Cascade Model Slides

36
7/23/2019 Cascade Model Slides http://slidepdf.com/reader/full/cascade-model-slides 1/36 Modelling Cascades Over Time in Microblogs Wei Xie, Feida Zhu, Siyuan Liu and Ke Wang* Living Analytics Research Centre Singapore Management University * Ke Wang is from Simon Fraser University, and this work was done when the author was visiting Living Analytics Research Centre in Singapore Management University.

Transcript of Cascade Model Slides

Page 1: Cascade Model Slides

7/23/2019 Cascade Model Slides

http://slidepdf.com/reader/full/cascade-model-slides 1/36

Modelling Cascades Over Time

in Microblogs

Wei Xie, Feida Zhu, Siyuan Liu and Ke Wang*Living Analytics Research Centre

Singapore Management University

* Ke Wang is from Simon Fraser University, and this work was done when the author was visiting

Living Analytics Research Centre in Singapore Management University.

Page 2: Cascade Model Slides

7/23/2019 Cascade Model Slides

http://slidepdf.com/reader/full/cascade-model-slides 2/36

Motivation

• Business applications such as viral marketinghave driven a lot of research effort predicting

whether a cascade will go viral.

• In real life, there are very few truly viralcascades.

• Previous research work* shows that temporal

features are the key predictor of cascade size.

* Justin Cheng, Lada A. Adamic, P. Alex Dow, Jon M. Kleinberg, Jure Leskovec:

Can cascades be predicted? WWW 2014: 925-936

Page 3: Cascade Model Slides

7/23/2019 Cascade Model Slides

http://slidepdf.com/reader/full/cascade-model-slides 3/36

Time-aware Cascade Model

!"!#

!$

!%

!&

!'

(#("

(%($

( ( * +(

!"!#

!$

!%

!&

!'

(#("

(%($

('

Page 4: Cascade Model Slides

7/23/2019 Cascade Model Slides

http://slidepdf.com/reader/full/cascade-model-slides 4/36

Time-aware Cascade Model

!"!#

!$

!%

!&

!'

(#("

(%($

( ( * +(

!"!#

!$

!%

!&

!'

(#("

(%($

('

Page 5: Cascade Model Slides

7/23/2019 Cascade Model Slides

http://slidepdf.com/reader/full/cascade-model-slides 5/36

Time-aware Cascade Model

!"!#

!$

!%

!&

!'

(#("

(%($

( ( * +(

!"!#

!$

!%

!&

!'

(#("

(%($

('

 ⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪

P (C(t+ dt)) =  P (C(t+ dt)|C(t))  ⋅  P (C(t))

P (C( )) = 1t0

P (C(t+ dt)|C(t)) = (t)  ⋅ (1  − (t))∏∈ (t)u i   X

(1)

P i   ∏∈ (t)u i′   X

(2)

P i ′

  (t) = (t, { ;Θ)  ⋅  dt i i   t j} ∈Followe (t)u j   e(i)

Page 6: Cascade Model Slides

7/23/2019 Cascade Model Slides

http://slidepdf.com/reader/full/cascade-model-slides 6/36

Time-aware Cascade Model

!"!#

!$

!%

!&

!'

(#("

(%($

( ( * +(

!"!#

!$

!%

!&

!'

(#("

(%($

('

users who have re-shared

 ⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪

P (C(t+ dt)) =  P (C(t+ dt)|C(t))  ⋅  P (C(t))

P (C( )) = 1t0

P (C(t+ dt)|C(t)) = (t)  ⋅ (1  − (t))∏∈ (t)u i   X

(1)

P i   ∏∈ (t)u i′   X

(2)

P i ′

  (t) = (t, { ;Θ)  ⋅  dt i i   t j} ∈Followe (t)u j   e(i)

Page 7: Cascade Model Slides

7/23/2019 Cascade Model Slides

http://slidepdf.com/reader/full/cascade-model-slides 7/36

Time-aware Cascade Model

!"!#

!$

!%

!&

!'

(#("

(%($

( ( * +(

!"!#

!$

!%

!&

!'

(#("

(%($

('

users who have re-shared users who haven’t yet

  ⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪

P (C(t+ dt)) =  P (C(t+ dt)|C(t))  ⋅  P (C(t))

P (C( )) = 1t0

P (C(t+ dt)|C(t)) = (t)  ⋅ (1  − (t))∏∈ (t)u i   X

(1)

P i   ∏∈ (t)u i′   X

(2)

P i ′

  (t) = (t, { ;Θ)  ⋅  dt i i   t j} ∈Followe (t)u j   e(i)

Page 8: Cascade Model Slides

7/23/2019 Cascade Model Slides

http://slidepdf.com/reader/full/cascade-model-slides 8/36

Time-aware Cascade Model

!"!#

!$

!%

!&

!'

(#("

(%($

( ( * +(

!"!#

!$

!%

!&

!'

(#("

(%($

('

users who have re-shared users who haven’t yet

  ⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪

P (C(t+ dt)) =  P (C(t+ dt)|C(t))  ⋅  P (C(t))

P (C( )) = 1t0

P (C(t+ dt)|C(t)) = (t)  ⋅ (1  − (t))∏∈ (t)u i   X

(1)

P i   ∏∈ (t)u i′   X

(2)

P i ′

  (t) = (t, { ;Θ)  ⋅  dt i i   t j} ∈Followe (t)u j   e(i)

Page 9: Cascade Model Slides

7/23/2019 Cascade Model Slides

http://slidepdf.com/reader/full/cascade-model-slides 9/36

Observations in Twitter

Observation 1. Only the first re-sharer matters.

  (t) = (t, ;Θ)   ⋅ dt P i   h i   t j⋆

where = argmi { |   ∈ Followe (t)} j⋆ n j   t j  u j   e(i)

Page 10: Cascade Model Slides

7/23/2019 Cascade Model Slides

http://slidepdf.com/reader/full/cascade-model-slides 10/36

Observations in Twitter

Observation 1. Only the first re-sharer matters.

  (t) = (t, ;Θ)   ⋅ dt P i   h i   t j⋆

where = argmi { |   ∈ Followe (t)} j⋆ n j   t j  u j   e(i)

Observation 2. The chance of a tweet to beretweeted decreases as time goes by.

  (t

) = (τ 

 ;Θ

) ⋅  dt

 P i   h i

where and is a decreasing function.  τ = t  −  t j⋆   (τ )h i

Page 11: Cascade Model Slides

7/23/2019 Cascade Model Slides

http://slidepdf.com/reader/full/cascade-model-slides 11/36

Hazard Function Design

  h(t) = =limdt→0

P (t < T ≤ t+ dt|T > t)

dt

f (t)

1− F (t)

Page 12: Cascade Model Slides

7/23/2019 Cascade Model Slides

http://slidepdf.com/reader/full/cascade-model-slides 12/36

Hazard Function Design

  h(t) = =limdt→0

P (t < T ≤ t+ dt|T > t)

dt

f (t)

1− F (t)

  H (t) =   h(u)du = du =  −log(1  − F (u)) =  −log(1  − F (t))∫ 0

t

∫ 0

t

(u)F ′

1  − F (u)| t0

Page 13: Cascade Model Slides

7/23/2019 Cascade Model Slides

http://slidepdf.com/reader/full/cascade-model-slides 13/36

Hazard Function Design

  h(t) = =limdt→0

P (t < T ≤ t+ dt|T > t)

dt

f (t)

1− F (t)

  H (t) =   h(u)du = du =  −log(1  − F (u)) =  −log(1  − F (t))∫ 0

t

∫ 0

t

(u)F ′

1  − F (u)| t0

  F (t) = 1−

 e−H (t)

Page 14: Cascade Model Slides

7/23/2019 Cascade Model Slides

http://slidepdf.com/reader/full/cascade-model-slides 14/36

Hazard Function Design

  h(t) = =limdt→0

P (t < T ≤ t+ dt|T > t)

dt

f (t)

1− F (t)

  H (t) =   h(u)du = du =  −log(1  − F (u)) =  −log(1  − F (t))∫ 0

t

∫ 0

t

(u)F ′

1  − F (u)| t0

  F (t) = 1−

 e−H (t)

  H (t) =t

λ 

⇒  F (t) = 1−  e

  t

λ Exponential distribution

Page 15: Cascade Model Slides

7/23/2019 Cascade Model Slides

http://slidepdf.com/reader/full/cascade-model-slides 15/36

Hazard Function Design

  h(t) = =limdt→0

P (t < T ≤ t+ dt|T > t)

dt

f (t)

1− F (t)

  H (t) =   h(u)du = du =  −log(1  − F (u)) =  −log(1  − F (t))∫ 0

t

∫ 0

t

(u)F ′

1  − F (u)| t0

  F (t) = 1−

 e−H (t)

  H (t) =t

λ 

⇒  F (t) = 1−  e

  t

λ Exponential distribution

  H (t) = (t

α)β 

 

⇒  F (t) = 1−  e

−(   t

α)β  Weibull distribution

Page 16: Cascade Model Slides

7/23/2019 Cascade Model Slides

http://slidepdf.com/reader/full/cascade-model-slides 16/36

Hazard Function Design

  H (t) = (t

α)β 

  H (t) =t

λ 

⇒ 

⇒ 

F (t) = 1−  e−

  t

λ

  F (t) = 1−  e−(   t

α)β 

Exponential distribution

Weibull distribution

Page 17: Cascade Model Slides

7/23/2019 Cascade Model Slides

http://slidepdf.com/reader/full/cascade-model-slides 17/36

Hazard Function Design

  H (t) = (t

α)β 

  H (t) =t

λ 

⇒ 

⇒ 

F (t) = 1−  e−

  t

λ

  F (t) = 1−  e−(   t

α)β 

Exponential distribution

Weibull distribution

  H (∞) = ∞ ⇒ F (∞) = 1 − ⇒ F (∞) = 1e−∞

Page 18: Cascade Model Slides

7/23/2019 Cascade Model Slides

http://slidepdf.com/reader/full/cascade-model-slides 18/36

Hazard Function Design

  H (t) = (t

α)β 

  H (t) =t

λ 

⇒ 

⇒ 

F (t) = 1−  e−

  t

λ

  F (t) = 1−  e−(   t

α)β 

Exponential distribution

Weibull distribution

  H (∞) = ∞ ⇒ F (∞) = 1 − ⇒ F (∞) = 1e−∞

Page 19: Cascade Model Slides

7/23/2019 Cascade Model Slides

http://slidepdf.com/reader/full/cascade-model-slides 19/36

Hazard Function Design

  H (t) = (t

α)β 

  H (t) =t

λ 

⇒ 

⇒ 

F (t) = 1−  e−

  t

λ

  F (t) = 1−  e−(   t

α)β 

Exponential distribution

Weibull distribution

  H (∞) = ∞ ⇒ F (∞) = 1 − ⇒ F (∞) = 1e−∞

Page 20: Cascade Model Slides

7/23/2019 Cascade Model Slides

http://slidepdf.com/reader/full/cascade-model-slides 20/36

Hazard Function Design

  H (τ ) = λ ⋅ (1 − ( + 1 )τ α

)−β 

  h(τ ) = = λ ⋅ ⋅ ( + 1dH (τ )

dτ 

β 

α

τ 

α)−(β +1)

Page 21: Cascade Model Slides

7/23/2019 Cascade Model Slides

http://slidepdf.com/reader/full/cascade-model-slides 21/36

Hazard Function Design

  H (τ ) = λ⋅(1

 −( + 1 )τ α

)−β 

Page 22: Cascade Model Slides

7/23/2019 Cascade Model Slides

http://slidepdf.com/reader/full/cascade-model-slides 22/36

Hazard Function Design

  H (τ ) = λ⋅(1

 −( + 1 )τ α

)−β 

scale parameter

Page 23: Cascade Model Slides

7/23/2019 Cascade Model Slides

http://slidepdf.com/reader/full/cascade-model-slides 23/36

Hazard Function Design

  H (τ ) = λ⋅(1

 −( + 1 )τ α

)−β 

scale parametershape parameter

H d F i D i

Page 24: Cascade Model Slides

7/23/2019 Cascade Model Slides

http://slidepdf.com/reader/full/cascade-model-slides 24/36

Hazard Function Design

  H (τ ) = λ⋅(1

 −( + 1 )τ α

)−β 

  F (∞) ≈ H (∞) =  λ 

scale parametershape parameter

H d F i D i

Page 25: Cascade Model Slides

7/23/2019 Cascade Model Slides

http://slidepdf.com/reader/full/cascade-model-slides 25/36

Hazard Function Design

  H (τ ) = λ⋅(1

 −( + 1 )τ α

)−β 

  F (∞) ≈ H (∞) =  λ 

scale parametershape parameter

describes the eventual re-tweeting probability

H d R Ill i

Page 26: Cascade Model Slides

7/23/2019 Cascade Model Slides

http://slidepdf.com/reader/full/cascade-model-slides 26/36

Hazard Rate Illustration

H d R t Ill t ti

Page 27: Cascade Model Slides

7/23/2019 Cascade Model Slides

http://slidepdf.com/reader/full/cascade-model-slides 27/36

Hazard Rate Illustration

 0

 4

 8

 12

 16

 20

tC 60

   R  e   t  w  e  e   t   i  n  g   R

  a   t  e

Time (Minute)

H d R t Ill t ti

Page 28: Cascade Model Slides

7/23/2019 Cascade Model Slides

http://slidepdf.com/reader/full/cascade-model-slides 28/36

Hazard Rate Illustration

 0

 4

 8

 12

 16

 20

tC 60

   R  e   t  w  e  e   t   i  n  g   R

  a   t  e

Time (Minute)

0

4e-4

8e-4

12e-4

16e-4

 0 10 20 30 40 50 60

   H  a

  z  a  r   d   R  a   t  e

Time (Minute)

Emperical Rate

Estimated Rate

D t t

Page 29: Cascade Model Slides

7/23/2019 Cascade Model Slides

http://slidepdf.com/reader/full/cascade-model-slides 29/36

Dataset

From a Singapore based Twitter data set, we get all the

retweets to construct retweeting cascades. In all we get2,425,348 cascades.

P b bili ti M d l Fitti

Page 30: Cascade Model Slides

7/23/2019 Cascade Model Slides

http://slidepdf.com/reader/full/cascade-model-slides 30/36

Probabilistic Model Fitting

• TMt  Threshold Model

 where

• TCM-CH Constant Hazard 

• TCM-EH Exponential Hazard 

• TCM-LH Long tail Hazard (our proposed)

  (t) =  λ⋅ s(|Followe (t)|)h i   e

(i)

  s(x) =1

1 + e−a(x−b)

  H (τ ) =  λ ⋅ τ   h(τ ) = =  λ 

dH (τ )

dτ 

  H (τ ) = λ ⋅ (1 − ( + 1 ) h(τ ) = = λ ⋅ ⋅ ( + 1τ 

α)−β  dH (τ )

dτ 

β 

α

τ 

α)−(β +1)

  H (τ ) =  λ ⋅ (1 − ) h(τ ) = =  λ ⋅  k ⋅  e−k⋅τ 

dH (τ )

dτ e−k⋅τ 

P b bili ti M d l Fitti

Page 31: Cascade Model Slides

7/23/2019 Cascade Model Slides

http://slidepdf.com/reader/full/cascade-model-slides 31/36

Probabilistic Model Fitting

For each cascade, observe its development in first for 

training, and the next for testing.∆T  

T 0

P b bili ti M d l Fitti

Page 32: Cascade Model Slides

7/23/2019 Cascade Model Slides

http://slidepdf.com/reader/full/cascade-model-slides 32/36

Probabilistic Model Fitting

P di ti C d G th

Page 33: Cascade Model Slides

7/23/2019 Cascade Model Slides

http://slidepdf.com/reader/full/cascade-model-slides 33/36

Predicting Cascade Growth

Virality Prediction

Page 34: Cascade Model Slides

7/23/2019 Cascade Model Slides

http://slidepdf.com/reader/full/cascade-model-slides 34/36

Virality Prediction

Page 35: Cascade Model Slides

7/23/2019 Cascade Model Slides

http://slidepdf.com/reader/full/cascade-model-slides 35/36

Thanks

Page 36: Cascade Model Slides

7/23/2019 Cascade Model Slides

http://slidepdf.com/reader/full/cascade-model-slides 36/36

Our work is based on previouscascade models

• J. Goldenberg, B. Libai, and E. Muller. Talk of the network: A complex systems look at theunderlying process of word-of- mouth. Marketing letters, 12(3):211–223, 2001.

• M.Gomez-Rodriguez,D.Balduzzi,andB.Scho                                     "lkopf.Uncovering the temporal dynamics ofdiffusion networks. In Proceedings of the 28th International Conference on Machine Learning,ICML 2011, Bellevue, Washington, USA, June 28 - July 2, 2011, pages 561–568, 2011.

• S. A. Myers, C. Zhu, and J. Leskovec. Information diffusion and external influence in networks.In The 18th ACM SIGKDD Inter- national Conference on Knowledge Discovery and Data Mining,KDD ’12, Beijing, China, August 12-16, 2012, pages 33–41, 2012.

• M. Gomez-Rodriguez, J. Leskovec, and B. Scho                                     "lkopf. Modeling information propagation with

survival theory. In ICML (3), pages 666–674, 2013.

• N. Du, L. Song, M. Gomez-Rodriguez, and H. Zha. Scalable influence estimation in continuous-time diffusion networks. In Advances in Neural Information Processing Systems 26: 27thAnnual Conference on Neural Information Processing Systems 2013. Proceedings of a meetingheld December 5-8, 2013, Lake Tahoe, Nevada, United States., pages 3147–3155, 2013.