Can$we$eliminate$importantbacterial$pathogens$with ......Human Neisseria meningitidis meningitis,...

29
Can we eliminate important bacterial pathogens with proteinbased vaccines? Engineered antigens derived from bacterial transferrin receptors Dr. Tony Schryvers (University of Calgary) Vaccine Innovation Conference May 26, 2015

Transcript of Can$we$eliminate$importantbacterial$pathogens$with ......Human Neisseria meningitidis meningitis,...

Page 1: Can$we$eliminate$importantbacterial$pathogens$with ......Human Neisseria meningitidis meningitis, sepsis Neisseria gonorrhoeae gonorrhea Haemophilus influenzae meningitis, sepsis Haemophilus

Can  we  eliminate  important  bacterial  pathogens  with  protein-­‐based  vaccines?    

Engineered  antigens  derived  from  bacterial  transferrin  receptors  

Dr.  Tony  Schryvers  (University  of  Calgary) Vaccine  Innovation  Conference May  26,  2015

Page 2: Can$we$eliminate$importantbacterial$pathogens$with ......Human Neisseria meningitidis meningitis, sepsis Neisseria gonorrhoeae gonorrhea Haemophilus influenzae meningitis, sepsis Haemophilus

Host-­‐Restricted  Upper  Respiratory  Tract  Pathogens

Gram-­‐Negative  Species  

• Neisseria  meningitidis  • Haemophilus  influenzae  • Moraxella  catarrhalis  

Gram-­‐Positive  Species  

• Streptococcus  pneumoniae

-­‐  Responsible  for  20-­‐25%  of  deaths  <  5  yrs

-­‐  Cause  of  most  common  bacterial  infection

Common  Features  • highly  host-­‐adapted  &  host  

specific  •  URT  only  reservoir  –  

transmission  by  respiratory  route  

• are  naturally  transformable  • ‘horizontal’  gene  transfer  

contributes  to  genetic  and  antigenic  variation  

• challenge  to  develop  a  broadly  protective  vaccines

Page 3: Can$we$eliminate$importantbacterial$pathogens$with ......Human Neisseria meningitidis meningitis, sepsis Neisseria gonorrhoeae gonorrhea Haemophilus influenzae meningitis, sepsis Haemophilus

Non-Invasive Invasive

Bacterial  Respiratory  Tract  Pathogens

• Responsible  for  a  spectrum  of  invasive  and  non-­‐invasive  infections  

• Colonization  precedes  infection  

• Bacteria  causing  invasive  infection  possess  polysaccharide  capsule  

S.  pneumoniaeN.  meningitidisM.  catarrhalisH.  influenzae

 nontypeable

Sinusitis

Ear Infection

 nontypeable

Pneumonia

Meningitis

Pneumonia

type  b

type  b

type  b

Sepsis

Page 4: Can$we$eliminate$importantbacterial$pathogens$with ......Human Neisseria meningitidis meningitis, sepsis Neisseria gonorrhoeae gonorrhea Haemophilus influenzae meningitis, sepsis Haemophilus

0

23

45

68

90

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

vaccine

Type b H. influenzae (UK) 1992

S. pneumoniae PCV7 – 7 serotypes

(Calgary) 2002

Conjugate  Capsular  Vaccines

Reduce  Infection  by   Targeted  Serotypes  

Vaccine serotypes

Page 5: Can$we$eliminate$importantbacterial$pathogens$with ......Human Neisseria meningitidis meningitis, sepsis Neisseria gonorrhoeae gonorrhea Haemophilus influenzae meningitis, sepsis Haemophilus

Conjugate  Capsular  Vaccines

• Designed to prevent invasive infection • Studies demonstrate that systemic vaccination

results in: – elimination of targeted serotypes from mucosal

carriage – disease reduction in non-vaccinated populations

0%

5%

10%

15%

20%

Spring '03 Spring '04 Spring '0512 months 18 months4.5 years

Carriage % Children – vaccine types

0

15

30

45

60

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

All SerotypesPCV7 Serotypesnon-PCV7 Serotypes

Invasive Disease Adults > 65

Page 6: Can$we$eliminate$importantbacterial$pathogens$with ......Human Neisseria meningitidis meningitis, sepsis Neisseria gonorrhoeae gonorrhea Haemophilus influenzae meningitis, sepsis Haemophilus

Conjugate  Capsular  Vaccines

• Highly specific immunity • reduction in carriage by vaccine serotypes coupled

with increase in non-vaccine serotypes

0%

5%

10%

15%

20%

Spring '03 Fall '03 Spring '04 Fall '04 Spring '05 Fall '0512 months 18 months 4.5 years

0%

5%

10%

15%

20%

Spring '03 Spring '04 Spring '05

12 months 18 months4.5 years

% Children – vaccine types % Children – non- vaccine types

Calgary – CASPER

Page 7: Can$we$eliminate$importantbacterial$pathogens$with ......Human Neisseria meningitidis meningitis, sepsis Neisseria gonorrhoeae gonorrhea Haemophilus influenzae meningitis, sepsis Haemophilus

Conjugate  Capsular  Vaccines

• Highly specific immunity - reduction in disease by vaccine serotypes coupled with increase in non-vaccine serotypes

0

75

150

225

300

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

PCV719AOther Vaccine PreventableNon-Vaccine PreventableUnknown

vaccine

Canada IMPACT

Page 8: Can$we$eliminate$importantbacterial$pathogens$with ......Human Neisseria meningitidis meningitis, sepsis Neisseria gonorrhoeae gonorrhea Haemophilus influenzae meningitis, sepsis Haemophilus

Conjugate  Capsular  Vaccines

PROS  • Effective  reduction  in  disease  by  strains  expressing  targeted  

polysaccharide  capsules  • Reduction  in  colonization  led  to  decreased  transmission  and  reduction  in  disease  in  non-­‐immunized  (herd  effect)  

CONS  • Not  effective  against  other  capsular  types  –  may  result  in  disease  by  other  types  (capsule  switching)  

• Not  effective  for  non-­‐immunogenic  capsular  types  (group  B  meningococci)  

Development  of  broadly  cross-­‐protective  vaccines  may  need  to  target  protein  antigens

Page 9: Can$we$eliminate$importantbacterial$pathogens$with ......Human Neisseria meningitidis meningitis, sepsis Neisseria gonorrhoeae gonorrhea Haemophilus influenzae meningitis, sepsis Haemophilus

Iron  Homeostasis:    Role  of  Transferrin  (Tf)

• Tf  shuttles  iron  within  body  to  cells  requiring  iron  (Fe)  • Tf  is  normally  only  partially  saturated  • Tf  keeps  the  level  of  free  Fe  below  that  needed  for  

growth  of  pathogens  

• Tf  is  a  critical  source  of  iron  during  invasive  infection

• There  is  limited  information  regarding  iron  homeostasis  on  mucosal  surfaces  

• Tf  known  to  be  critical  iron  source  on  the  mucosl  surface  for  some  bacteria  (Neisseria  gonorrhoeae,  Actinobacillus  pleuropneumoniae)

Page 10: Can$we$eliminate$importantbacterial$pathogens$with ......Human Neisseria meningitidis meningitis, sepsis Neisseria gonorrhoeae gonorrhea Haemophilus influenzae meningitis, sepsis Haemophilus

Human Neisseria meningitidis meningitis, sepsis

Neisseria gonorrhoeae gonorrhea

Haemophilus influenzae meningitis, sepsis

Haemophilus influenzae (NT) otitis media, COPD, pneumonia

Moraxella catarrhalis otitis media, COPD, pneumonia

Cattle Sheep Goat Mannheimia haemolytica BRD (shipping fever)

Pasteurella multocida BRD

Histophilus somni BRD, invasive disease

Moraxella bovis pinkeye

Pasteurella trehalosi sepsis / RD

Pig Actinobaccilus pleuropneumoniae pneumonia

Haemophilus parasuis Glasser’s disease (invasive disease & pneumonia)

Actinobacillus suis sepsis, hemorrhagic/embolic lesions of lung

Bacterial Transferrin Receptors

Page 11: Can$we$eliminate$importantbacterial$pathogens$with ......Human Neisseria meningitidis meningitis, sepsis Neisseria gonorrhoeae gonorrhea Haemophilus influenzae meningitis, sepsis Haemophilus

FbpA

TbpA

FeFbpB/C

TonB

ExbBExbD

TbpB

Tf

Receptor-­‐mediated  iron  acquisition  from  transferrin  (Tf)

• Surface  lipoprotein,TbpB  (transferrin  binding  protein  B)  captures  Fe  loaded  Tf  

• TbpB  transfers  Fe-­‐Tf  to  TbpA,  an  integral  outer  membrane  protein  

• TbpA  removes  Fe  from  Tf  and  transports  Fe  across  the  outer  membrane  

• FbpA  (ferric  binding  protein  A)  shuttles  iron  to  inner  membrane  complex  

• FbpBC  inner  membrane  complex  transports  Fe  into  the  cell  

Page 12: Can$we$eliminate$importantbacterial$pathogens$with ......Human Neisseria meningitidis meningitis, sepsis Neisseria gonorrhoeae gonorrhea Haemophilus influenzae meningitis, sepsis Haemophilus

TbpB Vaccines – A Brief History

1990:  patent  on  Tf/Lf  receptors  filed  

Meningococcal  Vaccines:  • 1990  Pasteur  Merieux  (currently  Sanofi  Aventis)  licensed  Tbps    • 1990-­‐1998  native  TbpB  shown  to  be  immunogenic  and  protective  in  mice/rabbits,  3  TbpB  variants  provide  broad  coverage  

• 1998  human  Phase  I  clinical  trial  (w/o  adjuvant)  -­‐  disappointing  results  • 2001  license  abandoned  

Animal  Vaccines:  • recombinant  proteins  tested  directly  in  pigs  and  cattle  Key  Relevant  Research  Findings:  • human  gonococcal  and  pig  experiments  demonstrate  Tbps  critical  for  survival  and  disease  

2001  -­‐2006:  noncompete  clause,  insufficient  funding  2008:  • AHFMR  Team  Grant  &  sabbatical,  structure-­‐based  vaccine  design

Page 13: Can$we$eliminate$importantbacterial$pathogens$with ......Human Neisseria meningitidis meningitis, sepsis Neisseria gonorrhoeae gonorrhea Haemophilus influenzae meningitis, sepsis Haemophilus

TbpB Vaccines - Rationale for Structure-based Antigen Engineering Approach

Hypotheses:    

• host  Tf  binds  to  TbpB  during  systemic  immunization  &  interferes  with  development  of  optimal  protective  response    • explains  poor  performance  in  Phase  I  trial  &  only  moderate  success  for  animal  vaccines  

• solution:  design  non-­‐Tf  binding  antigens  

• TbpBs  bind  to  same  region  of  Tf  requiring  conserved  binding  interface,  antigenic  variation  involves  immunodominant  ‘decoy’  B-­‐cell  epitopes  • solution:  engineer  antigens  with  enhanced  ability  to  induce  cross-­‐protective  immune  response  

• remove  decoy  epitopes  and  preserve  conserved  binding  interface

Page 14: Can$we$eliminate$importantbacterial$pathogens$with ......Human Neisseria meningitidis meningitis, sepsis Neisseria gonorrhoeae gonorrhea Haemophilus influenzae meningitis, sepsis Haemophilus

barrel barrel

barrel

barrel

handle

handle

C-­‐lobe

C-­‐lobe

N-­‐lobe

N-­‐lobe

anchorpeptide

TbpB  Structure  (porcine  pathogen  -­‐  A.  pleuropneumoniae)

Trevor Moraes

Page 15: Can$we$eliminate$importantbacterial$pathogens$with ......Human Neisseria meningitidis meningitis, sepsis Neisseria gonorrhoeae gonorrhea Haemophilus influenzae meningitis, sepsis Haemophilus

Site-­‐Directed  Mutants

Single  mutations  designed  to  reduce/eliminate  Tf  binding.  

Panel  A:     Targeted  residues  

Panels  B  –  G:     Superposed  mutant  and  

wild-­‐type  structures  

Mutations  had  no  effect  on  overall  structure

Page 16: Can$we$eliminate$importantbacterial$pathogens$with ......Human Neisseria meningitidis meningitis, sepsis Neisseria gonorrhoeae gonorrhea Haemophilus influenzae meningitis, sepsis Haemophilus

Site-­‐Directed  Mutants

Single mutation results in dramatic loss in Tf binding  

Affinity binding constants for wild-type andmutant TbpBs

Protein Mutation Loop Kd MethodApH49 TbpB WT 55 nM ITCApH49 TbpB F171A L8 NDB ITCApH49 TbpB WT 44 nM SPRApH49 TbpB F171A L8 TBD SPRApH87 TbpB WT 60 nM SPRApH87 TbpB Y95A L3 585 nM SPRApH87 TbpB Y121A L5 203 nM SPRApH87 TbpB Y174A L8 8.9 uM SPRApH87 TbpB R179E L8 6.1 uM SPRAsH57 TbpB WT 120 nM SPRAsH57 TbpB F63A L1 326 nM SPRAsH57 TbpB F152A L5 495 nM SPRHp5 TbpB WT 21 nM BLIHp5 TbpB Y93 A L3 TBD BLIHp5 TbpB Y117A L5 TBD BLIHp5 TbpB(e4535)

Y167A L8 40uM BLI

Hp5 TbpB W176A L8 TBD BLIHp5 TbpB(e4597)

Y167A,W176A

L8 NDB BLI

TBD – To Be DeterminedNDB – No Detectable BindingITC – isothermal titration calorimetrySPR – surface plasmon resonancesBLI – biolayer interferometry

FIGURE 22

Page 17: Can$we$eliminate$importantbacterial$pathogens$with ......Human Neisseria meningitidis meningitis, sepsis Neisseria gonorrhoeae gonorrhea Haemophilus influenzae meningitis, sepsis Haemophilus

Days  of  Survival

15

6

12

Control Native  TbpB

Mutant  TbpB

Porcillis Glasser

9

3

Mild  or  no  symptoms  or  pathologyModerate  to  severe  symptoms  and  pathology

Survival: Clinical  Symptoms:

Transferrin  Receptor-­‐based  Vaccine

Engineered  mutant  TbpB  is  a  superior  antigen

Mutant  TbpBNative  TbpBPorcillis  GlasserControl

0 24 72 96 120 144 168 312 33648

Hours  after  challenge

%  Survival

20

40

60

80

100

Page 18: Can$we$eliminate$importantbacterial$pathogens$with ......Human Neisseria meningitidis meningitis, sepsis Neisseria gonorrhoeae gonorrhea Haemophilus influenzae meningitis, sepsis Haemophilus

CEAC

AM1

infecteduninfected

wildtype

A B

huCEACAM1 N.  meningitidis

Colonization  of  Humanized  Transgenic  Mice

DAPI

Scott  Gray-­‐Owen

Page 19: Can$we$eliminate$importantbacterial$pathogens$with ......Human Neisseria meningitidis meningitis, sepsis Neisseria gonorrhoeae gonorrhea Haemophilus influenzae meningitis, sepsis Haemophilus

Men  C  Conjugate  Vaccine

Prevents  ColonizationTbpB  and  TbpB  C-­‐lobe

Prevents  Colonization

Page 20: Can$we$eliminate$importantbacterial$pathogens$with ......Human Neisseria meningitidis meningitis, sepsis Neisseria gonorrhoeae gonorrhea Haemophilus influenzae meningitis, sepsis Haemophilus

Factor H binding protein protects against sepsis but not colonization

PorA protects against sepsis but not colonization.

NHBA partially protects against sepsis but not colonization

NadA protects against sepsis and colonization

Prevention  of  Colonization  is  not  a  Common  Feature  of  Protein  Antigens

Invasive disease challenge with H44/76FHbp match

0 12 24 36 480

25

50

75

100

Time (h)

Per

cent

sur

viva

l

AdjuvantBexsero

Invasive disease challenge with SK016PorA match

0 12 24 36 480

25

50

75

100

Time (h)

Per

cent

sur

viva

l

AdjuvantBexsero

Invasive disease challenge with S3446NHBA match

0 12 24 36 480

25

50

75

100

Time (h)

Per

cent

sur

viva

l

AdjuvantBexsero

Invasive disease challege with BuFa 02/03NadA match

Time (h)

Per

cent

sur

viva

l

0 12 24 36 480

25

50

75

100AdjuvantBexsero

Bexse

ro

Adjuva

nt

10

100

1000

detection limit

CFU

per

ani

mal

3 day colonization challenge with H44/76FHbp match

Bexse

ro

Adjuva

nt

10

100

1000

detection limit

CFU

per

ani

mal

3 day colonization challenge with SK016PorA match

Bexse

ro

Adjuva

nt

10

100

1000

detection limit

CFU

per

ani

mal

3 day colonization challenge withS3446NHBA match

Bexse

ro

Adjuva

nt

10

100

1000

detection limit

CFU

per

ani

mal

3 day colonization challenge with BuFa 02/03 APgroup W, NadA match

Page 21: Can$we$eliminate$importantbacterial$pathogens$with ......Human Neisseria meningitidis meningitis, sepsis Neisseria gonorrhoeae gonorrhea Haemophilus influenzae meningitis, sepsis Haemophilus

Engineered TbpB Vaccines

Advantages:  • Tf  receptors  are  essential  for  survival  on  the  mucosal  surface  (N.  

gonorrhoeae,  A.  pleuropneumoniae)  • Engineered  TbpB  antigens  are  superior  in  inducing  a  protective  

immune  response  in  the  native  host  (H.  parasuis  challenge  experiments)  

• TbpB  (and  TbpB  C-­‐lobe)  are  capable  of  preventing  colonization  in  a  humanized  mouse  model  (unlike  antigens  from  commercial  vaccines)  

• Surrogate  host-­‐pathogen  systems  can  provide  proof  of  concept  Question:  

• Could  a  TbpB-­‐based  vaccine  be  used  eradicate  receptor-­‐containing  bacteria?

Page 22: Can$we$eliminate$importantbacterial$pathogens$with ......Human Neisseria meningitidis meningitis, sepsis Neisseria gonorrhoeae gonorrhea Haemophilus influenzae meningitis, sepsis Haemophilus

TbpB  diversity  transcends  species  barriers  –  single  vaccine  for  the  three  porcine  pathogens.  

Phylogenetic  groups  defined  by  structural  features  and  interaction  with  Tf  

Cross-­‐reactivity  analysis  predicts  small  number  of  engineered  antigens  required  for  broad  cross-­‐protection.

Porcine  Pathogen  TbpBs Sequence  Diversity  of  TbpBs  from  Porcine  Pathogens

Page 23: Can$we$eliminate$importantbacterial$pathogens$with ......Human Neisseria meningitidis meningitis, sepsis Neisseria gonorrhoeae gonorrhea Haemophilus influenzae meningitis, sepsis Haemophilus

Immunization  Experiments  in  Pigs

From  Strain  H49

N-­‐lobe  induces  more  ‘Group/strain  specific’  antibody  response.  

C-­‐lobe  induces  broadly  cross-­‐reactive  immune  response.  

Predicts  that  three  representative  mutant  TbpBs  would  be  capable  of  inducing  a  broadly  cross-­‐reactive  and  cross-­‐protective  response.

-­‐  Group  3-­‐  Group  3-­‐  Group  2-­‐  Group  1

Page 24: Can$we$eliminate$importantbacterial$pathogens$with ......Human Neisseria meningitidis meningitis, sepsis Neisseria gonorrhoeae gonorrhea Haemophilus influenzae meningitis, sepsis Haemophilus

Meningococcal  Vaccine  -­‐  Sequence/Structural  Diversity

Comprehensive evaluation of sequence diversity – intact TbpB & C-lobe.

Two TbpB isotypes (Group 1 vs Group 2-4).

Two antigens selected for immunization experiments (circled in red)

Representative variants selected for analysis of cross-reactivity (arrows).

Paul  Adamiak

C-­‐lobe  Diversity

Intact  TbpB  Diversity

Page 25: Can$we$eliminate$importantbacterial$pathogens$with ......Human Neisseria meningitidis meningitis, sepsis Neisseria gonorrhoeae gonorrhea Haemophilus influenzae meningitis, sepsis Haemophilus

Sequence  Diversity  –  Evaluation  of  Cross-­‐reactivity

Immunization with TbpBs or C-lobes provides reactivity against diverse representative TbpBs.

Antigen:

Tbp  Strain

Jamie  Fegan

Page 26: Can$we$eliminate$importantbacterial$pathogens$with ......Human Neisseria meningitidis meningitis, sepsis Neisseria gonorrhoeae gonorrhea Haemophilus influenzae meningitis, sepsis Haemophilus

TbpB-based Meningococcal Vaccine

 Can  we  eliminate  important  pathogens?  

• TbpB  present  in  some  commensal  Neisseria  sp.  and  in  N.  gonorrhoeae  -­‐  potential  reservoir  for  vaccine  escape  

• overall  diversity  of  Neisseria  TbpBs  modestly  greater  than  meningococcal  TbpBs  (i.e.  limited  number  of  engineered  TbpBs/C-­‐lobes  required)  

• commensal  Neisseria  with  and  without  TbpB  are  similar,  unlikely  to  be  dependent  upon  TbpB  for  iron  (eliminating  TbpB  won’t  eliminate  commensal  Neisseria)  

• require  systematic  approach  for  evaluating  ability  to  induce  complete  cross-­‐protection  -­‐  integrated  vaccine  evaluation  pipeline

Page 27: Can$we$eliminate$importantbacterial$pathogens$with ......Human Neisseria meningitidis meningitis, sepsis Neisseria gonorrhoeae gonorrhea Haemophilus influenzae meningitis, sepsis Haemophilus

Global collection of disease isolates Bioinformatics

analysis of antigen diversity

       

       

Library of antigenic variants

Structural studies

Bacterial killing (SBA)

+ -­‐

URT microbiome Cloning & Expression (SG)

ELISA Assay

immunize

serum

generate strain library

strain library

Engineered antigen

Challenge humanized mice

Integrated  Vaccine  Evaluation  Pipeline

Page 28: Can$we$eliminate$importantbacterial$pathogens$with ......Human Neisseria meningitidis meningitis, sepsis Neisseria gonorrhoeae gonorrhea Haemophilus influenzae meningitis, sepsis Haemophilus

Commercialization

 US  Provisional  Patent  Applications  

• Dec,  2013  • June,  2014  • October,  2014  

 PCT  Patent  Application  

• Dec  2014  

Exploring  Partnerships/Licensing  Agreements

Page 29: Can$we$eliminate$importantbacterial$pathogens$with ......Human Neisseria meningitidis meningitis, sepsis Neisseria gonorrhoeae gonorrhea Haemophilus influenzae meningitis, sepsis Haemophilus

Meningococcal  Transferrin  and  Lactoferrin  Receptors  in  

Colonization,  Infection  and  Disease  Prevention

ALMA  Alberta  Livestock

and  Meat  Agency  Ltd.

Development  of  a  Broad-­‐Spectrum  Porcine  Vaccine  for  Bacterial  Respiratory  

Infections

University  of  Passo  Fundo  (Brazil)  Rafael  Frandoloso

University  of  Leon  (Spain) Cesar  Gutierrez-­‐Martin Elias  Ferri-­‐Rodriguez

Sonia  Martinez-­‐Martinez

Genome  Alberta  ALMA

Disease  Reduction  in  Cattle  by  Elimination  of  

Colonization  by  Pathogens