Carbohydrates. Structure of Carbohydrates Properties of Carbohydrates Most abundant class of organic...

54
Carbohydrates

Transcript of Carbohydrates. Structure of Carbohydrates Properties of Carbohydrates Most abundant class of organic...

Carbohydrates

Structure of Carbohydrates

O

HO

CH2OH

OH

OH

O

CH2OH

OH

OH

OH

O

O

HO

CH2OH

OH

OH

O—HO

H—O

CH2OH

OH

OH

OH

H2O

Sugars OligosaccharidesPolysaccharides

Properties of Carbohydrates

• Most abundant class of organic molecules

• Source: Photosynthesis• Classification

– Monosaccharides• Stereoisomers• Aldehydes (Aldose) or Ketones (Ketose)• Number of Carbons (ie 3=triose; 6=hexose)• Combined: Aldotriose/Ketotetrose

– Polymers• Oligosaccharides (2- ~20 sugars)• Polysaccharides (> ~20 sugars)

Biological Roles of Carbohydrates

• Energy source• Energy storage• Cell walls• Recognition events

– Between proteins (targeting)– Between cells

• Signalling• Components of other biological

molecules– Antibiotics– Enzyme cofactors– Nucleic Acids

Monosaccharides(Sugars)

Classes of Monosaccharides

C

C

CH2OH

H O

H OH

CH2OH

C

CH2OH

O

D-Glyceraldehyde Dihydroxyacetone

Aldoses(Aldehydes)

Ketoses(Ketones)

Chirality

C

C

CH2OH

H O

H OH

D-Glyceraldehyde

C

C

CH2OH

H O

OH H

L-Glyceraldehyde

D- versus L- determined by chirality of highest number carbon (from aldehyde or ketone)

Figure 8-1

Aldoses

Figure 8-1

Aldoses

Figure 8-2

Ketoses

Figure 8-2

Ketoses

Epimers(stereoisomers differing by configuration

of only one of several chiral centers)

C

C

H O

H

C

C

H O

H OH

CH2OH

CHO H

CH OH

CHO H

C

C

H O

H OH

CH2OH

CHO H

CH OH

CH OH

OH

CH2OH

CHO H

CHO H

CH OH

D-Galactose (gal)D-Glucose (glc) D-Mannose (man)

Epimers(stereoisomers differing by configuration

of only one of several chiral centers)

C

C

H O

H

C

C

H O

H OH

CH2OH

CHO H

CH OH

CHO H

C

C

H O

H OH

CH2OH

CHO H

CH OH

CH OH

OH

CH2OH

CHO H

CHO H

CH OH

D-Galactose (gal)D-Glucose (glc) D-Mannose (man)

Enantiomers(mirror images)

C

C

H O

HO H

CH2OH

CH OH

CHO H

CHO H

C

C

H O

H OH

CH2OH

CHO H

CH OH

CH OH

L-GlucoseD-Glucose

Mutarotation

Creation of new chiral center

Formation of Hemiacetal

O

CR H

+

..

O

C

O

HR

R1

H

..+

Chiral

H

H R1

O

H

Formation of Hemketal

O

CR R2

O

C

O

R2R

R1

H

Chiral

..

..

+

+R1H

O

H

H

Anomeric Carbon Atom

MutarotationReversible

Creation of new asymmetric center

Cyclization of D-Glucose

Anomers

• Anomeric carbon atom– Most oxidized carbon atom– Shares electrons with 2 oxygen atoms

-configuration has -OH on opposite side of ring from CH2OH group at chiral center that designates D- or L-

Cyclization of D-Fructose(biologically relevant forms)

CH2OH

C

O

H OH

CH2OH

CHO H

CH OH

CHOCH2 CH2OH

OH

OH

OH

HOCH2 OH

CH2OH

OH

OH

O O

D-Fructose -D-Fructose-D-Fructose

Nomenclature

O

pyran

O

f uran

Pyranoses Furanoses

Examples of Nomenclature

-D-glucopyranose

-D-fructofuranoseConfiguration of anomeric carbon

Configuration of sugar

Sugarprefix

RingType*not required

Anomeric carbon modification:ose: reducingoside: non-reducing

Cyclization of D-Fructose(biologically relevant forms)

CH2OH

C

O

H OH

CH2OH

CHO H

CH OH

CHOCH2 CH2OH

OH

OH

OH

HOCH2 OH

CH2OH

OH

OH

O O

D-Fructose -D-Fructose-D-Fructose

Figure 8-5

Chair Conformations of -D-glucopyranose

Chair and Boat Forms

Equitorial and Axial Substituents

Steric Crowding: equitorial more stable

Equatorial Axial

Derivatives of Monosaccharides

Phosphate Esters

OO OH

OH

OH

HO

OH

CH2OPO32–

OH

OH

CH2OPO32–

-D-Fructose-1,6-bisphosphate (Fru-1,6-bisP)

-D-Glucose-6-P (Glc-6-P)

=O3POCH2

CH2OH

C O

CH2OPO32–

C

C OHH

OH

CH2OPO32–

C

C OHH

OH

C OHH

CH2OPO32–

D-Erythrose4-phosphate (E4P)

D-Glyceraldehyde 3-phosphate (G3P)

Dihydroxyacetone phosphate (DHAP)

Deoxy Sugars

O

OH

OH

O

OH

OH

2-Deoxyribose (dRib)

Deoxyribose 5-phosphate (dRib-5-P)[Deoxy--D-ribof uranose 5-phosphate]

HOCH22–O3POCH2

Note: 5-membered ring form is used in biological systems

Amino Sugars(e.g. GlcNAc-6-P)

O OH

NH

OH

HO

CH2OP

C

H3C O

N-Acetyl-D-glucosamine 6-phosphate

Sugar Alcohols

C

CH OH

CH2OH

CH OH

CH OH

CH2OH

CH OH

CH2OH

CH OH

CH OH

OH

D-Ribose Ribitol

CH2OH

CH OH

CH2OH

CHO H

CH OH

CH OH

C

C

H O

H OH

CH2OH

CHO H

CH OH

CH OH

D-Glucose Sorbitol

Glycosides

Structure of Glycosides

PolymerizationMonomers(Sugars)

Polymers(Disaccharides)

(Oligosaccharides)(Polysaccharides)

NOTE: linear and branched polymers

Glycosidic Linkages (glycoside)

O

CH2OH

OCH3

OH

OH

HO

Acetal

Stable: no mutarotation

Non-reducing sugar (no free anomeric C atom)

Nomenclature

O

CH2OH

OCH3

OH

OH

HO

O

CH2OH

OH

OH

OH

CH3O

OHOCH2 OCH3

CH2OH

OH

HO

Optional

[Non-reducing][Reducing][Non-reducing]

Methyl--D-Fructofuranoside

4-O-Methyl--D- Glucopyranose

O-Methyl--D-Glucopyranoside

Reducing test

• Free Aldehydes are reductants

• If free to mutarotate sugar is a reductant– Must have only –OH

at anomeric carbon

Cupric oxidebrick-red

precipitate

Cu2O

Disaccharides

Sucrose (non-reducing)

O

CH2OH

OH

OH

HOO

OHOCH2

CH2OH

OH

OH

OHOCH2 OH

CH2OH

OH

OH

-D-f ructose

-D-glucopyranosyl-(l __> 2)--D-f ructofuranoside

OR: Glc(α1 β2)Fru

Sucrose

O

CH2OH

OH

OH

HOO

OHOCH2

CH2OH

OH

OH

OHOCH2 OH

CH2OH

OH

OH

-D-f ructose

-D-glucopyranosyl-(l __> 2)--D-f ructofuranoside

OR: Glc(α1 β2)Fru

-Maltose

O

CH2OH

OH

OH

HOO

O

CH2OH

OH

OH

OH

-D-glucopyranosyl-(l __> 4)--D-glucopyranose

Glc(α14)Glc

-Lactose

Gal(β14)Glc

Nomenclature

1. Recognize individual monosaccharides2. Drop the –se and add root for rings

– 6 member: pyran– 5 member: furan

3. Attach:– ose: can mutarotate– oside: canNOT mutarotate– osyl: not terminal residue

4. Indicate carbon to carbon number linkage (##)

5. Label each residue with D or L and α or β

Oligosaccharides

• Generally complex– Heteropolymers– Branched

• Various Cellular Functions– Receptors– Antigens– Signal transduction– Trafficking

O-linked Oligosaccharides(serine/threonine)

N-linked Oligosaccharides(asparagine)

Sugar groups on glycoproteins frequently function in recognition

Polysaccharides

• Simpler structures– Homopolymers– Less branching

• Limited Cellular Functions– Structural/Protective– Energy Storage

Linear Polysaccharides

reducing end (RE)non-reducing end (NRE)

glycosidic linkages

Branched Polysaccharides

RE

NRE

glycosidic linkages

Functions of Polysaccharides

• Structural - e.g. plant cell walls, cement between cells (animals): • -linkages stable to enzymatic cleavage

• Storage - e.g. glycogen as energy reserves:• -linkages are readily cleaved

• Potential osmotic problem

• Accessibility for energy production -linkages

• Branching

Cellulose(plant cell walls)

O

CH2OH

O OH

OH

O

O

CH2OH

OH

OH

O

-(1___>4)

Chitin(1—>4)-linked homopolymer of

N-acetylglucosamine

Exoskeletin of invertebrates (e.g. crustacians, insects, and spiders)

Cell wall (most fungi and some algae)

Glycogen(storage)

Linear: α14Branches: α16

O

CH2OH

HO O

OH

OH

O

O

CH2OH

OH

OH

O

CH2OH

HO O

OH

OH

O

CH2OH

OH

OH

O

CH2

O

OH

OH

O

CH2OH

OH

OH

OHO

Starch(plants)

linear

branched (similar to glycogen, but fewer branches)