Carbon Nanotubes: Synthesis and Applications

42
Birck Nanotechnology Center Nanoscale Transport Research Group 1 ECET499 Guest Lecture Sungwon S. Kim, Ph.D. Visiting Assistant Professor Birck Nanotechnology Center and School of Mechanical Engineering Purdue University March 4 th , 2010 Carbon Nanotubes: Synthesis and Applications

Transcript of Carbon Nanotubes: Synthesis and Applications

Birck Nanotechnology Center Nanoscale Transport Research Group 1

ECET499 Guest Lecture

Sungwon S. Kim, Ph.D.Visiting Assistant Professor

Birck Nanotechnology Center and School of Mechanical EngineeringPurdue University

March 4th, 2010

Carbon Nanotubes: Synthesis and Applications

Birck Nanotechnology Center Nanoscale Transport Research Group 2

Overview

• Nanotechnology

• CNT Synthesis

• CNT Applications

• My Perspective

Birck Nanotechnology Center Nanoscale Transport Research Group 3

Nanotechnology

• Study of materials and phenomena at nanoscale

• National Nanotechnology Initiative (NNI)– Launched in 2001 to coordinate research activities

• Birck Nanotechnology Center– $58 million facility opened in 2005

– 187,000 ft2 of space, 25,000 ft2 cleanroom

– Over 45 faculty members and 145 students

Birck Nanotechnology Center Nanoscale Transport Research Group 4

Nanotechnology

Birck Nanotechnology Center Nanoscale Transport Research Group 5

Nanotechnology

Birck Nanotechnology Center Nanoscale Transport Research Group 6

Nanotechnology• Carbon nanotubes (CNTs)

Diamond Graphite

C60

Carbon chain

C70 CNThttp://www.seed.slb.com/en/scictr/watch/fullerenes/index.htm

Birck Nanotechnology Center Nanoscale Transport Research Group 7

Carbon Nanotubes (CNTs)• Timeline

1985 Discovery of Fullerenes R. E. Smalley et al., Nature, 318, 162 (1985)

1991 Discovery of MWNTs S. Iijima et al., Nature 354, 56 (1991)

1992 Conductivity of CNTs C. T. White et al., Phys. Rev. Lett. 68, 631 (1992)

1993 Structural rigidity of CNTs D. Tománek et al., Z. Phys. D 27, 93 (1993)

1993 Synthesis of SWNTs S Iijima, T Ichihashi et al. Nature, 363, 603 (1993)

1995 Nanotubes as field emitters R. E. Smalley et al., Science 269, 1550 (1995)

1996 Ropes of SWNTs R. E. Smalley et al., Science 273, 483 (1996).

1997 Quantum conductance of CNTs C Dekker et al., Nature, 386, 474 (1997)

1997 Hydrogen storage in CNTs M J Heben et al., Nature, 386, 377 (1997)

1998 CVD synthesis of aligned CNT films Z F Ren et al., Science, 282, 1105 (1998)

Birck Nanotechnology Center Nanoscale Transport Research Group 8

Carbon Nanotubes (CNTs)• Timeline

2000 Thermal conductivity of CNTs D. Tománek et al., Phys. Rev. Lett. 84, 4613 (2000)

2000 Macroscopically aligned CNTs P. Poulin et al., Science 290, 1331 (2000)

2001 Intrinsic superconductivity of CNTs H. Bouchiat et al., Phys. Rev. Lett. 86, 2416 (2001)

2001 Integration of CNTs for logic circuits P. Avouris et al., Science 292, 706 (2001)

2003 Ballistic CNT field effect transistor H. Dai et al., Nature 424, 654 (2003)

2004 Nanotube molecular transporter H. Dai et al., JACS, 126, 6850 (2004)

2006 Nanotube-based sensor M. Strano et al. Science 311, 508 (2006)

Recommended review book: Carbon Nanotubes: Synthesis, Structure, Properties, and Applicationsby M. S. Dresselhaus, G. Dresselhaus, and P. Avouris

Birck Nanotechnology Center Nanoscale Transport Research Group 9

Carbon Nanotubes (CNTs)• Structure

– Formed from the hexagonal graphene carbon structure

– Can form single-wall (SWNT) or multi-wall (MWNT) structures

– Ends (tips) can be open or closed (capped)

– High aspect ratio (length = ~1000 x diameter)

Birck Nanotechnology Center Nanoscale Transport Research Group 10

Carbon Nanotubes (CNTs)• Properties

– Mechanical: Young’s modulus ~1 TPa (5X steel) (Treacy et al. 1996)

– Electrical: Metallic or semiconductor behavior, depending on wall structure of SWNTs, and high conductivity

– Thermal: Room-temperature thermal conductivity 3000 W/mK (8X copper) - similar to diamond

– Chemical: high storage capacity

Birck Nanotechnology Center Nanoscale Transport Research Group 11

Overview

• Nanotechnology

• CNT Synthesis

• CNT Applications

• My Perspective

Birck Nanotechnology Center Nanoscale Transport Research Group 12

CNT Synthesis• Heterogeneous catalysis

– Carbon atoms: gas to solid

– Catalyst precursor metal deposition• E-beam evaporation at 7x10-7 Torr

• 20nm Cr underlayer used for adhesion and prevention of catalyst poisoning

• Varying Ni catalyst thicknesses: 5nm, 10nm, 20nm

SiCr

Ni

Birck Nanotechnology Center Nanoscale Transport Research Group 13

CNT Synthesis• Fe/dendrimer catalyst (wet chemistry based)Fe3+/G4-NH2composite

Fe2O3 nanoparticles

Amama, et al., 2006, "Dendrimer-templated Fe nanoparticles for the growth of single-wall carbon nanotubes by plasma-enhanced CVD", Journal of Physical Chemistry B, Vol.110, pp. 10636-10644.

AFM images of Fe2O3 nanoparticles

Birck Nanotechnology Center Nanoscale Transport Research Group 14

MPCVD System

1.5kW and 2.5GHzMicrowave generator

Dual wavelengthpyrometer

Vacuum chamber

75 mm of stage translation

Seki Technotron Corp.AX5200 Series

H2 – 1000cm3/minCH4 - 10cm3/min

DC bias:0 – 600 V; 0 – 1.7 A

Stage temperature control with heating

up to 1000˚C

Birck Nanotechnology Center Nanoscale Transport Research Group 15

MPCVD System

Plasma

Suceptor

RF Power Supply

Pump

CH4 H2 N2

Microwave Generator

Puck

Cooling Water Line

Loading Window

Mass Flow Controllers

Birck Nanotechnology Center Nanoscale Transport Research Group 16

CNT Synthesis• Growth process

– Samples placed on molybdenum puck

– Chamber evacuated to 0.7 Torr for 5 min.

– Supplied with H2 at 50 sccm and 10 Torr

– Susceptor temperature set to 700˚C

– Plasma ignited at 500W for 2 min.

– Supplied with CH4 at 10 sccm introduced for 10 min.

Nanoparticle aggregation

Si(100)

SiO2

Ni or Fe film deposition

Anneal @ 700oC H2

Nanoparticle aggregation

Si(100)

SiO2

Ni or Fe film deposition

Anneal @ 700oC H2

Birck Nanotechnology Center Nanoscale Transport Research Group 17

CNT Synthesis

Birck Nanotechnology Center Nanoscale Transport Research Group 18

SiO2

Ti layer

Fe2O3nanoparti

cles

CNT Synthesis

Fe Ni Co

Birck Nanotechnology Center Nanoscale Transport Research Group 19

CNT Synthesis

100 nm

10 nm

10 nm

200 nm

250°C, 0V 900°C, 0V

250°C, 0V

900°C, 0V 250°C, 0V 900°C, 0V

Birck Nanotechnology Center Nanoscale Transport Research Group 20

Effects of Inlet Gas Compositionon MWCNT Diameter

0 5 10 15 200

10

20

30

40

50

60Di

amet

er [n

m]

Inlet CH4 Volume Fraction [%]

20nm Ni Catalyst 10nm Ni Catalyst 5nm Ni Catalyst

Garg, Kim et al., “Effects of Feed Gas Composition and Catalyst Thickness on Carbon Nanotube and Nanofiber Synthesis by Plasma Enhanced Chemical Vapor Deposition”, Journal of Nanoscience and Nanotechnology, 2008.

Birck Nanotechnology Center Nanoscale Transport Research Group 21

0 5 10 15 200

10

20

30

40

50

60Di

amet

er [n

m]

Ni Catalyst Thickness [nm]

5.9% CH4 11.1% CH4 20% CH4

Effects of Catalyst Layer Thicknesson MWCNT Diameter

Garg, Kim et al., “Effects of Feed Gas Composition and Catalyst Thickness on Carbon Nanotube and Nanofiber Synthesis by Plasma Enhanced Chemical Vapor Deposition”, Journal of Nanoscience and Nanotechnology, 2008.

Birck Nanotechnology Center Nanoscale Transport Research Group 22

Overview

• Nanotechnology

• CNT Synthesis

• CNT Applications

• My Perspective

Birck Nanotechnology Center Nanoscale Transport Research Group 23

CNT Applications• Biosensor material

– Enzymatic biosensors: immobilization of enzyme on CNTs

– Glucose / glucose oxidase• Electrons formed and collected amperometric

e-

glucosegluconicacid

Pt

Schematic diagram of the glucose/glucose oxidase reaction (adapted from Sotiropoulou and Chaniotakis, 2003).

Birck Nanotechnology Center Nanoscale Transport Research Group 24

CNT Applications• Integration of CNT sample with PDMS cell

Birck Nanotechnology Center Nanoscale Transport Research Group 25

Fluorescence intensity result for BSA-FITC immobilized Sample #1 - #3

0 100 200 300 400 500 600 700 800 900 10000

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Num

ber o

f Pix

els

Fluorescence Intensity [A.U.]

Sample #1 - autofluorescence check - 1sec exp Sample #1 - FITC BSA - 1 sec exp Sample #2 - autofluorescence check - 1sec exp Sample #2 - FITC BSA - 1 sec exp Sample #3 - autofluorescence check - 1sec exp Sample #3 - FITC BSA - 1 sec exp

Sample 1

Sample 2

Sample 3

-100V Bias

Kim et al., “Effects of Carbon Nanotube Structure on Protein Adsorption”, Proceedings of International Mechanical Engineering Congress and Exposition 2005, IMECE2005-81391, Orlando, Florida, USA.

Protein Adsorption on CNTs

Birck Nanotechnology Center Nanoscale Transport Research Group 26

Protein Adsorption on CNTs

10 μm

10 μm

10 μm

10 μm

10 μm

10 μm

10 μm

10 μm

10 μm

10 μm

10 μm

10 μm

10 μm

10 μm

10 μm

10 μm

0V -100V -200V -300V

250 °C 550 °C

700 °C 900 °C

Birck Nanotechnology Center Nanoscale Transport Research Group 27

Characterization: SEMs• Estimation of CNT surface area

d s

h

Birck Nanotechnology Center Nanoscale Transport Research Group 28

Characterization: Raman Spectroscopy

1000 1200 1400 1600 1800 2000

0

500

1000

1500

2000

2500

3000

3500 0V, 250oC

Inte

nsity

[A.U

.]

Raman Shift [cm-1]1000 1200 1400 1600 1800 2000

0

1000

2000

3000

4000

5000

6000

7000 0V, 550oC

Inte

nsity

[A.U

.]

Raman Shift [cm-1]

1000 1200 1400 1600 1800 2000

0

2000

4000

6000

8000

10000

12000

Raman Shift [cm-1]

0V, 700oC

Inte

nsity

[A.U

.]

1000 1200 1400 1600 1800 2000

0

2000

4000

6000

8000

10000 0V, 900oC

Inte

nsity

[A.U

.]

Raman Shift [cm-1]

D-band peak at around 1300 cm-

1 (amorphous carbon)

G-band peak at around 1600 cm-

1 (well graphitized structure)

Intensity of the G-band relative to the D-band (IG/ID) calculated to assess quality of CNTs (Amama et al.,

2007, Eklund et al., 1995)

Birck Nanotechnology Center Nanoscale Transport Research Group 29

Current per CNT Area vs Raman

0.3 0.4 0.5 0.6 0.7 0.8

0.0

1.0x10-8

2.0x10-8

3.0x10-8

4.0x10-8

5.0x10-8 0V Bias -100V Bias -200V Bias -300V Bias

Curre

nt p

er C

NT A

rea

[A/m

m2 ]

IG/ ID RatioKim et al., 2009, “Preferential Biofunctionalization of Carbon Nanotubes Grown by Microwave

Plasma-Enhanced CVD”, submitted to Journal of Physical Chemistry C.

Birck Nanotechnology Center Nanoscale Transport Research Group 30

Protein Adsorption on CNTs

Birck Nanotechnology Center Nanoscale Transport Research Group 31

Protein Adsorption on CNTs• Demonstration of successful protein adsorption

• Nanostructure found to profoundly affect degree of protein adsorption– SEM/TEM/Raman

– Cyclic voltammetry

More defect sites and higher levels of amorphous carbon lead to better protein adsorption (higher negative bias voltage, lower calcination temperatures)

Large CNT area, large number of defect sites per CNT area is best

Birck Nanotechnology Center Nanoscale Transport Research Group 32

CNT Applications• Vapor chambers

– Phase change phenomena

– Wicking of working fluid

– Micrometer sized mesh

BULK FEEDING WICK

METALLIZED CNT EVAPORATOR

Kim, Weibel et al., 2010, “Thermal Performance of Carbon Nanotube Enhanced Vapor Chamber Wicks”, submitted to 14th International Heat Transfer Conference.

Birck Nanotechnology Center Nanoscale Transport Research Group 33

CNT Applications• Why CNTs?

– Good thermal interface characteristics

– High inherent thermal conductivity

– Wicking capability• Thinning out of liquid layer for improved evaporation

Substrate

LiquidCNTs

Kim, Weibel et al., 2010, “Thermal Performance of Carbon Nanotube Enhanced Vapor Chamber Wicks”, submitted to 14th International Heat Transfer Conference.

Birck Nanotechnology Center Nanoscale Transport Research Group 34

Vapor Chamber Wicks• Integration of copper mesh with Cu-Mo-Cu

substrate

• Catalyst metal deposition

• Growth of CNTs in MPCVD

Kim, Weibel et al., 2010, “Thermal Performance of Carbon Nanotube Enhanced Vapor Chamber Wicks”, submitted to 14th International Heat Transfer Conference.

Birck Nanotechnology Center Nanoscale Transport Research Group 35

Vapor Chamber Wicks(a) (b)

(c) (d)

Kim, Weibel et al., 2010, “Thermal Performance of Carbon Nanotube Enhanced Vapor Chamber Wicks”, submitted to 14th International Heat Transfer Conference.

Birck Nanotechnology Center Nanoscale Transport Research Group 36

Vapor Chamber Wicks

Birck Nanotechnology Center Nanoscale Transport Research Group 37

Vapor Chamber Wicks

Kim, Weibel et al., 2010, “Thermal Performance of Carbon Nanotube Enhanced Vapor Chamber Wicks”, submitted to 14th International Heat Transfer Conference.

• Thermal performance

Birck Nanotechnology Center Nanoscale Transport Research Group 38

Vapor Chamber Wicks• Thermal performance

– Effective in dissipating upwards of 500 W/cm2 at low levels of superheat without any observed dryout or CHF

– Positive bias, nominal thickness of Cu coating strongly influence level of superheat and wick thermal resistance

denser growth of CNTs, thicker Cu coating leading to better performance

Birck Nanotechnology Center Nanoscale Transport Research Group 39

Overview

• Nanotechnology

• CNT Synthesis

• CNT Applications

• My Perspective

Birck Nanotechnology Center Nanoscale Transport Research Group 40

My Perspective• Mechanical engineering

– Ph.D., Purdue University, 2008

– M.S., KAIST, 2002

– B.S., Korea University, 2000

• Engineering devices using CNTs– Performance is driven by structure

– Ability to control structure

Growth Parameters CNT Structure Function

Birck Nanotechnology Center Nanoscale Transport Research Group 41

My Perspective• Challenges

– Mass production

– Characterization of properties

– Increased control over geometry

– Optimization of growth parameters

– Integration with engineering devices

Growth Parameters CNT Structure Function

Birck Nanotechnology Center Nanoscale Transport Research Group 42

Thank you!!

Questions ?

Comments !