheregion in thevicinity of Baden–BadenandRastatt,is well–

suitedfor the formationand intensificationof supercellsdue to convergenceof a channeled

boundary–layerflow andthepresenceof high–���

air in theRhinevalley aswell asmid–level

cross–flow enhancedby theSavernedepressionasdiscussedabove. Theinfluenceof thelarger–

scaleorographyis also importantsincesomeof thosestormsdeveloping into supercellsdo

not form in theRhinevalley itself, but have their “nuclei” over thegentlyeastwardupsloping

terrainof the high plainsof Lorraine(westof the Savernedepression).This is in agreement

with investigationsontheintensificationandgrowingorganizationof convectionoverupsloping

terrain(SmithandYau(1987),DessensandSnow (1989))aswell aswith suggestionsby Schaaf

etal. (1988)on theinitiation of “convectionnuclei” inducedby certainorographicfeatures.

Thereforethecentralregionof theUpperRhinevalley seemsto beapreferredarealfor non–

tornadicsupercellstorms. Due to strongwind shearsand���

–gradientsnearthe convergence

line of air masseschanneledby both thedepressionof SaverneandtheRhinevalley it is also

likely that tornadicsupercellsoccur. Although the resultsare preliminary and needfurther

research,it is supportedby Fig. 10 in which thetracksof the9 September1995mesocyclones

andthedamageswathsof severaltornadoesfrom pastdecadesaredepicted.An accumulation

of tornadiceventsalonga well–definedtornado–alley becomesapparent.

Acknowledgments

Theauthorsaregratefulto Willi Schmidof ETH Zürich for his valuableadviceon theanaly-

sis andnoisecorrectionof the Dopplerdataaswell asfor commentson this paper. Wilhelm

Benzfrom Nußbachkindly provideduswith informationandphotographsconcerningthetor-

nadodamage.Thanksto Martin Löffler–Mangfor critical proofreadingof the text andto an

anonymousrefereefor valuablecomments.

9

Page 11: Case study of a tornado in the Upper Rhine valley · Case study of a tornado in the Upper Rhine valley Ronald Hannesen, Nikolai Dotzek, Hermann Gysi, and Klaus D. Beheng ... LFC,

References

Adrian G., F. Fiedler, 1991:Simulationof unstationarywind andtemperaturefieldsovercom-

plex terrainandcomparisonwith observations.— Contr. Atmos.Phys.64, 27–48.

BrooksH. E.,C.A. Doswell,J.Cooper, 1994:Ontheenvironmentsof tornadicandnontornadic

mesocyclones.— Wea.Forecasting9, 606–618.

DessensJ.,J.T. Snow, 1989:Tornadoesin France.— Wea.Forecasting4, 110–132.

Donaldson,R. J.Jr., 1970:Vortex signaturerecognitionby aDopplerradar. — J.Appl. Meteo-

rol. 9, 661–670.

Doviak,R. J.,D. S.Zrnic, 1984:DopplerRadarandWeatherObservations.— AcademicPress,

New York, 458pp.

DWD, 1995a: Wetterkarte.— AmtsblattdesDeutschenWetterdienstesD 7311A, Jahrgang

1995,BeilageNr. 138/1995.— EigenverlagdesDeutschenWetterdienstes,Offenbach.

DWD, 1995b:EuropäischerWetterbericht.— AmtsblattdesDeutschenWetterdienstesD 6168

A, Jahrgang20,Nr. 252.— EigenverlagdesDeutschenWetterdienstes,Offenbach.

Fujita,T. T., 1981:Tornadoesanddownburstsin thecontext of generalizedplanetaryscales.—

J.Atmos.Sci.38, 1511–1534.

Gysi, H., 1995: Niederschlagsmessungmit Radarin orographischgegliedertemGelände.—

Diss.,Univ. Karlsruhe,188S.

HouzeR. A. Jr., 1993:CloudDynamics.— Int. Geophys.Ser. 53, AcademicPress,SanDiego,

573pp.

KennedyP. C., N. E. Westcott,R. W. Scott, 1993: Single–Dopplerradarobservationsof a

mini–supercelltornadicthunderstorm.— Mon. Wea.Rev. 121, 1860–1870.

KerrB. W., G.L. Darkow, 1996:Storm–relativewindsandhelicity in thetornadicthunderstorm

environment.— Wea.Forecasting11, 489–505.

Klemp J.B., 1987:Dynamicsof tornadicthunderstorms.— Annu.Rev. Fluid Mech.19, 369–

402.

10

Page 12: Case study of a tornado in the Upper Rhine valley · Case study of a tornado in the Upper Rhine valley Ronald Hannesen, Nikolai Dotzek, Hermann Gysi, and Klaus D. Beheng ... LFC,

Linder, W., W. Schmid,1996: A tornadicthunderstormin Switzerlandexhibiting a radar–

detectablelow–level vortex. — Proc.12th Int. Conf.onCloudsandPrecip.,Zürich,577–580.

MeadenG. T., 1976:Tornadoesin Britain: their intensitiesanddistribution in spaceandtime.

— J.Meteorol.1, 242–251.

Morris R. M., 1986: TheSpanishplume— testingthe forecaster’s nerve. — Meteorol.Mag.

115, 349–357.

NestleR., 1969: Der Tornadovom 10. 7. 1968im RaumPforzheim.— Meteorol.Rdsch.22,

1–3.

SchaafC. B., J. Wurman,R. M. Banta,1988: Thunderstorm–producingterrain features.—

Bull. Amer. Meteorol.Soc.69, 272–277.

SmithS. B., M. K. Yau,1987: Themesoscaleeffect of topographyon the genesisof Alberta

hailstorms.— Contr. Atmos.Phys.60, 371–392.

Waldteufel,P., H. Corbin,1979:On theanalysisof singleDopplerdata.— J.Appl. Meteorol.

18, 532–542.

Weisman,M. L., J.B. Klemp,1984:Thestructureandclassificationof numericallysimulated

convectivestormsin directionallyvaryingwind shears.— Mon. Wea.Rev. 112, 2479–2498.

RonaldHannesen

Nikolai Dotzek

HermannGysi

KlausD. Beheng

Institut für MeteorologieundKlimaforschung

Forschungszentrum/ UniversitätKarlsruhe

Postfach3640

D–76021Karlsruhe

Germany

Received5 November1997,in revisedform: 2 February1998

11

Page 13: Case study of a tornado in the Upper Rhine valley · Case study of a tornado in the Upper Rhine valley Ronald Hannesen, Nikolai Dotzek, Hermann Gysi, and Klaus D. Beheng ... LFC,

Figure captions

Figure1: OrographysurroundingtheDopplerradar. Markedboxesindicatetheareasof Figs.5,

7 and8 (small rectangle)and9 (square).Locality namesusedin the text areincluded. BB =

Baden–Baden,Ffm = Frankfurt,Fr = Freiburg, Ka = Karlsruhe,N = Nußbach,Pf = Pforzheim,

Ra= Rastatt,Sb= Saarbrücken,Stg= Stuttgart,Str= Strasbourg, Wü = Würzburg.

Abb. 1: Orographiein derUmgebungdesDoppler–Radars.Die gekennzeichnetenAusschnitte

entsprechendenBereichenderAbbn.5, 7 und8 (kleinesRechteck)sowie 9 (Quadrat).

Figure2: Surfaceanalysischartof 00:00UTC (02:00LST), 9 September1995.For detailssee

text.

Abb. 2: Bodenwetterkartevom9.September1995,00:00UTC(02:00LST).NähereErläuterun-

genim Text.

Figure 3: Wind and temperatureprofilesof 9 September1995 at 13:00LST. Data from the

Stuttgartrawinsondesupplementedby IMK meteorologicalmastandDopplerradardata.

Abb. 3: Wind- undTemperaturprofilevom 9. September1995um 13:00LST. Radiosondenda-

tenvon Stuttgart,ergänztum Wertevom meteorologischenMeßmastundvom Doppler–Radar

desIMK.

Figure4: Hodographof thewind datashown in Fig. 3 for theUpperRhinevalley region (solid

line) and the Stuttgartsounding(dashedline). Numbersat the dots representheightsin km

ASL. Theasteriskmarksthestormmotionvector.

Abb. 4: Hodogrammder WinddatenausAbb. 3 für denmittlerenOberrheingraben(ausgezo-

geneLinie) unddie StuttgarterSondierung(gestrichelt).Die ZahlenandenPunktengebendie

Höheü. NN in km an.DerSternmarkiertdieVerlagerungsgeschwindigkeit derMesozyklone.

12

Page 14: Case study of a tornado in the Upper Rhine valley · Case study of a tornado in the Upper Rhine valley Ronald Hannesen, Nikolai Dotzek, Hermann Gysi, and Klaus D. Beheng ... LFC,

Figure5: PPIof radarreflectivity atanelevationof 1.5deg for a)12:33,b) 12:45,andc) 12:57

LST. N = Nußbach.

Abb. 5: PPI der Reflektivität bei einerElevation von 1,5 Gradum a) 12:33,b) 12:45und c)

12:57LST.

Figure6: Temporalvariationsof 40dBT reflectivity echotop(in km ASL). N = Nußbach.

Abb. 6: ZeitlicherVerlaufderObergrenze(in km ü. NN) der 40 dBT –Fläche(Echotop–Dar-

stellung).

Figure7: PPIof Dopplervelocity for 12:40LST at elevationsof a) 0.2 deg, b) 1.0 deg, c) 2.0

deg andd) 3.0 deg. Velocity valuesareindicatedby hatchedareasasgivenby theinsert. N =

Nußbach.

Abb. 7: PPI der Doppler–Geschwindigkeit um 12:40LST bei den Elevationena) 0,2 Grad,

b) 1,0 Grad,c) 2,0 Gradund d) 3,0 Grad. Geschwindigkeitensind durchdie in der Legende

gezeigtenSchraffurengekennzeichnet.

Figure8: PPIof Dopplervelocityasin Fig. 7 b (atelevation1.0deg), but for 12:52LST.

Abb. 8: PPI der Doppler–Geschwindigkeit wie in Abb. 7 b (Elevation 1,0 Grad), jedochfür

12:52LST.

Figure9: Tracksof radar–detectedmesocycloneson 9 September1995. Timescorrespondto

respective first andlast radarscansrevealingmesocyclonic in–cloudrotationandupper–level

divergencesignatures.Str = Strasbourg, Ra= Rastatt,BB = Baden–Baden,N = Nußbach.

Abb. 9: Zugbahnenderam9. September1995aufgetretenenMesozyklonen.Die Zeitengeben

jeweilsderenerstebzw. letzteRadar–Detektierungan.

13

Page 15: Case study of a tornado in the Upper Rhine valley · Case study of a tornado in the Upper Rhine valley Ronald Hannesen, Nikolai Dotzek, Hermann Gysi, and Klaus D. Beheng ... LFC,

Figure 10: Groundtracksof radar–detectedmesocycloneson 9 September1995 (thin lines)

anddamageswathsof tornadoes(thick lines) in the centralregion of theUpperRhinevalley.

Numbersat trackscorrespondto datesof occurrence:1.) 4 Jul1885,2.) 7 Jun1952,3.) 27Apr

1960,4. a,b) 10Jul1968,5.) 8 May 1985,6.) 23Jul1986,7.) 21Jul1992,8.a–d)9 Sep1995.

N = Nußbach,Pf = Pforzheim,Stg= Stuttgart,Str= Strasbourg.

Abb. 10: ZugbahnenderMesozyklonendes9. September1995(dünneLinien) undverschiede-

nerTornados(dickeLinien) im mittlerenOberrheingraben.

14

Page 16: Case study of a tornado in the Upper Rhine valley · Case study of a tornado in the Upper Rhine valley Ronald Hannesen, Nikolai Dotzek, Hermann Gysi, and Klaus D. Beheng ... LFC,

Figure1

15

Page 17: Case study of a tornado in the Upper Rhine valley · Case study of a tornado in the Upper Rhine valley Ronald Hannesen, Nikolai Dotzek, Hermann Gysi, and Klaus D. Beheng ... LFC,

Figure2

16

Page 18: Case study of a tornado in the Upper Rhine valley · Case study of a tornado in the Upper Rhine valley Ronald Hannesen, Nikolai Dotzek, Hermann Gysi, and Klaus D. Beheng ... LFC,

Figure3

17

Page 19: Case study of a tornado in the Upper Rhine valley · Case study of a tornado in the Upper Rhine valley Ronald Hannesen, Nikolai Dotzek, Hermann Gysi, and Klaus D. Beheng ... LFC,

−5

0

5

10

0 10 20

u−component in m/s

v−c

ompo

nent

in

m/s

Upper Rhine valley

Stuttgart

4

6 20.1

1

0.3

1

2

*

Figure4

18

Page 20: Case study of a tornado in the Upper Rhine valley · Case study of a tornado in the Upper Rhine valley Ronald Hannesen, Nikolai Dotzek, Hermann Gysi, and Klaus D. Beheng ... LFC,

Figure5

19

Page 21: Case study of a tornado in the Upper Rhine valley · Case study of a tornado in the Upper Rhine valley Ronald Hannesen, Nikolai Dotzek, Hermann Gysi, and Klaus D. Beheng ... LFC,

Figure6

20

Page 22: Case study of a tornado in the Upper Rhine valley · Case study of a tornado in the Upper Rhine valley Ronald Hannesen, Nikolai Dotzek, Hermann Gysi, and Klaus D. Beheng ... LFC,

Figure7

21

Page 23: Case study of a tornado in the Upper Rhine valley · Case study of a tornado in the Upper Rhine valley Ronald Hannesen, Nikolai Dotzek, Hermann Gysi, and Klaus D. Beheng ... LFC,

Figure8

22

Page 24: Case study of a tornado in the Upper Rhine valley · Case study of a tornado in the Upper Rhine valley Ronald Hannesen, Nikolai Dotzek, Hermann Gysi, and Klaus D. Beheng ... LFC,

Figure9

23

Page 25: Case study of a tornado in the Upper Rhine valley · Case study of a tornado in the Upper Rhine valley Ronald Hannesen, Nikolai Dotzek, Hermann Gysi, and Klaus D. Beheng ... LFC,

Figure10

24