Case report - OA Publishing London · Case report Page 1 of 3 Licensee OA Publishing London 2013....

3
Case report Page 1 of 3 Licensee OA Publishing London 2013. Creative Commons Attribution License (CC-BY) For citation purposes: Pulei AN, Ongeti KW, Rogena EA, Jowi CY. A rare type of interruption of the aortic arch: case report. OA Case Reports 2013 Aug 08;2(7):70. Compeng interests: none declared. Conflict of interests: none declared. All authors contributed to the concepon, design, and preparaon of the manuscript, as well as read and approved the final manuscript. All authors abide by the Associaon for Medical Ethics (AME) ethical rules of disclosure. A rare type of interruption of the aortic arch: case report AN Pulei*, KW Ongeti, EA Rogena, CY Jowi ventricular septal defect, patent duc- tus arteriosus, bicuspid aortic valve, left ventricular outflow tract obstruc- tion, or aortopulmonary window 2 . The IAA anomaly was first described by Steidele 3 in 1778. Celoria and Patton 4 later classified IAA into three types according to the site of dis- continuity of the aortic arch. Type A was the IAA where the site of discon- tinuity was distal to the left sublcav- ian artery, type B, between the left carotid and left subclavian arteries and between the innominate and left carotid arteries, type C. The most common type is B (53%), followed by A (43%) and C (4%). We describe a type A IAA that coexists with bila- teral hydroureter and a foramen secundum. Case report A female neonate with birth weight of 2550 gm developed cyanosis and perioral twitching soon after birth. She was a third born in the family, with a favourable antenatal period. The mother was 29-years old with no history of contraceptive or other drug use during gestation. On exami- nation, a systolic murmur was heard all over the left side of the chest with hypotonia in all limbs, weak Moro and grasp reflexes. The suck reflex was absent. She also had sutural diasthesis. There were no abnormal abdominal findings. During autopsy, the baby weighed 2605 gm; her head circumference was 35 cm, crown rump length 35 cm, crown heel length 51 cm. There were no external abnormalities. Examination of the thorax revealed a situs solitus orga- nization of the intrathoracic organs with a heart in levocardia (Figure 1). Further examination of the heart showed four chambers. The inferior Abstract Introduction We present the first report of inter- ruption of the aortic arch in our region. Case report A three-day-old neonate succumbed at a referral hospital with a history leading to diagnosis of a cyanotic heart malformation. Autopsy revea- led a pulmonary trunk that arched then continued as the descending aorta after giving small pulmonary arteries to both lungs. The left ven- tricle was drained by an aorta that gave rise to both coronary arter- ies and then continued on to give the brachiocephalic trunk, the left common carotid and the left subcla- vian arteries. The latter was the last branch of this aorta. This arrange- ment falls into the type A classifica- tion of interruption of the aortic arch. Conclusion This case highlights the need for a systematic assessment of neonates at birth in order to pick and appro- priately manage congenital cyanotic heart diseases. Introduction Interruption of the aortic arch (IAA) is an infrequent cyanotic heart dis- ease and is reported to occur in three per million live births and constitutes 1% of congenital heart disease 1 . It is defined as loss of luminal continuity between the ascending and descend- ing parts of the aorta. In 97% of the cases 1 , it is usually associated with other cardiac anomalies such as Pathology vena cava (IVC) and superior vena cava (SVC) drained normally into the right atrium (RA). The RA and appendage were normal in position. There was a large foramen secundum connecting the two atria (Figure 2). The right ventricle normal in its *Corresponding author Email: [email protected] Department of Human Anatomy, University of Nairobi, Uhuru Highway, Nairobi 00100, Kenya Figure 1: Showing the relation of the thoracic organs. The organs are in the normal arrangement (situs sol- itus), the heart (H) is towards the left (levocardia). TY, thymus; RL, right lung; LL, left lung; H, heart; T, tongue. Figure 2: Showing the foramen secundum adjoining the two atrial chambers (red arrow). This septal defect was about 11 mm in diameter. Ra, right auricle; RA, right atrium; RV, right ventricle.

Transcript of Case report - OA Publishing London · Case report Page 1 of 3 Licensee OA Publishing London 2013....

Page 1: Case report - OA Publishing London · Case report Page 1 of 3 Licensee OA Publishing London 2013. Creative Commons Attribution License (CCBY) ... Conclusion This case highlights the

Case report

Page 1 of 3

Licensee OA Publishing London 2013. Creative Commons Attribution License (CC-BY)

For citation purposes: Pulei AN, Ongeti KW, Rogena EA, Jowi CY. A rare type of interruption of the aortic arch: case report. OA Case Reports 2013 Aug 08;2(7):70. Co

mpe

ting

inte

rest

s: n

one

decl

ared

. Con

flict

of i

nter

ests

: non

e de

clar

ed.

All a

utho

rs c

ontr

ibut

ed to

the

conc

eptio

n, d

esig

n, a

nd p

repa

ratio

n of

the

man

uscr

ipt,

as w

ell a

s rea

d an

d ap

prov

ed th

e fin

al m

anus

crip

t.Al

l aut

hors

abi

de b

y th

e As

soci

ation

for M

edic

al E

thic

s (AM

E) e

thic

al ru

les o

f disc

losu

re.

A rare type of interruption of the aortic arch: case reportAN Pulei*, KW Ongeti, EA Rogena, CY Jowi

ventricular septal defect, patent duc­tus arteriosus, bicuspid aortic valve, left ventricular outflow tract obstruc­tion, or aortopulmonary window2. The IAA anomaly was first described by Steidele3 in 1778. Celoria and Patton4 later classified IAA into three types according to the site of dis­continuity of the aortic arch. Type A was the IAA where the site of discon­tinuity was distal to the left sublcav­ian artery, type B, between the left carotid and left subclavian arteries and between the innominate and left carotid arteries, type C. The most common type is B (53%), followed by A (43%) and C (4%). We describe a type A IAA that coexists with bila­teral hydroureter and a foramen secundum.

Case reportA female neonate with birth weight of 2550 gm developed cyanosis and perioral twitching soon after birth. She was a third born in the family, with a favourable antenatal period. The mother was 29­years old with no history of contraceptive or other drug use during gestation. On exami­nation, a systolic murmur was heard all over the left side of the chest with hypotonia in all limbs, weak Moro and grasp reflexes. The suck reflex was absent. She also had sutural diasthesis. There were no abnormal abdominal findings. During autopsy, the baby weighed 2605 gm; her head circumference was 35 cm, crown rump length 35 cm, crown heel length 51 cm. There were no external abnormalities. Examination of the thorax revealed a situs solitus orga­nization of the intrathoracic organs with a heart in levocardia (Figure 1). Further examination of the heart showed four chambers. The inferior

AbstractIntroductionWe present the first report of inter­ruption of the aortic arch in our region.Case reportA three­day­old neonate succumbed at a referral hospital with a history leading to diagnosis of a cyanotic heart malformation. Autopsy revea­led a pulmonary trunk that arched then continued as the descending aorta after giving small pulmonary arteries to both lungs. The left ven­tricle was drained by an aorta that gave rise to both coronary arter­ies and then continued on to give the brachiocephalic trunk, the left common carotid and the left subcla­vian arteries. The latter was the last branch of this aorta. This arrange­ment falls into the type A classifica­tion of interruption of the aortic arch. ConclusionThis case highlights the need for a systematic assessment of neonates at birth in order to pick and appro­priately manage congenital cyanotic heart diseases.

IntroductionInterruption of the aortic arch (IAA) is an infrequent cyanotic heart dis­ease and is reported to occur in three per million live births and constitutes 1% of congenital heart disease1. It is defined as loss of luminal continuity between the ascending and descend­ing parts of the aorta. In 97% of the cases1, it is usually associated with other cardiac anomalies such as

Path

olog

y

vena cava (IVC) and superior vena cava (SVC) drained normally into the right atrium (RA). The RA and appendage were normal in position. There was a large foramen secundum connecting the two atria (Figure 2). The right ventricle normal in its

*Corresponding authorEmail: [email protected]

Department of Human Anatomy, University of Nairobi, Uhuru Highway, Nairobi 00100, Kenya

Figure 1: Showing the relation of the thoracic organs. The organs are in the normal arrangement (situs sol­itus), the heart (H) is towards the left (levocardia). TY, thymus; RL, right lung; LL, left lung; H, heart; T, tongue.

Figure 2: Showing the foramen secundum adjoining the two atrial chambers (red arrow). This septal defect was about 11 mm in diameter. Ra, right auricle; RA, right atrium; RV, right ventricle.

Page 2: Case report - OA Publishing London · Case report Page 1 of 3 Licensee OA Publishing London 2013. Creative Commons Attribution License (CCBY) ... Conclusion This case highlights the

Case report

Page 2 of 3

Licensee OA Publishing London 2013. Creative Commons Attribution License (CC-BY)

Com

petin

g in

tere

sts:

non

e de

clar

ed. C

onfli

ct o

f int

eres

ts: n

one

decl

ared

.Al

l aut

hors

con

trib

uted

to th

e co

ncep

tion,

des

ign,

and

pre

para

tion

of th

e m

anus

crip

t, as

wel

l as r

ead

and

appr

oved

the

final

man

uscr

ipt.

All a

utho

rs a

bide

by

the

Asso

ciati

on fo

r Med

ical

Eth

ics (

AME)

eth

ical

rule

s of d

isclo

sure

.

For citation purposes: Pulei AN, Ongeti KW, Rogena EA, Jowi CY. A rare type of interruption of the aortic arch: case report. OA Case Reports 2013 Aug 08;2(7):70.

formation (tripartite) with a normal inflow, tricuspid valve, normal body, normal outflow tract (infundibulum and pulmonary trunk). The pulmo­nary trunk (PT) originated normally from the right ventricle with normal trunk, with no stenosis. This artery immediately gave two pulmonary arteries to the left and right lungs and was connected by large duc­tus, same diameter as PT, with the descending aorta (Figure 3). All the four pulmonary veins were found to enter normally into the left atrium (LA). The LA and its appendage appeared normal. There was normal left ventricular flow: mitral valve and the infundibulum. The left ven­tricle (LV) septum appeared intact with a normal body. The aorta was found to connect normally to the LV and the aortic valve was also nor­mal. The aorta extended vertically, branching into the brachiocephalic trunk (BCA), Left common carotid (LCC) and the left subclavian artery (LSA) with an interruption after the

Figure 4: Showing the left ventricu­lar outflow. 1 is the brachiocephalic trunk, 2 is the left common carotid, 3 is the left subclavian artery. RV, right ventricle; LV, left ventricle; DTA, descending thoracic aorta. Note that the probes are in continuation with the LV chamber.

LSA. The RCA and LCA arose from the aorta (Figure 4). Other find­ings comprised bilateral hydrone­phrosis and hydroureter (Figure 5), pulmonary oedema and brain oedema.

DiscussionThe above findings were compatible with an IAA type A. IAA represents 1% of congenital heart diseases1. This rare cyanotic heart anomaly is almost predictably accompanied by other congenital anomalies. The most common association recorded is being a patent ductus arteriosus and a ventricular septal defect5. The most recent reported rare association is that of an ASD of a venosum type and anomalous pulmonary connection6. In this report, the IAA coexists with an ASD of the secundum type.

The median age of death in IAA associated with cardiac anoma­lies has been reported to be 10 days7. The cause of death being attributed to increased pulmonary

hypertension and the resultant biventricular failure. Not with stand­ing, there are cases that are detected late into adulthood2,6,8. Krishna et al.8, reported IAA in several adults includ­ing a 64­year old. Collateral allows for survival of these patients into adulthood.

IAA is said to occur as a result of defective embryology of the primitive aortae and aortic arches1. According to this author, type A IAA is formed by the abnormal regression of the left fourth arch segment late in develop­ment after the left subclavian artery has ascended to its normal position. A type B IAA is found when the left fourth arch segment regresses early, prior to cephalad migration of the left subclavian artery.

On the other hand, a type C IAA represents involution of the ventral portion of the left third arch and the left fourth arch (both of which arise from the left limb of the aortic sac) and persistence of the normally regressing ductus caroticus.

Figure 3: 3a and 3b illustrate ventricular outflow. The yellow arrow shows the right ventricular chamber. The glass rods (red arrows), show the right and left pulmonary arteries, respectively (3a). (3b) is close up view to show the pulmo­nary trunk (PT), the left pulmonary artery (glass rod), the ductus arteriosus (DA) and the descending thoracic aorta (DTA), the DTA has been unfolded. Note that the size of the DA is the same as that of the DTA and PT. The branches of the left ventricle can also be noted; 1 is the brachiocephalic trunk, 2 is the left common carotid, 3 the left subclavian. LL (left lung).

Page 3: Case report - OA Publishing London · Case report Page 1 of 3 Licensee OA Publishing London 2013. Creative Commons Attribution License (CCBY) ... Conclusion This case highlights the

Case report

Page 3 of 3

Licensee OA Publishing London 2013. Creative Commons Attribution License (CC-BY)

Com

petin

g in

tere

sts:

non

e de

clar

ed. C

onfli

ct o

f int

eres

ts: n

one

decl

ared

.Al

l aut

hors

con

trib

uted

to th

e co

ncep

tion,

des

ign,

and

pre

para

tion

of th

e m

anus

crip

t, as

wel

l as r

ead

and

appr

oved

the

final

man

uscr

ipt.

All a

utho

rs a

bide

by

the

Asso

ciati

on fo

r Med

ical

Eth

ics (

AME)

eth

ical

rule

s of d

isclo

sure

.

For citation purposes: Pulei AN, Ongeti KW, Rogena EA, Jowi CY. A rare type of interruption of the aortic arch: case report. OA Case Reports 2013 Aug 08;2(7):70.

The clinical pattern and chest X­ray are not diagnostic of IAA9. Nonetheless, bounding carotid pulses and a weak peripheral pulse should heighten suspicion, but differential cyanosis is almost pathognomonic10. With suspicion from the clinical signs, angiocardiography is recommended9. It is worth noting that Di George syn­drome is associated with the highest incidence of IAA7,11. Out of the seven patients with Di George syndrome studied by Finley et al.7, five of them had IAA. In our report, the thymus was present.

Association of congenital heart anomalies with urinary tract malfor­mations is documented12. According to these workers, atrial septal defects stood a higher chance of concurrence with a urinary tract malformation, while those with ventricular septal defects and tetralogy of fallot had an average incidence. Due to the co existence observed in this case report, the possibility of a urinary

tract malformation should be con­sidered in the case where such an anomalies presents again.

ConclusionThis case highlights the need for a systematic assessment of neonates at birth in order to pick and appro­priately manage congenital cyanotic heart diseases.

ConsentWritten informed consent was obtained from the patient’s parents for publication of this case report and accompanying images. A copy of the written consent is available for review by the Editor­in­Chief of this journal.

References1. Reardon MJ, Hallman GL, Cooley DA. Interupted aortic arch: brief review and summary of an eighteen­year experience. Tex Heart Inst J. 1984 Sep;11(3):250–9.2. Messner G, Reul GJ, Flamm SD, Gregoric ID, Opfermann UT. Interrupted aortic arch in an adult single­stage

extra-anatomic. Repair Tex Heart Inst J. 2002 Feb;29(2):118–21.3. Steidele RJ. Sammlung verschiedener in der chirurgisch­praktischen lehr­schule gemachten beobachtungen 2. Vienna: Trattern; 1778: 2: p. 114.4. Celoria GC, Patton RB. Congenital absence of the aortic arch. Am Heart J. 1959 Sep;58(3):407–13.5. Loffredo CA, Ferencz C, Wilson PD, Lurie IW. Interrupted aortic arch: an epidemiologic study. Teratology. 2000 May;61(5):368–75.6. Hsieh YC, Wul TJ, Wang KY, Liang KW, Lin WW, Chen YT, et al. An adult with aortic arch interruption associated with sinus venosus atrial septal defect and partial anomalous pulmonary venous connection. J Chin Med Asso. 2007 Jan;70(1):30–2.7. Finley JP, Collins GF, de Chadarevian JP, Williams RL. Di George syndrome pre­senting as severe congenital heart dis­ease in the newborn. CMA. 1977 Mar; 116(6):635–40.8. Krishna CS, Bhan A, Sharma S, Kiran U, Venugopal P. Interruption of aortic arch in adults surgical experience with extra­anatomic bypass. Tex Heart Inst J. 2005; 32(2):147–50.9. Neye-Bock S, Fellow KE. Aortic arch interruption in infancy; radio and angiographic features. AJR. 1980 Nov;135(5):1005–10.10. Rochette M, Stanley P, Ethier M, Davignon A. Complete interruption of the aortic arch in infancy. Canad Med Ass J. 1968 Jan;98(3):3.11. Sett SS, Sandor GGS, Mawson JB. Interrupted right aortic arch and origin of the left pulmonary artery from the aorta in DiGeorge syndrome. Cardiol Young. 2001;11(6):676–9.12. Rao S, Engle MA, Levin AR. Silent anomalies of the urinary tract and con­genital heart disease. Chest. 1975; 67(6);685–91.

Figure 5: Shows the dilated ureters, Ur, and renal pelvis (red arrows). B, is the bladder; K, kidney; C, colon. In 5b, note the dilated renal pelvis as shown by the red arrows.