casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties...

76
[ ] High-Energy Neutrinos Michael Kachelrieß NTNU, Trondheim

Transcript of casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties...

Page 1: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

[]

High-Energy Neutrinos

Michael Kachelrieß

NTNU, Trondheim

Page 2: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Introduction

Outline of the talk

1 Introduction

2 IceCube events

◮ properties

◮ implications

3 Astrophysical sources

◮ point sources versus diffuse flux

◮ Galactic sources versus extragalactic

4 PeV dark matter

5 Summary

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 2 / 33

Page 3: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Introduction

Outline of the talk

1 Introduction

2 IceCube events

◮ properties

◮ implications

◮ or better speculations. . .

3 Astrophysical sources

◮ point sources versus diffuse flux

◮ Galactic sources versus extragalactic

4 PeV dark matter

5 Summary

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 2 / 33

Page 4: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Introduction

Outline of the talk

1 Introduction

2 IceCube events

◮ properties

◮ implications

◮ or better speculations. . .

3 Astrophysical sources

◮ point sources versus diffuse flux

◮ Galactic sources versus extragalactic

4 PeV dark matter

5 Summary

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 2 / 33

Page 5: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Introduction

Outline of the talk

1 Introduction

2 IceCube events

◮ properties

◮ implications

◮ or better speculations. . .

3 Astrophysical sources

◮ point sources versus diffuse flux

◮ Galactic sources versus extragalactic

4 PeV dark matter

5 Summary

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 2 / 33

Page 6: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Introduction

Outline of the talk

1 Introduction

2 IceCube events

◮ properties

◮ implications

◮ or better speculations. . .

3 Astrophysical sources

◮ point sources versus diffuse flux

◮ Galactic sources versus extragalactic

4 PeV dark matter

5 Summary

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 2 / 33

Page 7: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Introduction

1912: Victor Hess discovers cosmic rays

-10

0

20

40

60

80

1 2 3 4 5 6 7 8 9

exce

ss io

niza

tion

altitude/1000m

Hess’ and Kolhoerster’s results:

“The results are most easily ex-plained by the assumption that ra-diation with very high penetratingpower enters the atmosphere fromabove; the Sun can hardly be con-sidered as the source.”

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 3 / 33

Page 8: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Introduction

1912: Victor Hess discovers cosmic rays

-10

0

20

40

60

80

1 2 3 4 5 6 7 8 9

exce

ss io

niza

tion

altitude/1000m

Hess’ and Kolhoerster’s results:

Two main questions

what are they?

what are their sources?

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 3 / 33

Page 9: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Introduction

What do we know 100 years later?

sola

rm

odula

tion

LHC ⇑

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 4 / 33

Page 10: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Introduction

What do we know 100 years later?

sola

rm

odula

tion

LHC ⇑

Basic information:

energy density ρcr ∼ 0.8eV/cm3

non-thermal power-law spectrum, dN/dE ∝ 1/Eα

nuclear composition, few e−, γ

isotropic flux for E <∼ 1018 eV

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 4 / 33

Page 11: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Introduction

The CR–γ–ν connection:

HE neutrinos and photons are unavoidable byproducts of HECRs

astrophysical models, cosmogenic flux:◮ ratio Iν/Ip determined by nuclear composition of UHECRs and source

evolution◮ ratio Iν/Iγ determined by isospin

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 5 / 33

Page 12: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Introduction

The CR–γ–ν connection:

HE neutrinos and photons are unavoidable byproducts of HECRs

astrophysical models, cosmogenic flux:◮ ratio Iν/Ip determined by nuclear composition of UHECRs and source

evolution◮ ratio Iν/Iγ determined by isospin

astrophysical models, direct flux:◮ model dependent fluxes: ∝ target density, . . .

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 5 / 33

Page 13: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Introduction

The CR–γ–ν connection:

HE neutrinos and photons are unavoidable byproducts of HECRs

astrophysical models, cosmogenic flux:◮ ratio Iν/Ip determined by nuclear composition of UHECRs and source

evolution◮ ratio Iν/Iγ determined by isospin

astrophysical models, direct flux:◮ model dependent fluxes: ∝ target density, . . .

top-down DM models:◮ large fluxes with Iν ≫ Ip

◮ ratio Iν/Ip fixed by fragmentation

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 5 / 33

Page 14: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Introduction

The CR–γ–ν connection:

HE neutrinos and photons are unavoidable byproducts of HECRs

astrophysical models, cosmogenic flux:◮ ratio Iν/Ip determined by nuclear composition of UHECRs and source

evolution◮ ratio Iν/Iγ determined by isospin

astrophysical models, direct flux:◮ model dependent fluxes: ∝ target density, . . .

top-down DM models:◮ large fluxes with Iν ≫ Ip

◮ ratio Iν/Ip fixed by fragmentation

prizes to win:◮ astronomy above 100 TeV◮ identification of CR sources◮ determination galactic–extragalactic transition of CRs◮ test/discover new particle physics

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 5 / 33

Page 15: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Introduction

What is the bonus of HE neutrino astronomy?astronomy with VHE photons restricted to few Mpc:

10

12

14

16

18

20

22

Gpc100Mpc10MpcMpc100kpc10kpckpc

log1

0(E

/eV

)

photon horizon γγ → e+e− CMB

IR

radio

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 6 / 33

Page 16: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Introduction

What is the bonus of HE neutrino astronomy?astronomy with VHE photons restricted to few Mpc:

10

12

14

16

18

20

22

Gpc100Mpc10MpcMpc100kpc10kpckpc

log1

0(E

/eV

)

photon horizon γγ → e+e− CMB

IR

radio

ambiguity: leptonic/hadronic origin

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 6 / 33

Page 17: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Introduction

HE neutrino astronomy vs UHECRs?

10

12

14

16

18

20

22

Gpc100Mpc10MpcMpc100kpc10kpckpc

log1

0(E

/eV

)proton horizon

photon horizon γγ → e+e− CMB

IR

Virgo ⇓

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 7 / 33

Page 18: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Introduction

HE neutrino astronomy vs UHECRs?

10

12

14

16

18

20

22

Gpc100Mpc10MpcMpc100kpc10kpckpc

log1

0(E

/eV

)proton horizon

photon horizon γγ → e+e− CMB

IR

Virgo ⇓

◮ large statistics of UHECRs, well-suited horizon scale

◮ but no conclusive evidence that qB is small enough

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 7 / 33

Page 19: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Introduction

What is the bonus of HE neutrino astronomy?Neutrino astronomy: small σνN

large λν but also “large” uncertainty 〈δϑ〉 >∼ 0.1◦ − 1◦

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 8 / 33

Page 20: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Introduction

What is the bonus of HE neutrino astronomy?Neutrino astronomy: small σνN

large λν but also “large” uncertainty 〈δϑ〉 >∼ 0.1◦ − 1◦

small event numbers: ∼ 1/yr for PAO or ICECUBE

103

102

10

1

10-1

1022102110201019101810171016

j(E)

E2 [e

V c

m-2

s-1

sr-1

]

E [eV]

WB

max

0.2

CR flux

⇒ identification of steady sources challenging

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 8 / 33

Page 21: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Introduction

What is the bonus of HE neutrino astronomy?Neutrino astronomy: small σνN

large λν but also “large” uncertainty 〈δϑ〉 >∼ 0.1◦ − 1◦

small event numbers: ∼ 1/yr for PAO or ICECUBE

103

102

10

1

10-1

1022102110201019101810171016

j(E)

E2 [e

V c

m-2

s-1

sr-1

]

E [eV]

WB

max

0.2

CR flux

⇒ identification of steady sources challenging

correlation with AGN flares, GRBs

diffuse flux detected first

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 8 / 33

Page 22: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Introduction

IceCube

[ ]

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 9 / 33

Page 23: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Introduction

IceCube:Top View

AMANDA

SPASE-2South Pole

Dome

Skiway

100 m

Grid North

IceCube

Counting House

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 10 / 33

Page 24: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Introduction

IceCube

80 Strings4800 PMT

1400 m

2400 m

AMANDA

South Pole

IceTop

Skiway

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 10 / 33

Page 25: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Introduction

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 10 / 33

Page 26: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Icecube events

Icecube: 2 events presented at Neutrino 20122 cascade events close to Emin = 1015 eV, bg = 0.14

Two events passed the selection criteria

8

Run119316-Event36556705 Jan 3rd 2012 NPE 9.628x104

Number of Optical Sensors 312

Run118545-Event63733662 August 9th 2011 NPE 6.9928x104

Number of Optical Sensors 354

CC/NC interactions in the detector

MC

2 events / 672.7 days - background (atm. m + conventional atm. n) expectation 0.14 events

preliminary p-value: 0.0094 (2.36s)

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 11 / 33

Page 27: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Icecube events

Icecube: prompt neutrino analysis [A. Schukraft, NOW2012 ]

��;�� ���������;�����;��0/�����������

)��;� '�� ��� ������� ������� �������$���� �������

'������ ��$�� ������$��

L��� � ��;�� '�� ��� ����''� ����������� ��� �� ���;��

����� ��� �����;����'�� ��� ����

������ �������$��$ ���'��� �$����������� ��������M ����'����$��'���'����'� ���������'�� � �;� ���������)���� ������������8

L��� ����;����''��!FN������ ��� �

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 12 / 33

Page 28: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Icecube events

IceCube events: specifications for candidate sources

36 events with ∼ 14 bg: flukes are possible. . .

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 13 / 33

Page 29: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Icecube events

IceCube events: specifications for candidate sources

36 events with ∼ 14 bg: flukes are possible. . .

anisotropies◮ event cluster around GC◮ enhancement close to Galactic plane?

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 13 / 33

Page 30: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Icecube events

IceCube events: 2 years 28 events

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 14 / 33

Page 31: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Icecube events

IceCube events: 3 years 36 events

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 14 / 33

Page 32: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Icecube events

KS test for ansiotropy in RA

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350

RA

C(event)isotropic

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 15 / 33

Page 33: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Icecube events

KS test for ansiotropy in RA

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350

RA

C(event)isotropic

p = 20% for 2 yr, p = 8% for 3 yr data set

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 15 / 33

Page 34: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Icecube events

IceCube events: specifications for candidate sources

36 events with ∼ 14 bg: flukes are possible. . .

anisotropies◮ event cluster around GC◮ enhancement close to Galactic plane gone?

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 16 / 33

Page 35: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Icecube events

IceCube events: specifications for candidate sources

36 events with ∼ 14 bg: flukes are possible. . .

anisotropies◮ event cluster around GC◮ enhancement close to Galactic plane gone?

flux is large, close to◮ Waxman-Bahcall estimate◮ cascade limit: slope “is steepening”, α ∼ 2.3 − 2.5, conflict?

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 16 / 33

Page 36: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Icecube events

IceCube events: specifications for candidate sources

36 events with ∼ 14 bg: flukes are possible. . .

anisotropies◮ event cluster around GC◮ enhancement close to Galactic plane gone?

flux is large, close to◮ Waxman-Bahcall estimate◮ cascade limit: slope “is steepening”, α ∼ 2.3 − 2.5, conflict?

CR energies Ep ∼ 20Eν ⇒ up to few×1016 eV,◮ high for Galactic CRs◮ lowish for cosmogenic, AGN, GRB

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 16 / 33

Page 37: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Icecube events

IceCube events: specifications for candidate sources

36 events with ∼ 14 bg: flukes are possible. . .

anisotropies◮ event cluster around GC◮ enhancement close to Galactic plane gone?

flux is large, close to◮ Waxman-Bahcall estimate◮ cascade limit: slope “is steepening”, α ∼ 2.3 − 2.5, conflict?

CR energies Ep ∼ 20Eν ⇒ up to few×1016 eV,◮ high for Galactic CRs◮ lowish for cosmogenic, AGN, GRB

initial flavor ratio consistent with 1:1:1 ?

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 16 / 33

Page 38: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Icecube events

Flavour ratioratio R = Nsh/Ntr ∼ (Ne + Nτ )/Nµ ∼ 21/7 consistent with 1:1:1including atm. bg. favors (weakly) 1:0:0 at source [Mena, Palomares, Vincent ’14 ]

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 17 / 33

Page 39: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Icecube events

Flavour ratioratio R = Nsh/Ntr ∼ (Ne + Nτ )/Nµ ∼ 21/7 consistent with 1:1:1including atm. bg. favors (weakly) 1:0:0 at source [Mena, Palomares, Vincent ’14 ]

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 17 / 33

Page 40: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Astrophysical sources

Sources of high-energy neutrinos

Galactic sources:

Galactic plane and bulge

SNR

hypernova, GRB

micro-quasar, . . .

Extragalactic sources:

diffuse flux from normal/starburst galaxies

cosmogenic neutrinos

diffuse flux from AGN

GRB

single AGN, . . .

Dark matter decays, topological defects

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 18 / 33

Page 41: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Astrophysical sources CR sea interactions in bulge and plane

Neutrinos from Galactic Sea CRs: “Hillas” X = 30 g/cm2

0.01

0.1

1

10

100

1011 1012 1013 1014 1015 1016 1017 1018

E2.

6 I(E

) [G

eV1.

6 m-2

sr-1

s-1

]

E/eV

pHe

CO

Fetotal

[MK, S.Ostapchenko ’14 ]

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 19 / 33

Page 42: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Astrophysical sources CR sea interactions in bulge and plane

Neutrinos from Galactic Sea CRs: “escape” X = 30 g/cm2

0.01

0.1

1

10

100

1000

1011 1012 1013 1014 1015 1016 1017 1018

E2.

6 I(E

) [G

eV1.

6 m-2

sr-1

s-1

]

E/eV

pHe

CO

Fetotal

[MK, S.Ostapchenko ’14 ]

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 19 / 33

Page 43: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Astrophysical sources CR sea interactions in bulge and plane

Neutrinos from Galactic Sea CRs: X = 30 g/cm2

0.01

0.1

1

10

100

1000

1011 1012 1013 1014 1015 1016 1017 1018

E2.

6 I(E

) [G

eV1.

6 m-2

sr-1

s-1

]

E/eV

HillasPolygonato

Escape

[MK, S.Ostapchenko ’14 ]

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 19 / 33

Page 44: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Astrophysical sources CR sea interactions in bulge and plane

Neutrinos from Galactic Sea CRs: X = 30 g/cm2

0.01

0.1

1

10

100

1000

1011 1012 1013 1014 1015 1016 1017 1018

E2.

6 I(E

) [G

eV1.

6 m-2

sr-1

s-1

]

E/eV

HillasPolygonato

Escape

model dependence impacts background in IceCube

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 19 / 33

Page 45: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Astrophysical sources CR sea interactions in bulge and plane

Neutrinos from Galactic Sea CRs

gives negligible contribution to IceCube signal

τpp is too small even towards GC

gas is concentrated as n(z) ∼ n0 exp[−(z|/z12)2] with z12 ∼ 0.2 kpc

results apply also to other normal galaxies as starburst galaxies:

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 20 / 33

Page 46: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Astrophysical sources CR sea interactions in bulge and plane

Neutrinos from Galactic Sea CRs

gives negligible contribution to IceCube signal

τpp is too small even towards GC

gas is concentrated as n(z) ∼ n0 exp[−(z|/z12)2] with z12 ∼ 0.2 kpc

results apply also to other normal galaxies as starburst galaxies:

magnetic fields factor 100 higher:

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 20 / 33

Page 47: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Astrophysical sources CR sea interactions in bulge and plane

Neutrinos from Galactic Sea CRs

gives negligible contribution to IceCube signal

τpp is too small even towards GC

gas is concentrated as n(z) ∼ n0 exp[−(z|/z12)2] with z12 ∼ 0.2 kpc

results apply also to other normal galaxies as starburst galaxies:

magnetic fields factor 100 higher:

if knee is caused by◮ diffusion: Ecr ∼ B, neutrino knee at few ×1016 eV

◮ source: Emax ∼ BCR, neutrino knee at few ×1014 eV

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 20 / 33

Page 48: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Astrophysical sources Galactic point sources

Galactic sources

at low energies:

◮ many sources, large confinement times

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 21 / 33

Page 49: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Astrophysical sources Galactic point sources

Galactic sources

at low energies:

◮ many sources, large confinement times

⇒ average CR sea plus few recent sources

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 21 / 33

Page 50: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Astrophysical sources Galactic point sources

Galactic sources

at low energies:

◮ many sources, large confinement times

⇒ average CR sea plus few recent sources

close to the knee:

◮ CRs in PeV range spread fast

◮ few extreme sources

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 21 / 33

Page 51: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Astrophysical sources Galactic point sources

Galactic sources

at low energies:

◮ many sources, large confinement times

⇒ average CR sea plus few recent sources

close to the knee:

◮ CRs in PeV range spread fast

◮ few extreme sources

⇒ inhomogenous CR sea, extended sources

⇒ no clear distinction between point sourcesvs. Galactic bulge + plane cases

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 21 / 33

Page 52: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Astrophysical sources Galactic point sources

Point source in gamma-ray

source HESS J1825-137 [Neronov, Semikoz, Tchernin ’13 ]

0.00100

0.00150

0.00200

0.00250

0.00300

0.00350

0.00400

0.00450

0.00500

0.00550

0.00600

180.000225.000270.000315.000 0.00045.00090.000135.000

-90.000

-60.000

-30.000

0.00

0

30.000

60.000

90.000

Kookaburra region

HESS J1632 region

Galactic Center

HESS J1825 region

Cygnus region

Vela region

Crab

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 22 / 33

Page 53: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Astrophysical sources Galactic point sources

Gamma-ray point sourcesflux from HESS J1825-137, GC and GP

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 23 / 33

Page 54: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Astrophysical sources Galactic point sources

(Isotropic) photon limits

101 102 103 104

Eγ [TeV]

10−10

10−9

10−8

10−7

10−6

10−5

10−4

E2J

γ[G

eVcm

−2

s−1

sr−

1]

8.5kpc

20kpc

30kpc

GRAPES-3

UMC

HEGRA

EAS-TOP

IC-40 (γ)

KASCADE

GAMMA

CASA-MIA

[Ahlers, Murase ’13 ]

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 24 / 33

Page 55: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Astrophysical sources Diffuse extragalactic flux

Diffuse ν flux from normal and starburst galaxies

103

105

107

109

1011

10−9

10−8

10−7

10−6

10−5

Eν [GeV]

E2 ν Φ

ν [G

eV/c

m2 s

sr]

0.1 km2

1 km2

WB Bound

Star Bursts

AMANDA( νµ); Baikal(νe)

Atmospheric→← GZK

[Loeb, Waxman ’06 ]

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 25 / 33

Page 56: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Astrophysical sources Diffuse extragalactic flux

Diffuse ν flux from normal and starburst galaxies

103

105

107

109

1011

10−9

10−8

10−7

10−6

10−5

Eν [GeV]

E2 ν Φ

ν [G

eV/c

m2 s

sr]

0.1 km2

1 km2

WB Bound

Star Bursts

AMANDA( νµ); Baikal(νe)

Atmospheric→← GZK

[Loeb, Waxman ’06 ]

too optimistic?◮ fraction of starbust galaxies?◮ all calorimetric?

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 25 / 33

Page 57: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Astrophysical sources Cosmogenic neutrinos

Reminder: The photon horizon

10

12

14

16

18

20

22

Gpc100Mpc10MpcMpc100kpc10kpckpc

log1

0(E

/eV

)

photon horizon γγ → e+e− CMB

IR

radio

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 26 / 33

Page 58: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Astrophysical sources Cascade spectrum

Development of the elmag. cascade:

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 27 / 33

Page 59: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Astrophysical sources Cascade spectrum

Development of the elmag. cascade:

analytical estimate: [Strong ’74, Berezinsky, Smirnov ’75 ]

Jγ(E) =

K(E/εX)−3/2 at E ≤ εX

K(E/εX)−2 at εX ≤ E ≤ εa

0 at E > εa

three regimes:◮ Thomson cooling:

Eγ =4

3

εbbE2e

m2e

≈ 100 MeV

(

Ee

1TeV

)2

◮ plateau region: ICS Eγ ∼ Ee

◮ above pair-creation threshold smin = 4Eγεbb = 4m2e:

flux exponentially suppressed

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 27 / 33

Page 60: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Astrophysical sources Cascade spectrum

Fermi limit for cosmogenic neutrinos: [Berezinsky et al. ’10 ]

1016 1017 1018 1019 1020 1021 102210-1

100

101

102

103

104

105

106

1021

1020

IceCube 5yr tilted

2.0

RICE

Auger diff.

E-2 cascade

ANITA

E2 J(

E), e

Vcm

-2s-1

sr-1

E, eV

ANITA-liteAuger

2.6

nadirJEM-EUSOBAIKAL

e =

1022

m=3

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 28 / 33

Page 61: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Astrophysical sources Cascade spectrum

Cascade limit: α = 2.1

1

10

100

1000

10000

1e+10 1e+11 1e+12 1e+13 1e+14 1e+15 1e+16 1e+17

E2 J

(E)

[eV

/cm

2 s s

r]

E/eV

gammanu

Fermi EGRB

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 29 / 33

Page 62: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Astrophysical sources Cascade spectrum

Cascade limit: α = 2.3

1

10

100

1000

10000

1e+10 1e+11 1e+12 1e+13 1e+14 1e+15 1e+16 1e+17

E2 J

(E)

[eV

/cm

2 s s

r]

E/eV

gammanu

Fermi EGRB

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 29 / 33

Page 63: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Astrophysical sources Cascade spectrum

Cascade limit: α = 2.5

1

10

100

1000

10000

1e+10 1e+11 1e+12 1e+13 1e+14 1e+15 1e+16 1e+17

E2 J

(E)

[eV

/cm

2 s s

r]

E/eV

gammanu

Fermi EGRB

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 29 / 33

Page 64: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Astrophysical sources Cascade spectrum

IceCube limit on GRBs

215 optically detected GRBs stacked

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 30 / 33

Page 65: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

Astrophysical sources Cascade spectrum

IceCube limit on GRBs

215 optically detected GRBs stacked

10

4

10

5

10

6

10

7

Neutrino Energy (GeV)

10

-9

10

-8

E

2

Φ

ν

(GeV cm

−2

s

−1

sr

−1

)

Waxman & BahcallIC40 limitIC40 Guetta et al.IC40+59 Combined limitIC40+59 Guetta et al.

10

-1

10

0

E

2

F

ν

(GeV cm

−2

)

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 30 / 33

Page 66: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

PeV dark matter

PeV dark matterre-incarnation of SHDM idea for AGASA excess:

non-hermal DM

avoids cascacde limit

Galactic anisotropy

some option to move initial flavor ration 1 : 2 : 0 towards 1 : 0 : 0

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 31 / 33

Page 67: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

PeV dark matter

PeV dark matterre-incarnation of SHDM idea for AGASA excess:

non-hermal DM

avoids cascacde limit

Galactic anisotropy

some option to move initial flavor ration 1 : 2 : 0 towards 1 : 0 : 0

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 31 / 33

Page 68: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

PeV dark matter

PeV dark matterre-incarnation of SHDM idea for AGASA excess:

non-hermal DM

avoids cascacde limit

Galactic anisotropy

some option to move initial flavor ration 1 : 2 : 0 towards 1 : 0 : 0

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 31 / 33

Page 69: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

PeV dark matter

PeV dark matter

DM ® ΝeΝ e H15%L, bb H85%L

DM ® ΝeΝ e H12%L, cc H88%L

DM ® e-e+ H40%L, qq H60%L

1 10 102 103

10-11

10-10

EΝ HTeVL

EΝ2 dJ�d

EΝHT

eVcm-

2s-

1sr-

1 L

[Esmaili, Serpico ’13 ]

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 32 / 33

Page 70: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

PeV dark matter

PeV dark matter

102 103

0.1

1

10

EΝ HTeVL

even

ts�b

in

DM ® ΝΝ , qqE-2 spec.

data

[Esmaili, Serpico ’13 ]

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 32 / 33

Page 71: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

PeV dark matter

Summary

1 excess towards GC, consistent (?) with γ-ray data

⇒ partly Galactic origin

2 no enhancement towards Galactic plane:

◮ gas too narrow, flux too low

3 some tension with (Northern) γ-ray limits

4 extragalactic:◮ dominant isotropic component◮ diffuse, difficult to identify◮ spectrum α = −2.45: cascade limit?

5 PeV dark matter: angular distibution follows DM profile

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 33 / 33

Page 72: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

PeV dark matter

Summary

1 excess towards GC, consistent (?) with γ-ray data

⇒ partly Galactic origin

2 no enhancement towards Galactic plane:

◮ gas too narrow, flux too low

3 some tension with (Northern) γ-ray limits

4 extragalactic:◮ dominant isotropic component◮ diffuse, difficult to identify◮ spectrum α = −2.45: cascade limit?

5 PeV dark matter: angular distibution follows DM profile

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 33 / 33

Page 73: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

PeV dark matter

Summary

1 excess towards GC, consistent (?) with γ-ray data

⇒ partly Galactic origin

2 no enhancement towards Galactic plane:

◮ gas too narrow, flux too low

3 some tension with (Northern) γ-ray limits

4 extragalactic:◮ dominant isotropic component◮ diffuse, difficult to identify◮ spectrum α = −2.45: cascade limit?

5 PeV dark matter: angular distibution follows DM profile

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 33 / 33

Page 74: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

PeV dark matter

Summary

1 excess towards GC, consistent (?) with γ-ray data

⇒ partly Galactic origin

2 no enhancement towards Galactic plane:

◮ gas too narrow, flux too low

3 some tension with (Northern) γ-ray limits

4 extragalactic:◮ dominant isotropic component◮ diffuse, difficult to identify◮ spectrum α = −2.45: cascade limit?

5 PeV dark matter: angular distibution follows DM profile

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 33 / 33

Page 75: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

PeV dark matter

Summary

1 excess towards GC, consistent (?) with γ-ray data

⇒ partly Galactic origin

2 no enhancement towards Galactic plane:

◮ gas too narrow, flux too low

3 some tension with (Northern) γ-ray limits

4 extragalactic:◮ dominant isotropic component◮ diffuse, difficult to identify◮ spectrum α = −2.45: cascade limit?

5 PeV dark matter: angular distibution follows DM profile

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 33 / 33

Page 76: casc lim IC a25 · Introduction Outline of the talk 1 Introduction 2 IceCube events properties implications 3 Astrophysical sources point sources versus diffuse flux Galactic sources

PeV dark matter

Summary

1 excess towards GC, consistent (?) with γ-ray data

⇒ partly Galactic origin

2 no enhancement towards Galactic plane:

◮ gas too narrow, flux too low

3 some tension with (Northern) γ-ray limits

4 extragalactic:◮ dominant isotropic component◮ diffuse, difficult to identify◮ spectrum α = −2.45: cascade limit?

5 PeV dark matter: angular distibution follows DM profile

Michael Kachelrieß (NTNU Trondheim) High-Energy Neutrinos Oslo 2014 33 / 33