Cardona et al-1to5 - Plant Cell · 8/26/2015  · Supplemental Figure 3. Complementation of alix-1...

23
A 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 alix-1 PHR1 phr1 alix-1 phr1 WT Rosette leaf length (cm) 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 alix-1 PHR1 phr1 alix-1 phr1 WT Rosette leaf width (cm) 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 alix-1 PHR1 phr1 alix-1 phr1 WT Rosette diameter (cm) P +P Root length (cm) phr1 WT alix-1 phr1 alix-1 PHR1 5 4 3 2 1 0 WT phr1 alix-1 phr1 alix-1 PHR1 P WT phr1 alix-1 phr1 alix-1 PHR1 +P B C D E F G phr1 WT alix-1 phr1 alix-1 PHR1 phr1 WT alix-1 phr1 alix-1 PHR1 H Supplemental Figure 1. Morphological comparisons between alix-1, phr1, and wild-type (WT) controls. (A and B) Root length analysis of WT, phr1, alix-1 phr1 and alix-1 PHR1 plants grown under different Pi supply. Error bars indicate standard deviations. (C to E) Rosette leaf length and width, and rosette diameter measurements. Same genotypes as in (A) were analyzed. In (B to E) n = 10. (F) Rosette leaves and petiole phenotypes of plants corresponding to the wild-type, phr1, alix-1 phr1 and alix-1 PHR1 backgrounds grown in Pi-rich medium for 20 days. Bars = 1 cm. (G) Details of rosette leaves of plants corresponding to genotypes as above grown in soil for 35 days. Bars = 1 cm. (H) Pictures showing cauline leaves of plants grown in soil for 49 days. The arrows indicate the direction leaves are pointing. p<0.01 (Student’s t test) with respect to the WT in the same experimental conditions. * * * * * * * * * * * * Supplemental Data. Cardona-López et al. (2015). Plant Cell 10.1105/tpc.15.00393 1

Transcript of Cardona et al-1to5 - Plant Cell · 8/26/2015  · Supplemental Figure 3. Complementation of alix-1...

Page 1: Cardona et al-1to5 - Plant Cell · 8/26/2015  · Supplemental Figure 3. Complementation of alix-1 mutant defects. (A) Plants corresponding to phr1, alix-1 phr1 and alix-1 phr1 transformed

A

1.81.61.41.2

10.80.60.40.2

0alix-1

PHR1

phr1alix-1

phr1

WT

Ros

ette

leaf

leng

th (c

m)

10.90.80.70.60.50.40.30.20.1

0alix-1

PHR1

phr1alix-1

phr1

WT

Ros

ette

leaf

wid

th (c

m)

54.5

43.5

32.5

21.5

10.5

0alix-1

PHR1

phr1alix-1

phr1

WT

Ros

ette

dia

met

er (c

m)

−P+P

Roo

t len

gth

(cm

)

phr1 WT alix-1

phr1

alix-1

PHR1

5

4

3

2

1

0 WT phr1 alix-1

phr1

alix-1

PHR1

−P

WT phr1 alix-1

phr1

alix-1

PHR1

+PB

C D E

F G

phr1

WT

alix-1

phr1

alix-1

PHR1

phr1

WT

alix-1 phr1

alix-1 PHR1

H

Supplemental Figure 1. Morphological comparisons between alix-1, phr1, and

wild-type (WT) controls.

(A and B) Root length analysis of WT, phr1, alix-1 phr1 and alix-1 PHR1 plants grownunder different Pi supply. Error bars indicate standard deviations. (C to E) Rosette leaf length and width, and rosette diameter measurements. Same genotypes as in (A) were analyzed. In (B to E) n = 10.(F) Rosette leaves and petiole phenotypes of plants corresponding to the wild-type, phr1, alix-1 phr1 and alix-1 PHR1 backgrounds grown in Pi-rich medium for 20 days. Bars = 1 cm.(G) Details of rosette leaves of plants corresponding to genotypes as above grown in soil for 35 days. Bars = 1 cm.(H) Pictures showing cauline leaves of plants grown in soil for 49 days. The arrows indicate the direction leaves are pointing.p<0.01 (Student’s t test) with respect to the WT in the same experimental conditions.

*

*

*

*

* *

** * *

* *

Supplemental Data. Cardona-López et al. (2015). Plant Cell 10.1105/tpc.15.00393

1

Page 2: Cardona et al-1to5 - Plant Cell · 8/26/2015  · Supplemental Figure 3. Complementation of alix-1 mutant defects. (A) Plants corresponding to phr1, alix-1 phr1 and alix-1 phr1 transformed

A

WTphr1 alix-1

PHR1

alix-1

phr1

B

Day

s to

flow

erin

gWT phr1 alix-1

PHR1

alix-1

phr1

C

WT phr1 alix-1

PHR1

alix-1

phr1

Leaf

num

ber a

t bol

ting

*

*

*

*

*

*

** *50

40

30

20

10

0

4035302520151050

TotalRosette Cauline

Supplemental Figure 2. Flowering time defects in alix-1 mutants.

(A) Phenotype of 40-day-old plants corresponding to the wild-type (WT), phr1, alix-1 phr1 and alix-1 PHR1 backgrounds grown in soil under long day conditions. (B and C) Histograms showing flowering-time measurements for genotypes described above grown under long day conditions. Flowering time was measured as the number of days to flowering (B) or leaves at bolting (C). The error bars represent standard deviations from sample sizes of at least 25 plants. Statistically significant differences with respect to wild-type plants (p< 0.05, according to Student's t test) are marked with asterisks.

Supplemental Data. Cardona-López et al. (2015). Plant Cell 10.1105/tpc.15.00393

2

Page 3: Cardona et al-1to5 - Plant Cell · 8/26/2015  · Supplemental Figure 3. Complementation of alix-1 mutant defects. (A) Plants corresponding to phr1, alix-1 phr1 and alix-1 phr1 transformed

Supplemental Figure 3. Complementation of alix-1 mutant defects. (A) Plants corresponding to phr1, alix-1 phr1 and alix-1 phr1 transformed with a construct containing the ALIX genomic region (gALIX alix-1 phr1) were grown in Pi-deficient medium for 12 days. (B) RT-qPCR analysis of Pi-starvation induced gene expression in 10-day-old plants grown under low Pi (-P; 30 µM Pi) and Pi-rich (+P; 500 µM Pi) conditions. Plants corresponded to wild-type (WT), phr1, two independent alix-1 phr1 lines transformed with a construct containing the ALIX genomic region (gALIX alix-1 phr1), alix-1 phr1, and alix-1 PHR1. ACTIN8 was used as a housekeeping reference gene. Expression levels are relative to Pi-rich grown wild-type values, which were normalized to 1. Data represent the mean of three biological replicates, each consisting of sample material pooled from 15-20 plants from different plates, with standard deviation. * p . (Student’s t test) with respect to the phr1 mutant in the same experimental conditions.

PMH1

PRE8

PHF1

TMT1

ACP5

SQD112

10

8

6

4

2

0

8

6

4

2

0

2000

1500

1000

500

0

20

15

10

5

0

300

250

200

150

100

50

0

100

80

60

40

20

0

+P −P

Rel

ativ

e ex

pres

sion

Rel

ativ

e ex

pres

sion

Rel

ativ

e ex

pres

sion

alix-1

phr1

phr1

gALIX

alix-1 phr1

(1) (2) alix-1

PHR1

WT alix-1

phr1

phr1

gALIX

alix-1 phr1

(1) (2) alix-1

PHR1

WT

*

*

*

*

* *

*

* *

* *

*

*

**

gALIX

alix-1 phr1alix-1 phr1phr1

A

B

Supplemental Data. Cardona-López et al. (2015). Plant Cell 10.1105/tpc.15.00393

3

Page 4: Cardona et al-1to5 - Plant Cell · 8/26/2015  · Supplemental Figure 3. Complementation of alix-1 mutant defects. (A) Plants corresponding to phr1, alix-1 phr1 and alix-1 phr1 transformed

ALIXBro1PalARim20At-ALIX

ALIXBro1PalARim20At-ALIX

ALIXBro1PalARim20At-ALIX

ALIXBro1PalARim20At-ALIX

ALIXBro1PalARim20At-ALIX

ALIXBro1PalARim20At-ALIX

ALIXBro1PalARim20At-ALIX

ALIXBro1PalARim20At-ALIX

ALIXBro1PalARim20At-ALIX

ALIXBro1PalARim20At-ALIX

ALIXBro1PalARim20At-ALIX

D

Supplemental Figure 4. Multiple sequence alignment of ALIX-related proteins.

Protein sequences include At-ALIX and homolog proteins in mammals (ALIX), Aspergillus (PalA) and yeast (Bro1 and Rim20). The alignment was obtained using the T-COFFEE program (Notredame et al., 2000). Amino acids in red correspond to residues conserved in all proteins displayed and in yellow are those that are conserved in most of them. The Bro1, coiled-coil and proline-rich domains as in AtALIX are underlined in purple, blue and green, respectively. The position of the amino acid substitution (Gly260-to-Asp) caused by the alix-1 mutation is indicated in At-ALIX.

Notredame, C., Higgins, D.G., and Heringa, J. (2000). T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol 302, 205-217.

Supplemental Data. Cardona-López et al. (2015). Plant Cell 10.1105/tpc.15.00393

4

Page 5: Cardona et al-1to5 - Plant Cell · 8/26/2015  · Supplemental Figure 3. Complementation of alix-1 mutant defects. (A) Plants corresponding to phr1, alix-1 phr1 and alix-1 phr1 transformed

Supplemental Figure 5. Complementation of transcriptional defects in alix-1 mutants

using a protein fusion of ALIX to GFP.

RT-qPCR analysis of the expression of representative Pi-STARVATION INDUCED (PSI) genes in WT, phr1, alix-1 phr1 and ALIXpro:GFP-gALIX (two independent transgenic lines) seedlings grown under low Pi (-P; 30 µM Pi) and Pi-rich (+P; 500 µM Pi) conditions. ACTIN8 was used as a housekeeping reference gene. Expression levels are relative to Pi-rich grown wild-type values, which were normalized to 1. Data represent the mean of three biological replicates, each consisting of sample material pooled from 15-20 plants from different plates, with standard deviation.*p<0.05 (Student’s t test) with respect to the alix-1 phr1 in the same experimental conditions.

+P

−P

phr1 WT

TMT1100

80

60

40

20

0alix-1

phr1GFP-ALIX

alix-1 phr1

(1) (2)phr1 WT

SQD11816141210

86420

alix-1

phr1GFP-ALIX

alix-1 phr1

(1) (2)

phr1 WT

PHF1876543210

alix-1

phr1GFP-ALIX

alix-1 phr1

(1) (2) phr1 WT

PMH1700

600

500

400

300

200

100

0alix-1

phr1GFP-ALIX

alix-1 phr1

(1) (2)

*

**

*

* *

phr1 WT

PRE816141210

86420

alix-1

phr1GFP-ALIX

alix-1 phr1

(1) (2)

phr1 WT

ACP530

25

20

15

10

5

0alix-1

phr1GFP-ALIX

alix-1 phr1

(1) (2)

Rel

ativ

e ex

pres

sion

Rel

ativ

e ex

pres

sion

*

*

**

*

* *

*

* *

**

** *

Supplemental Data. Cardona-López et al. (2015). Plant Cell 10.1105/tpc.15.00393

5

Page 6: Cardona et al-1to5 - Plant Cell · 8/26/2015  · Supplemental Figure 3. Complementation of alix-1 mutant defects. (A) Plants corresponding to phr1, alix-1 phr1 and alix-1 phr1 transformed

Supplemental Figure 6. ALIX gene expression and GFP-ALIX protein

accumulation under different Pi supply conditions.

(A) RT-qPCR analysis of ALIX gene expression in 10-day-old wild-type (WT), phr1, alix-1 phr1, and alix-1 PHR1 plants grown under low Pi (-P; 30 µM Pi) and Pi-rich (+P; 500 µM Pi) conditions. ACTIN8 was used as a housekeeping reference gene. Expression levels are relative to Pi-rich grown wild-type values, which were normalized to 1. Data represent the mean of three biological replicates with standard deviation.(B) Immunoblots of protein extracts from 8 independent alix-1 phr1 lines harboring the ALIX genomic region fused to GFP under the control of the ALIX promoter (ALIXpro:GFP-gALIX) compared to that of an ALIX-GFP overexpressing line (35S:ALIX-GFP) . PHR1-GFP extracts were used as a control. (C) Immunoblots of protein extracts from two independent ALIXpro:GFP-gALIX linesgrown in Pi-deficient (-P) and Pi-rich (+P) media for 10 days. Anti-GFP antibody was used to detect the GFP fusions. Ponceau staining was used as loading control.

phr1 WT alix-1

phr1

alix-1

PHR1

ALIX

+P

−P

7

6

5

4

3

2

1

0

Rel

ativ

e ex

pres

sion

A

IB: GFP

Ponceau

WT

ALIXpro:GFP-ALIX

alix-1 phr1

(1) (2) (1) (2)

+P −P

123 KDa

C

ALIXpro:GFP-ALIX

alix-1 phr1PHR1

GFP35S:ALIX

GFP

WT

148 KDa

98

64

50

36

GFP

(1) (2) (3) (4) (5) (6) (7) (8)

B

Supplemental Data. Cardona-López et al. (2015). Plant Cell 10.1105/tpc.15.00393

6

Page 7: Cardona et al-1to5 - Plant Cell · 8/26/2015  · Supplemental Figure 3. Complementation of alix-1 mutant defects. (A) Plants corresponding to phr1, alix-1 phr1 and alix-1 phr1 transformed

FL FL FL 1-413 1-413 1-413 405-846 405-846 405-846Bait (myc): ALIX

Prey (HA): ALIX FL FL FL1-413 1-413 1-413405-846 405-846 405-846

ALIX FL

405-846

1-413

ALIX FL

405-846

1-413

IB: myc

IB: HA

FL 1-413 405-846 1-413 405-846 SNF7.1 SNF7.1 SNF7.2 SNF7.2Bait (myc): ALIX

Prey (HA): ALIX SNF7.1 SNF7.2 405-846SNF7.1 SNF7.2 1-413SNF7.1 1-413 405-846

1-413mut 1-413mut SNF7.1 SNF7.2

SNF7.2 1-413mutSNF7.1 1-413mut

ALIX FL

405-846

1-413

SNF7.1 / 2

* *

IB: myc

IB: HA

IB: myc

405-846

1-413

SNF7.1 / 2

A

B

C

ALIX FL

ALIX FL

ALIX (1-413)

SNF7.1

Empty

Empty

Empty ALIX-1 (1-413)

Bait Prey

ALIX (405-846)

ALIX-1 FL

Empty

Empty

Empty SNF7.2

EmptySNF7.1

-WL -WLA -WLHA

Empty

Empty

ALIX FL

ALIX (1-413)

ALIX-1 (1-413) Empty

Bait Prey

Empty

Empty

ALIX (405-846)

ALIX-1 FL

SNF7.2Empty

SNF7.1Empty

-WL -WLHA-WLA

Ponceau

Ponceau

Supplemental Figure 7. Negative controls and expression analysis of bait and prey

fusions used in yeast-two hybrid assays displayed in Figures 3 and 5.

(A) Negative controls for yeast-two hybrid assays in which full-length (FL) and truncated versions (comprising the Bro1 domain, aa 1-413; or the coiled coils plus the Pro-rich region, aa 405-846) of ALIX, constructs containing the alix-1 mutation (ALIX-1; right panels), and SNF7 proteins were cotransformed with the corresponding empty vectors.Transformed yeast cells were grown in SD-WL medium as a transformation control and in SD-WLA and SD-WLHA media for interaction assays. (B and C) Total protein extracts from yeast clones expressing bait and prey fusions as indicated wereimmunoblotted using anti-myc (detects Baits) and anti-HA (detects Preys) antibodies. Ponceau staining of membranes was used as loading control. Arrows point to proteins bands corresponding to ALIX 1-413 (in B) or SNF7 fusions (in C). Asterisks indicate non-specific bands close to SNF7 protein bands.

Supplemental Data. Cardona-López et al. (2015). Plant Cell 10.1105/tpc.15.00393

7

Page 8: Cardona et al-1to5 - Plant Cell · 8/26/2015  · Supplemental Figure 3. Complementation of alix-1 mutant defects. (A) Plants corresponding to phr1, alix-1 phr1 and alix-1 phr1 transformed

BiFC Chlorophyll FM4-64 Overlay

Supplemental Figure 8. BiFC assays showing interaction between ALIX and SNF7.1

in vivo.

Bimolecular Fluorescence Complementation (BiFC) assays show that ALIX, but not a version containing the alix-1 mutation interacts with S . in i o. was in ected in N. benthamiana lea epidermal cells expressin di erent construct com inations as indicated.

ea es were o ser ed con ocal ima in a ter min. econstitution o luorescence indicates that the correspondin and S constructs directl interact. White arrows show luorescence colocali ation with si nal (red channel). lastid auto luorescence due to chloroph ll is shown in the lue channel. ars m.

YFP

N-E

MP

TY +

YFP

C-A

LIX

-1

NY

FP-S

NF7

.1 +

YFP

C-E

MP

TYY

FPN-S

NF7

.1 +

YFP

C-A

LIX

-1

NY

FP-S

NF7

.1 +

YFP

C-A

LIX

Supplemental Data. Cardona-López et al. (2015). Plant Cell 10.1105/tpc.15.00393

8

Page 9: Cardona et al-1to5 - Plant Cell · 8/26/2015  · Supplemental Figure 3. Complementation of alix-1 mutant defects. (A) Plants corresponding to phr1, alix-1 phr1 and alix-1 phr1 transformed

YFPC-ALIX

YFPN-SNF7.2

YFPC-ALIX-1

+

+

+

+

+

+

+

*

IB: GFP

75

50

100

150KDa

Supplemental Figure 9. Expression analysis of protein fusions used in BiFC assays

displayed in Figure 5.

(A) Protein extracts from Nicotiana benthamiana leaves agroinfiltrated with indicated construct combinations were immunoblotted using polyclonal anti-GFP, detecting both YFP-C and YFP-Nprotein fusions. The position of bands corresponding to wild-type and ALIX-1 mutant versions of ALIX, and that of SNF7.2, fused to YFP fragments are shown. An asterisk indicates theposition of a non-specific band used as loading control.

YFPC-ALIX

YFPN-SNF7.2

Supplemental Data. Cardona-López et al. (2015). Plant Cell 10.1105/tpc.15.00393

9

Page 10: Cardona et al-1to5 - Plant Cell · 8/26/2015  · Supplemental Figure 3. Complementation of alix-1 mutant defects. (A) Plants corresponding to phr1, alix-1 phr1 and alix-1 phr1 transformed

Supplemental Figure 10. Analysis of endocytosis and vesicle trafficking in alix-1 mutants.

Five-day-old wild-type (WT) and alix-1 mutant plants were treated with or min.ter washin root cells were isuali ed con ocal ima in e er min or h. enlar ed ima es o stained cells a ter min are shown.

alix-1

W

Talix-1

W

Talix-1

W

T

20 min

80 min 100 min

60 min

120 min

140 min 160 min 180 min

40 min

4X

4X

Supplemental Data. Cardona-López et al. (2015). Plant Cell 10.1105/tpc.15.00393

10

Page 11: Cardona et al-1to5 - Plant Cell · 8/26/2015  · Supplemental Figure 3. Complementation of alix-1 mutant defects. (A) Plants corresponding to phr1, alix-1 phr1 and alix-1 phr1 transformed

WT alix-1 alix-1 alix-2

YFP-VAMP711

Supplemental Figure 11. Mutants displaying reduced ALIX function are defective in

vacuolar size and morphology.

Confocal images of root cells from 5-day-old wild-type (WT), alix-1 and transheterozygousalix-1 alix-2 mutants overexpressing the tonoplast marker YFP-VAMP711 (Geldner et al., 2009). Increased number of vacuoles of smaller size (shown by arrows) than those in the WT control can be observed in alix-1 and alix-1 alix-2 mutants. ars m.

Geldner, N., Denervaud-Tendon, V., Hyman, D.L., Mayer, U., Stierhof, Y.D., and Chory, J. (2009). Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J. 59, 169-178.

Supplemental Data. Cardona-López et al. (2015). Plant Cell 10.1105/tpc.15.00393

11

Page 12: Cardona et al-1to5 - Plant Cell · 8/26/2015  · Supplemental Figure 3. Complementation of alix-1 mutant defects. (A) Plants corresponding to phr1, alix-1 phr1 and alix-1 phr1 transformed

phr1 alix-1 phr1

GFP-ALIX

Supplemental Figure 12. Vacuolar morphology defects in alix-1 mutants can be

rescued by expression of a GFP-ALIX fusion.

Vacuole staining with BCECF-AM in root cells from 5-day-old phr1, alix-1 and alix-1 phr1 mutants harboring the ALIXpro:GFP-gALIX construct (GFP-ALIX). In contrast to the alix-1 mutant, GFP-ALIX alix-1 plants display similar vacuole number and size that the phr1 parental line. ars m.

alix-1 phr1

Supplemental Data. Cardona-López et al. (2015). Plant Cell 10.1105/tpc.15.00393

12

Page 13: Cardona et al-1to5 - Plant Cell · 8/26/2015  · Supplemental Figure 3. Complementation of alix-1 mutant defects. (A) Plants corresponding to phr1, alix-1 phr1 and alix-1 phr1 transformed

Green channel FM4-64 Overlay

+P

−P

phf1

phf1

alix-1

phf1

alix-1

phf1

alix-1

alix-1

Supplemental Figure 13. ALIX acts as a later stage than PHF1 during PHT1;1 trafficking.

Confocal images of root epidermal cells from 5 day-old 35S:PHT1;1-GFP seedlings in the alix-1, phf1 and alix-1 phf1 backgrounds grown under Pi-low and -rich conditions. Seedlings were treated with or min and isuali ed a ter min. ars m.

Supplemental Data. Cardona-López et al. (2015). Plant Cell 10.1105/tpc.15.00393

13

Page 14: Cardona et al-1to5 - Plant Cell · 8/26/2015  · Supplemental Figure 3. Complementation of alix-1 mutant defects. (A) Plants corresponding to phr1, alix-1 phr1 and alix-1 phr1 transformed

WT WTalix-1 alix-1

Control

BFA 50 μM 90 min

WM 33 μM30 min

35S:PHT1;1-GFP +P 35S:PHT1;1-GFP −P

Supplemental Figure 14. alix-1 mutation does not alter PHT1;1 localization in sorting

endosomes and brefeldin bodies.

5-day-old 35S:PHT1;1-GFP seedlings in wild-type (WT) and alix-1 backgrounds, grown in i de icient ( ) or i rich conditions ( ) were treated with re eldin ( ) or min

or with wortmannin (W ) or min. rrows in con ocal microscop ima es point to re eldin odies or W enlar ed sortin endosomes accordin to the treatment in which

T usions locali e. ars m.

Supplemental Data. Cardona-López et al. (2015). Plant Cell 10.1105/tpc.15.00393

14

Page 15: Cardona et al-1to5 - Plant Cell · 8/26/2015  · Supplemental Figure 3. Complementation of alix-1 mutant defects. (A) Plants corresponding to phr1, alix-1 phr1 and alix-1 phr1 transformed

Supplemental Data. Cardona-López et al. (2015). Plant Cell 10.1105/tpc.15.00393

!

! 15!

Supplemental Table 1. Phenotypic characterization of the progeny obtained from heterozygous alix-1 plants. Anthocyanin accumulation was analyzed in the F2 progeny (n=500) of a cross between alix-1 phr1 and phr1 seedlings grown under low Pi conditions for 10 days.

Observed phenotype frequency (%) Expected phenotype frequency (%)a

phr1 alix-1 phr1 phr1 alix-1 phr1

85 15 75 25 a Expected phenotype frequency for a recessive mutation

Page 16: Cardona et al-1to5 - Plant Cell · 8/26/2015  · Supplemental Figure 3. Complementation of alix-1 mutant defects. (A) Plants corresponding to phr1, alix-1 phr1 and alix-1 phr1 transformed

Supplemental Data. Cardona-López et al. (2015). Plant Cell 10.1105/tpc.15.00393

!

! 16!

!

!

!

Supplemental Table 2. Segregation data from selfed alix-2 ALIX progeny. Genotype Observed Observed frequency (%) Expected frequency (%) ALIX ALIX 119 36.96 25 alix-2 ALIX 203 63.04 50 alix-2 alix-2 0 0 25

Page 17: Cardona et al-1to5 - Plant Cell · 8/26/2015  · Supplemental Figure 3. Complementation of alix-1 mutant defects. (A) Plants corresponding to phr1, alix-1 phr1 and alix-1 phr1 transformed

Supplemental Data. Cardona-López et al. (2015). Plant Cell 10.1105/tpc.15.00393

!

! 17!

!

!

Supplemental Table 3. Segregation data from selfed alix-3 ALIX progeny. Genotype Observed Observed frequency (%) Expected frequency (%) ALIX ALIX 143 35.4 25 alix-3 ALIX 261 64.6 50 alix-3 alix-3 0 0 25

!

!

Page 18: Cardona et al-1to5 - Plant Cell · 8/26/2015  · Supplemental Figure 3. Complementation of alix-1 mutant defects. (A) Plants corresponding to phr1, alix-1 phr1 and alix-1 phr1 transformed

Supplemental Data. Cardona-López et al. (2015). Plant Cell 10.1105/tpc.15.00393

!

! 18!

!

!

Number of seedlings and percentages of the total are shown.

Supplemental Table 4. Germination analysis of the progeny of alix-2 ALIX and alix-3 ALIX heterozygous plants compared to wild-type (ALIX ALIX) plants.

Germinated Not germinated Total ALIX ALIX 432 / 98,18% 8 / 1,82% 440

alix-2 ALIX 1005 / 85,03% 177 / 14,97% 1182

alix-3 ALIX 963 / 92,5% 78 / 7,5% 1041

Page 19: Cardona et al-1to5 - Plant Cell · 8/26/2015  · Supplemental Figure 3. Complementation of alix-1 mutant defects. (A) Plants corresponding to phr1, alix-1 phr1 and alix-1 phr1 transformed

Supplemental Data. Cardona-López et al. (2015). Plant Cell 10.1105/tpc.15.00393

!

! 19!

Supplemental Table 5. Transmission efficiency (TE) of the alix-2 and alix-3 alleles through male and female gametes.

Parental cross (Female x Male)

Nº of seedlings genotyped

alix alleles observed

alix alleles expected TE (%) P (χ2 test)

WT x alix-2 ALIX 187 99 93.5 105.88 n.s alix-2 ALIX x WT 100 27 50 54 <0.05 WT x alix-3 ALIX 46 23 23 100 n.s. alix-3 ALIX x WT 54 30 27 111.1 n.s. !

!

!

!

!

Page 20: Cardona et al-1to5 - Plant Cell · 8/26/2015  · Supplemental Figure 3. Complementation of alix-1 mutant defects. (A) Plants corresponding to phr1, alix-1 phr1 and alix-1 phr1 transformed

TAP-ALIX

BAND Locus DescriptionPeptide Number Observed Mr(expt) Mr(calc) Delta(Da) ppm Start End Miss Ions Peptide

Variable Modification

1 At1g15130BRO-1 like domain containing protein 1 1028,5 1027,49 1027,54 -0,05 -45,07 571 579 0 --- R.QLENLGAQR.A

2 1082,45 1081,44 1081,47 -0,03 -24,3 473 481 0 --- K.EATEDSQFR.S3 1279,54 1278,53 1278,59 -0,06 -42,57 29 38 0 --- R.NYVTFTYSER.E4 1279,54 1278,53 1278,59 -0,06 -42,57 29 38 0 47 R.NYVTFTYSER.E5 1304,56 1303,55 1303,6 -0,05 -37,36 255 265 0 --- K.AALFYGEACFR.Y6 1304,56 1303,55 1303,6 -0,05 -37,36 255 265 0 10 K.AALFYGEACFR.Y7 1321,54 1320,53 1320,59 -0,06 -43,67 721 731 0 --- R.QMSGLSFQDHR.S Oxidation (M)8 1595,64 1594,63 1594,7 -0,07 -45,15 599 611 0 --- K.LMTITGSYEDMFR.K 2 Oxidation (M)9 1695,78 1694,78 1694,85 -0,07 -41,91 269 282 1 --- K.ELHEKEEIAEEIAR.L

10 2089 2087,99 2088,08 -0,09 -40,66 122 141 0 --- K.AAVLFNLGASYSQIGLGHDR.T11 2089 2087,99 2088,08 -0,09 -40,66 122 141 0 5 K.AAVLFNLGASYSQIGLGHDR.T12 2291,95 2290,94 2291,04 -0,1 -45,6 713 731 1 --- R.DMIEDVQRQMSGLSFQDHR.S13 2291,95 2290,94 2291,04 -0,1 -45,6 713 731 1 --- R.DMIEDVQRQMSGLSFQDHR.S14 2323,93 2322,93 2323,03 -0,1 -45,85 713 731 1 --- R.DMIEDVQRQMSGLSFQDHR.S 2 Oxidation (M)15 2431,08 2430,07 2430,17 -0,1 -40,86 299 321 0 --- R.GAPAQLIEAMNTLESSIDGNLDR.A Oxidation (M)

ALIX BAND Locus

Peptide Number Observed Mr(expt) Mr(calc) Delta(Da) ppm Start End Miss Ions Peptide

Variable Modification

1 At1g15130BRO-1 like domain containing protein 1 1082,43 1081,42 1081,47 -0,05 -41,13 443 451 0 --- K.EATEDSQFR.S

2 1304,55 1303,54 1303,6 -0,06 -48,95 225 235 0 --- K.AALFYGEACFR.Y3 1304,55 1303,54 1303,6 -0,06 -48,95 225 235 0 15 K.AALFYGEACFR.Y4 1695,77 1694,76 1694,85 -0,09 -48,76 239 252 1 --- K.ELHEKEEIAEEIAR.L5 1772,78 1771,77 1771,86 -0,09 -48,03 149 165 0 --- R.QASHAFMAAAGAFAHLR.D Oxidation (M)6 2088,98 2087,97 2088,08 -0,11 -48,18 122 141 0 --- K.AAVLFNLGASYSQIGLGHDR.T7 2088,98 2087,97 2088,08 -0,11 -48,18 122 141 0 49 K.AAVLFNLGASYSQIGLGHDR.T8 3349,52 3348,51 3348,67 -0,16 -46,19 304 334 1 --- R.VPSPSSLSPLPAFSMVKPMNMTDILDASKEK.M 2 Oxidation (M)

20

MSMS dataIdentified Protein

Supplemental Table 6. Protein identification details obtained with the ABi 4800 MALDI TOF/TOF mass spectrometer (AB SCIEX) and the GPS explorer v4.9 (AB SCIEX) software package combined with search engine Mascot version 2.5.10 (Matrix Science).

Peptide Number: Peptide index number within the list of peptides associated with a given protein. Observed: The observed monoisotopic mass of the peptide in the spectrum (m/z). Mr (Expt): The experimental mass of the peptide calculated from the observed m/z value. Mr (Calc): The theoretical mass of the peptide based on its sequence. Delta (Da): The difference between the theoretical (Mr (Calc)) and experimental (Mr (Exp)) masses, in daltons. ppm: RMS error of the set of matched mass values, in ppm. Start: The starting position of the peptide in the protein. End: The ending position of the peptide in the protein. Miss: Number of missed Trypsin cleavage sites. Peptide: The amino acid sequence of the selected peptide. Variable Modification: Variable modification type on the peptide.

Supplemental Data. Cardona-López et al. (2015). Plant Cell 10.1105/tpc.15.00393

Page 21: Cardona et al-1to5 - Plant Cell · 8/26/2015  · Supplemental Figure 3. Complementation of alix-1 mutant defects. (A) Plants corresponding to phr1, alix-1 phr1 and alix-1 phr1 transformed

Supplemental Data. Cardona-López et al. (2015). Plant Cell 10.1105/tpc.15.00393

!

!21!

!

Supplemental Table 7. Reporter lines used in this study as described in (Dettmer et al., 2006; Geldner et al., 2009).

!

!

!

!

!

Dettmer, J., Hong-Hermesdorf, A., Stierhof, Y.D., Schumacher, K., and Hong-Hermesdorf, A. (2006). Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell. 18:715–730.

Geldner, N., Denervaud-Tendon, V., Hyman, D.L., Mayer, U., Stierhof, Y.D., and Chory, J. (2009). Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J. 59, 169-178.

!

!

!

!

!

!

!

Line Localization Tagged protein Reference

WAVE 2 MVB RabF2b Geldner et al., 2009

WAVE 9 Vacuole VAMP711 Geldner et al., 2009

WAVE 22 Golgi SYP32 Geldner et al., 2009

WAVE 34 Recycling endosome RabA1e Geldner et al., 2009

VHA1-RFP Early endosome VHA1 Dettmer et al., 2006

Page 22: Cardona et al-1to5 - Plant Cell · 8/26/2015  · Supplemental Figure 3. Complementation of alix-1 mutant defects. (A) Plants corresponding to phr1, alix-1 phr1 and alix-1 phr1 transformed

Supplemental Data. Cardona-López et al. (2015). Plant Cell 10.1105/tpc.15.00393

!

!22!

!

Supplemental Table 8. Analysis of intracellular Pi pools in roots of wild-type (WT) and alix-1 PHR1 plants grown in Pi-sufficient media (500 mM).

Genotype Glucose-6-P + Chloroplastic Pi Cytosolic Pi Vacuolar Pi WT 2.62a 0.25 12.1

alix-1 PHR1 3.2 0.4 8.4 Increase or Reduction compared

to WT levels (%) 18.27 37.25 -30.55

aValues correspond to areas under the corresponding peaks in 31P-NMR experiments (see Figure 9).

!

!

Page 23: Cardona et al-1to5 - Plant Cell · 8/26/2015  · Supplemental Figure 3. Complementation of alix-1 mutant defects. (A) Plants corresponding to phr1, alix-1 phr1 and alix-1 phr1 transformed

Supplemental Data. Cardona-López et al. (2015). Plant Cell 10.1105/tpc.15.00393

!

!23!

!!

Supplemental Table 9. Primers and probes (Roche) used in RT-qPCR analyses.

Locus Gene Probe N° Primer sequence

At3g17790 ACP5 125 5: CCAAACTTCGAACAATCTTTCTC

3: GTTTCCCAAAACACTGTACCACT

At1g49240 ACTIN8 7 5: GACTCAGATCATGTTTGAGACCTTT

3: CCAGAGTCCAACACAATACCG

At1g15130 AtALIX 124 5: GTATCGAGAGATCAAGGAGAACATC

3: TTCACATTCGTGATTGCATCT

At3g52190 PHF1 55 5: TTTTGACCCCATTACTGCTTC

3: TCCTTAAGCGTGTGTGTTGC

At1g17710 PMH1 55 5: TCAACGAAATTATGTCATCAGAGG

3: TTTCAGAGCTCAACATCTTGTCA

At4g14090 PRE8 12 5: CGTGGAGGATTGGAGTGAA

3: TCTAATCTCCTCCCCATCCA

At4g33030 SQD1 22 5: CATCCTCTAAACCAAAGCGTGT

3: AGTAGCCCAACCGCAATAAC

At2g43920 TMT1 151 5: TGGAAACATTCTTCCTACTCCTG

3: CCGCCTTCTGCAACAACT

!