Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 –...

45
Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005
  • date post

    19-Dec-2015
  • Category

    Documents

  • view

    212
  • download

    0

Transcript of Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 –...

Page 1: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

Carlos de los Heros, Uppsala University

results from neutrino telescopes

COSMO05. Bonn, Aug. 28 – Sep. 1, 2005

Page 2: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

Outlook.

as a framework: high energy neutrino astronomy

the world of neutrino telescopes: current projects

recent physics results from AMANDA and Baikal

ICECUBE: status and capabilities

summary

Page 3: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

• nature accelerates particles to ~10 7 times the CM energy of LHC!

acceleration sites must sit somewhere

candidate sources:

• SNe remnants, quasars

• active galactic nuclei

• gamma ray bursts

neutrino astronomy

? proton accelerators

guaranteed sources:

• atmospheric neutrinos (from & K mesons decay)

• galactic plane: – CR interacting with ISM, concentrated on the disk

• CMB (diffuse):

– UHE p + n + (p 0)

T. Gaisser 2005

Page 4: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

particle propagation in the Universe

production:neutrino production at source: p+ or p+p collisions give pions: e- + e

neutrino flavors: e : : 1:2:~0 at

source. Expect 1:1:1 at detector

propagation:photons: can be absorbed on intervening matter or radiation;protons: deviated by magnetic fields

at high-enough energies: p and react with the CMB bckgr.

’s will get to you

however: ’s extremely difficult to detect!

your favourite cosmic accelerator

p

your favourite detector

Page 5: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

Outlook.

as a framework: high energy neutrino astronomy

the world of neutrino telescopes: current projects

recent physics results from AMANDA and Baikal

ICECUBE: status and capabilities

summary

Page 6: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

current HE neutrino detection effortscurrent HE neutrino detection efforts

OPTICALOPTICAL

RADIORADIO

ACOUSTICACOUSTIC@ extremely high energies (E>1018 eV)

AMANDA / ICECUBEAMANDA / ICECUBE

NEMONEMONESTORNESTOR

BAIKALBAIKAL

RICE, ANITARICE, ANITA

SALSASALSAKAMCHATKAKAMCHATKA

AUTECAUTECGLUEGLUE

ANTARESANTARES

SADCOSADCO

Page 7: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

neutrino detection in ice/water

7.0)TeV/(7.0 E

longer absorption length → larger effective volumelonger scattering length → better pointing resolution

event reconstruction by Cherenkov light timing: need array of PMTs with ~1ns resolution

optical properties of the medium of prime importance

absorption length scattering length

South Pole ice(AMANDA/IceCube)

110 m (@ 400nm) 20 m (@ 400nm)

Lake Baikal 25 m (@ 480nm) 59 m (@ 480nm)

Mediterranean(ANTARES/NESTOR)

~60 m (@ 470nm) 100-300 m (@ 470nm)

neutrino astronomy possible since

O(km) long

muon tracks

O(10m) cascades, e neutral current

signatures

Page 8: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

the BAIKAL detectorthe BAIKAL detector

NT-200- - 8 strings with 192 optical modules

- - 72 m height, 1070 m depth

- - effective area >2000 m2 (E>1 TeV)

- - Running since 1998

NT-200+- - commisioned April 9, 2005.- 3 new strings, 200 m height- 1 new bright Laser for time calibration imitation of 20TeV-10PeV cascades, >10^12 photons/pulse w/ diffusor,- new DAQ- 2 new 4km cables to shore

4 Km to shore

NT200+ is tailored to UHE -induced cascades 5 Mton equipped volume; V_eff > 10 Mton at 10 PeV

Page 9: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

PMT noise: ~1 kHz

Optical Module

the AMANDA detector

AMANDA-B10- - 10 strings with 302 optical modules

- - 450 m height, 1500 m depth

- - data years: 1997/99

AMANDA-IIAMANDA-II- 19 strings, 677 OMs

- running since 2000

- new DAQ with FADC since 2003

since March 2005 we are called IceCube!

(AMANDA and IceCube collaborations merged)

Page 10: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

Amundsen-Scott South Pole station

South Pole

Stationfacilities

AMANDA

your daily commute to work

1500 m

2000 m

the site

[not to scale]

Page 11: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

muons:directional error: 1.5° - 2.5°

(log(Ereco/Etrue)): 0.3 – 0.4coverage: 2

cascades: (e±, , neutral current)zenith error: 30° - 40° (log(Ereco/Etrue)): 0.1 – 0.2

(5TeV < E < 5PeV)

coverage: 4

effective area: >10000 m2 for E>1TeV

AMANDA detector performance

Average upper limit = sensitivity (δ>0°)

(integrated above 10 GeV, E-2 signal)

av

era

ge

flu

x u

pp

er

lim

it [

cm

-2s

-1]

sin

AMANDA-B10

AMANDA-II

tim

e

Page 12: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

Outlook.

as a framework: high energy neutrino astronomy

the world of neutrino telescopes: current projects

recent physics results from AMANDA and Baikal

ICECUBE: status and capabilities

summary

Page 13: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

in this talk:

• AMANDA (and Baikal when available) results from:

atmospheric neutrinos

searches for an extra-terrestrial flux: galactic center

diffuse (anytime, anywhere)point source (anytime, somewhere)transient (known ‘flary’ objects & GRBs) (sometime, somewhere)

search for WIMPs: Excess from the center of the Sun/Earth

agreed AMANDA collaboration strategy: analyses are done ‘blind’. cuts optimized on a % of data or on a time-scrambled data set.

Page 14: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

EHadron E-2.7 0.02

cosmic ray muons

test beams: atmospheric muons

SPASE (scintillator array @ 3000m) e density @ surface shower core resolution: 0(m) shower direction resolution: < 1.5o

AMANDA ‘s @ >1500m (>300 GeV @ surface) use SPASE core position for combined fit

combined SPASE-AMANDA ‘detector’:

probes hadronic () and EM (e) component of the primary shower

(E) ~ 0.07 in log(Eprim)

results compatible with composition change around the knee

sources of systematic uncertainties:(~30% in ln(A), not shown in the plot)

-shower generation models -muon propagation

atmospheric muons: - AMANDA test beam: I vs depth, CR composition

- background for other searches

Page 15: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

set limit on cosmic neutrino flux:

how much E-2 cosmic ν - signal

allowed within uncertainty of highest energy bins?

limit on diffuse E-2 νμ flux (100 -300 TeV):

first spectrum > 1 TeV (up to 300 TeV)- matches lower energy Frejus data

E2μ(E) < 2.6·10–7 GeV cm-2 s-1 sr-1

test beams: atmospheric neutrinos

vertical

horizontal

Frejus

AMANDA

► reconstruct energy of up-going μ`s

► obtain energy spectrum from regularized unfolding

atmospheric neutrinos: - guaranteed test beam - background for other searches

Page 16: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

on-source region

on-source events

expected background

90% event upper limit

line source limit

GeV-1 cm-2 s-1 rad-1

diffuse limitGeV-1 cm-2 s-1 sr-1

gaussian limit

GeV-1 cm-2 s-1sr-1

2.0º 128 129.4 19.8 6.3 10-5 6.6 10-4 —

4.4º 272 283.3 20.0 — — 4.8 10-4

-

-

-

-

-

-

-

Gaus. limit

model

’s from the galactic plane

• location of AMANDA not optimal reach

only outer region of the galactic plane:

33o<<213o

• three signal ansatz:

line source, Gaussian source, diffuse

source

• limits include systematic uncertainty of 30% on atm. flux

• energy range: 0.2 to 40 TeVdata sample 2000-03: 3369 evts:

Page 17: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

strategies in the search for point sources:

•diffuse flux with no time-space correlations. •from high energy tail of atmospheric νμ

• selection with emphasis on background(s) rejection

•spatial correlation with steady objects•search for clusters of events (w. or w.o. catalogue)•stacking of same-type of point source candidates

•space and/or time correlation with transient

phenomena •known active flary periods of TeV gamma sources•coincidence with GRBs

search for HE neutrinos from the cosmos

UHE: E > PeV

•Earth opaque: search in the upper hemisphere and close to the horizon

HE: TeV < E < PeV

•search confined to up-going tracks

analyses optimized for

(reduced sensitivity to e and

)

Cascades: TeV < E < PeV

• 4sensitivity

all-flavour

energy regions:

Page 18: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

diffuse flux search

AMANDA

1: B10, 97, ↑μ2: A-II, 2000, atmosph. 3: A-II, 2000, cascade4: B10, 97, UHE6: A-II, 2000, UHE sensit.7: A-II, 2000-03 ↑μ sensit.

Baikal

5: 98-03, cascades8: NT200+ sensitivity to e

limits for other flux predictions: - cuts optimized for each case. - expected limit from a given model compared with observed limit.

some AGN models excluded at 90% CL:

Szabo-Protehoe 92. Proc. HE Neutr. Astrophys. Hawaii 1992. Stecker, Salamon. Space Sc. Rev. 75, 1996 Protheroe. ASP Conf series, 121, 1997

1:1:1 flavor flux ratio

all-flavor limits

67 8

Page 19: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

event selection optimized for both dN/dE ~ E-2 and E-3 spectra

search for clusters of events in the northern sky

sourcenr. of events

(4 years)

expectedbackgr.(4 years)

flux upper limit 90%(E>10 GeV)

[10-8cm-2s-1]

Markarian 421 6 5.58 0.68

1ES1959+650 5 3.71 0.38

SS433 2 4.50 0.21

Cygnus X-3 6 5.04 0.77

Cygnus X-1 4 5.21 0.40

Crab Nebula 10 5.36 1.25

data from 2000-2003 (807 days)

3369 from northern hemisphere

3438 expected from atmosphere

• search for excesses of events on:

• the full Northern Sky

• a set of selected candidate

sources

significance map

… out of 33 Sources

crab

Mk421Mk501

M87

Cyg-X3

SS433

1ES1959

Cyg-X1

Page 20: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

neutrino sky from Baikal

1998-2002 data sample - 372 events - 385 evts expected - no indication of clustering

Page 21: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

• catalogues: BATSE+IPN3

• bckg. Stability required within ±1

hour from burst• several search techniques:

• coincidence with T90• precursor (110s before T90)• cascades (all flavour, 4)

-coincident with T90

-rolling time window

(no catalogue)

search for ’s correlated with GRBs

low background analysis due to both

space and time coincidence search!

year#

GRBsfrom

preliminary 90%CL upper limitassuming WB spectrum

(EB at 100 TeV and = 300)

'97 - '00 312BATSE

triggered bursts

E2d/dE = 4 · 10-8 GeV cm-2s-1 sr-1

'00 - '03 139BATSE &

IPN burstsE2d/dE = 3 · 10-8 GeV cm-2 s-1 sr-1

'01 - '03 50 IPN bursts(Assuming the Razzaque model)E2d/dE = 5 · 10-8 GeV cm-2 s-1 sr-1

'01 (425)Rolling window

E2d/dE = 2.7 · 10-6 GeV cm-2s-1sr-1

'00 73BATSE

triggered bursts

E2d/dE = 9.5 · 10-7 GeV cm-2s-1sr-1

10 min1 hour 1 hour

110 s T90 time

Off-TimePrecursor On Time

Always Blind

Page 22: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

• m 20%, b 5%

non-baryonic matter

MSSM candidate: the neutralino,

may exist as relic gas in the galactic halo

gravitational accumulation in Sun/Earth makes ‘indirect’ searches with neutrino telescopes possible

search for DM candidates in the Sun/Earth

neutralino-induced neutrinos:

qq

l+l- W, Z, H

signature: excess from

Sun/Earth’s center direction

A lot of physics (ie. uncertainties) involved:

- relic density calculations

- DM distribution in the halo

- velocity distribution

- properties (MSSM)

- interaction of with matter (capture)

Page 23: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

2001

Sun analysis possible due to improvedreconstruction capability for horizontal tracks in AMANDA-II compared with B10.

search for a neutralino signal from the Earth

search for a neutralino signal from the Sun

results from indirect DM searches

Page 24: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

e.g. magnetic monopoles:

Cherenkov-light (n·g/e)2

(1.33*137/2)2

8300 times brighter than ‘s!

signature: ‘slowly‘ moving bright particles

other particle searches

10-16

10-15

10-14

10-18

10-17

= v/c1.000.750.50

up

per

lim

it (

cm-2 s

-1 s

r-1)

KGF

Soudan

Baikal 2005

Amanda-B10

1 km3

electrons

MACRO

Orito

Page 25: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

Outlook.

as a framework: high energy neutrino astronomy

the world of neutrino telescopes: current projects

recent physics results from AMANDA and Baikal

ICECUBE: status and capabilities

summary

Page 26: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

deep ice array: IceCube

digital readout technology (DOMs) 80 strings, 60 DOM’s each 17 m DOM spacing 125 m between strings hexagonal pattern over 1 km2x1 km

1200 m

the IceCube observatory: IceCube+IceTop

IceTop

IceCube

surface array: IceTop

80 stations air shower array(one per IceCube string)

similar station concept as Auger 2 tanks (2 DOMs each) per station 125 m grid, 1 km2 at 690 g/cm2

Page 27: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

E=6 PeV

IceCube: an all-flavor neutrino telescope

•IceCube will be able to identify - tracks from for E > 100 GeV - cascades from e for E > 10 TeV - for E > 1 PeV

•background mainly downgoing bundles(+ uncorrelated coincident 's)

- exp. rate at trigger level ~1.7 kHz- atm. rate at trigger level ~300/day

e e “cascade”

E = 375 TeV

~300

m @

E

= 1

PeV

"cascade"

Page 28: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

Galactic center

IceCube: Aeff and resolution

1 year sensitivity E2·d/dE

diffuse point

8.110-9

[cm-2s-1sr-1GeV]5.510-9

[cm-2s-1GeV]

E< 1 PeV: focus on the Northern sky,

E > 1 PeV: sensitive aperture increases with energy

full sky observations possible

Page 29: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

IceTop Stations with DOMs – January 2004

digitized muon signals from DOMs

Am

plit

ude

(AT

WD

cou

nts)

vs

tim

e (n

s)

power cable

signal, freeze control,

temperature controlcables

Page 30: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

27.1, 10:08: Reached maximum depth of 2517 m, reversed direction, started to ream up

28.1, 7:00: drill head and return water pump are out of the hole, preparations for string installation start

7:52: Handover of hole for deployment

9:15: Started installation of the first DOM (DOM 60)

12:06: 10th DOM installed

22:36: 60th DOM installed Typical time for DOM installation:12 min

22:48: Start drop

29.1, 1:31: String secured at depth of 2450.80 m

20:40: First communication to DOM

IceCube first string: january 2005

Page 31: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

an IceCube-IceTop event

dep

loyed

strin

g

AMANDA

4 IceTop stations

Page 32: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

timing verification with flashers

Page 33: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

Outlook.

as a framework: high energy neutrino astronomy

the world of neutrino telescopes: current projects

recent physics results from AMANDA and Baikal

ICECUBE: status and capabilities

summary

Page 34: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

• a wealth of physics results from the currently working neutrino telescopes on several topics

• sensitivity reaching the level of current predictions of

production in AGN. Some models already excluded @

90%CL

• first Km3 project (IceCube) started at the South Pole: first events seen

• two projects + R&D efforts for a Km3 detector in the Mediterranean

summary

Page 35: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.
Page 36: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

Absorption

dust

icebubbles

dust

optical properties:data from calibration light sources deployed along the strings and from cosmic ray muons.

absorption length

@ 400 nm

eff. Scattering length

@ 400 nm

110 m 20 m

effective scattering length absorption length

on average:

detector medium: nice icedetector medium: nice ice

AMANDA depthAMANDA depth

Page 37: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

Preliminary

source

nr. of events(4 years)

expectedBG

(4 years)

time window

Markarian 421 6 5.58 40 days

1ES 1959+650 5 3.71 40 days

3EG J1227+4302 6 4.37 40 days

QSO 0235+164 6 5.04 40 days

Cygnus X-3 6 5.04 20 days

GRS 1915+105 6 4.76 20 days

GRO J0422+32 5 5.12 20 days

search for excesses in time-sliding windows:galactic objects: 20 daysextra-galactic objects: 40 days

… out of 12 Sources → no statistically significant effect observed

timeevents

sliding window

search for neutrino flares without a-priori hypothesis on their time of occurrence

search for neutrino flaressearch for neutrino flares

Page 38: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

AMANDA: sensitive in very different energy regimes

Energy range production site(s)Energy range production site(s)

MeV Supernovae

GeV-TeV

Atmosphere

Dark matter from Sun/Earth

Galactic center

TeV-EeV

Quasars

SN remnant

AGN

GRB

galactic

extragalactic

Page 39: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

•Transient Waveform Recorder system installed between the 2001 and 2004 campaigns

• Increased OM dynamic range x ~100

• Increased 1pe detection efficiency

• Virtually dead-time free

• Manageable trigger rate: ~150 Hz (majority 18)

• Possibility of using software trigger

• Under evaluation

Physics benefits:

• Improved angular resolution

• Improved energy resolution

UHE/EHE physics

TRANSIENT WAVEFORM RECODER UPGRADETRANSIENT WAVEFORM RECODER UPGRADE

Page 40: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

Up to 18 holes per season:

Nov.: preparationDec.: constructionJan.: constructionFeb.: commissioning

Deploymentof string N

Drilling of hole N

0h 12h 24h 36h 48h 60h 72h 84h

Time

IceCube: time planIceCube: time plan

Page 41: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

Diffuse sensitivity Point source sensitivity

IceCube: sensitivitiesIceCube: sensitivities

1 year sensitivity E2·d/dE

diffuse point

8.110-9

[cm-2s-1sr-1GeV]5.510-9

[cm-2s-1GeV]

Page 42: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

IceCube+AMANDA eventIceCube+AMANDA event

• verification of newly deployed string

• off-line synchronization of AMANDA and IceCube data

Page 43: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

May '02 July '02June '02

Error bars: off-source background per 40 days

sliding search

window

Preliminary

Example: 1ES1959+650“Orphan flare” (MJD 52429)

POINT SOURCE SEARCH: TIME WINDOW EXCESSPOINT SOURCE SEARCH: TIME WINDOW EXCESS

Page 44: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

Preliminary!

... very rare - very high energy events

many proposals for radio and acoustic detectors in ice, water, salt, from moon ..

e.g. ice:>>km attenuation lengthsparse instrumentation100-fold volume increase

... or moon, ice radio emission

>100

< 10 GZK neutrinos/year

Page 45: Carlos de los Heros, Uppsala University results from neutrino telescopes COSMO05. Bonn, Aug. 28 – Sep. 1, 2005.

RICE AGASA

Amanda, Baikal2002

2007

AUGER Anita

Amanda,Antares, Baikal, Nestor

2012

km3

Auger+ new techn.

2004

RICE GLUE