CANCER IMMUNOTHERAPY Copyright © 2019 GPRC5D is a target ...€¦ · multiplex quantitative...

15
Smith et al., Sci. Transl. Med. 11, eaau7746 (2019) 27 March 2019 SCIENCE TRANSLATIONAL MEDICINE | RESEARCH ARTICLE 1 of 14 CANCER IMMUNOTHERAPY GPRC5D is a target for the immunotherapy of multiple myeloma with rationally designed CAR T cells Eric L. Smith 1,2 , Kim Harrington 3 , Mette Staehr 1 , Reed Masakayan 1 , Jon Jones 3 , Thomas J. Long 3 , Khong Y. Ng 4 , Majid Ghoddusi 3 , Terence J. Purdon 1 , Xiuyan Wang 5 , Trevor Do 3 , Minh Thu Pham 3 , Jessica M. Brown 3 , Carlos Fernandez De Larrea 1,6 , Eric Olson 3 , Elizabeth Peguero 4 , Pei Wang 7 , Hong Liu 7 , Yiyang Xu 7 , Sarah C. Garrett-Thomson 8 , Steven C. Almo 8 , Hans-Guido Wendel 4 , Isabelle Riviere 5 , Cheng Liu 7 , Blythe Sather 3 , Renier J. Brentjens 1,9 * Early clinical results of chimeric antigen receptor (CAR) T cell therapy targeting B cell maturation antigen (BCMA) for multiple myeloma (MM) appear promising, but relapses associated with residual low-to-negative BCMA-expressing MM cells have been reported, necessitating identification of additional targets. The orphan G protein–coupled receptor, class C group 5 member D (GPRC5D), normally expressed only in the hair follicle, was previously identi- fied as expressed by mRNA in marrow aspirates from patients with MM, but confirmation of protein expression remained elusive. Using quantitative immunofluorescence, we determined that GPRC5D protein is expressed on CD138 + MM cells from primary marrow samples with a distribution that was similar to, but independent of, BCMA. Panning a human B cell–derived phage display library identified seven GPRC5D-specific single-chain vari- able fragments (scFvs). Incorporation of these into multiple CAR formats yielded 42 different constructs, which were screened for antigen-specific and antigen-independent (tonic) signaling using a Nur77-based reporter system. Nur77 reporter screen results were confirmed in vivo using a marrow-tropic MM xenograft in mice. CAR T cells incorporating GPRC5D-targeted scFv clone 109 eradicated MM and enabled long-term survival, including in a BCMA antigen escape model. GPRC5D(109) is specific for GPRC5D and resulted in MM cell line and primary MM cytotoxicity, cytokine release, and in vivo activity comparable to anti-BCMA CAR T cells. Murine and cynomolgus cross-reactive CAR T cells did not cause alopecia or other signs of GPRC5D-mediated toxici- ty in these species. Thus, GPRC5D(109) CAR T cell therapy shows potential for the treatment of advanced MM ir- respective of previous BCMA-targeted therapy. INTRODUCTION Antibody-based therapies, including recent advances such as bispecific antibodies (1) and chimeric antigen receptor (CAR) T cell therapies (26), are revolutionizing the treatment of B cell malignancies. Although the management of multiple myeloma (MM) has advanced recently, it is still considered incurable, and the prognosis for patients with multiply relapsed and refractory MM remains grim. Early clinical results with CAR T cell therapies targeting B cell mat- uration antigen (BCMA) are promising (7). However, although BCMA is expressed on most malignant plasma cells, expression is heteroge- neous, potentially leading to variable responses (8). In addition, expres- sion of BCMA on the cell surface varies over time because of g secretase–mediated shedding of the extracellular domain (9); this and potentially other mechanisms may cause therapeutic selection of BCMA-low or BCMA-negative MM plasma cells. BCMA down- regulation has been reported in patients with MM who relapsed after BCMA-targeted CAR T cell therapy (810), similar to relapses after CD19-targeted (1112) and CD22-targeted (13) CAR T cell therapy for B cell malignancies. Developing immunotherapies for additional targets may mitigate antigen loss and effectively treat patients with low or variable BCMA expression. One potential alternative CAR T cell target for MM is the orphan G protein–coupled receptor, class C group 5 member D (GPRC5D). Earlier work discovered GPRC5D expression in two anatomic locations: the hair follicle (1416), considered an immune-privileged site (1719), and the bone marrow from patients with MM (2021). These two latter studies identified GPRC5D mRNA in the unsorted bone marrow of patients with MM; however, the only report to evaluate protein expression on MM samples did not detect it on the surface of MM cells (22). Until now, evidence of GPRC5D protein expression on MM cells and an extensive evaluation of potential “on-target/off-tumor” toxicity remain lacking. Through immunohistochemical analyses, we demonstrate that GPRC5D is expressed on malignant bone marrow plasma cells, whereas normal tissue expression is limited to the hair follicle. We developed and evaluated an optimized, human-derived, GPRC5D-targeted CAR T cell therapy. Using a reporter line that provides a specific readout of signaling from the CAR, we identified CAR designs optimized for spacer length (23) and low antigen-independent (tonic) signaling (2426). Last, we provide preclinical evidence that a GPRC5D-targeted CAR T cell therapy candidate is safe and effective. Despite GPRC5D expression in the hair follicle, we show that anti-cynomolgus and anti-murine cross-reactive GPRC5D CAR T cells do not induce alopecia or cause other clinical signs of damage to the skin in these species. 1 Cellular Therapeutics Center, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. 2 Myeloma Service, Department of Medi- cine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. 3 Juno Therapeutics, A Celgene Company, Seattle, WA 98109, USA. 4 Sloan Kettering Institute, New York, NY 10065, USA. 5 Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. 6 Amyloidosis and Myeloma Unit, Department of Hematology, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, University of Barcelona, 08036 Barcelona, Spain. 7 Eureka Therapeutics, Emeryville, CA 94608, USA. 8 Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA. 9 Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. *Corresponding author. Email: [email protected] Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works by guest on July 4, 2020 http://stm.sciencemag.org/ Downloaded from

Transcript of CANCER IMMUNOTHERAPY Copyright © 2019 GPRC5D is a target ...€¦ · multiplex quantitative...

Page 1: CANCER IMMUNOTHERAPY Copyright © 2019 GPRC5D is a target ...€¦ · multiplex quantitative immunofluorescence (Q-IF) for CD138, BCMA, and GPRC5D on primary bone marrow samples;

Smith et al., Sci. Transl. Med. 11, eaau7746 (2019) 27 March 2019

S C I E N C E T R A N S L A T I O N A L M E D I C I N E | R E S E A R C H A R T I C L E

1 of 14

C A N C E R I M M U N O T H E R A P Y

GPRC5D is a target for the immunotherapy of multiple myeloma with rationally designed CAR T cellsEric L. Smith1,2, Kim Harrington3, Mette Staehr1, Reed Masakayan1, Jon Jones3, Thomas J. Long3, Khong Y. Ng4, Majid Ghoddusi3, Terence J. Purdon1, Xiuyan Wang5, Trevor Do3, Minh Thu Pham3, Jessica M. Brown3, Carlos Fernandez De Larrea1,6, Eric Olson3, Elizabeth Peguero4, Pei Wang7, Hong Liu7, Yiyang Xu7, Sarah C. Garrett-Thomson8, Steven C. Almo8, Hans-Guido Wendel4, Isabelle Riviere5, Cheng Liu7, Blythe Sather3, Renier J. Brentjens1,9*

Early clinical results of chimeric antigen receptor (CAR) T cell therapy targeting B cell maturation antigen (BCMA) for multiple myeloma (MM) appear promising, but relapses associated with residual low-to-negative BCMA-expressing MM cells have been reported, necessitating identification of additional targets. The orphan G protein–coupled receptor, class C group 5 member D (GPRC5D), normally expressed only in the hair follicle, was previously identi-fied as expressed by mRNA in marrow aspirates from patients with MM, but confirmation of protein expression remained elusive. Using quantitative immunofluorescence, we determined that GPRC5D protein is expressed on CD138+ MM cells from primary marrow samples with a distribution that was similar to, but independent of, BCMA. Panning a human B cell–derived phage display library identified seven GPRC5D-specific single-chain vari-able fragments (scFvs). Incorporation of these into multiple CAR formats yielded 42 different constructs, which were screened for antigen-specific and antigen-independent (tonic) signaling using a Nur77-based reporter system. Nur77 reporter screen results were confirmed in vivo using a marrow-tropic MM xenograft in mice. CAR T cells incorporating GPRC5D-targeted scFv clone 109 eradicated MM and enabled long-term survival, including in a BCMA antigen escape model. GPRC5D(109) is specific for GPRC5D and resulted in MM cell line and primary MM cytotoxicity, cytokine release, and in vivo activity comparable to anti-BCMA CAR T cells. Murine and cynomolgus cross-reactive CAR T cells did not cause alopecia or other signs of GPRC5D-mediated toxici-ty in these species. Thus, GPRC5D(109) CAR T cell therapy shows potential for the treatment of advanced MM ir-respective of previous BCMA-targeted therapy.

INTRODUCTIONAntibody-based therapies, including recent advances such as bispecific antibodies (1) and chimeric antigen receptor (CAR) T cell therapies (2–6), are revolutionizing the treatment of B cell malignancies. Although the management of multiple myeloma (MM) has advanced recently, it is still considered incurable, and the prognosis for patients with multiply relapsed and refractory MM remains grim.

Early clinical results with CAR T cell therapies targeting B cell mat-uration antigen (BCMA) are promising (7). However, although BCMA is expressed on most malignant plasma cells, expression is heteroge-neous, potentially leading to variable responses (8). In addition, expres-sion of BCMA on the cell surface varies over time because of g secretase–mediated shedding of the extracellular domain (9); this and potentially other mechanisms may cause therapeutic selection of BCMA-low or BCMA-negative MM plasma cells. BCMA down- regulation has been reported in patients with MM who relapsed after

BCMA-targeted CAR T cell therapy (8, 10), similar to relapses after CD19-targeted (11, 12) and CD22-targeted (13) CAR T cell therapy for B cell malignancies. Developing immunotherapies for additional targets may mitigate antigen loss and effectively treat patients with low or variable BCMA expression.

One potential alternative CAR T cell target for MM is the orphan G protein–coupled receptor, class C group 5 member D (GPRC5D). Earlier work discovered GPRC5D expression in two anatomic locations: the hair follicle (14–16), considered an immune-privileged site (17–19), and the bone marrow from patients with MM (20, 21). These two latter studies identified GPRC5D mRNA in the unsorted bone marrow of patients with MM; however, the only report to evaluate protein expression on MM samples did not detect it on the surface of MM cells (22). Until now, evidence of GPRC5D protein expression on MM cells and an extensive evaluation of potential “on-target/off-tumor” toxicity remain lacking.

Through immunohistochemical analyses, we demonstrate that GPRC5D is expressed on malignant bone marrow plasma cells, whereas normal tissue expression is limited to the hair follicle. We developed and evaluated an optimized, human-derived, GPRC5D-targeted CAR T cell therapy. Using a reporter line that provides a specific readout of signaling from the CAR, we identified CAR designs optimized for spacer length (23) and low antigen-independent (tonic) signaling (24–26). Last, we provide preclinical evidence that a GPRC5D-targeted CAR T cell therapy candidate is safe and effective. Despite GPRC5D expression in the hair follicle, we show that anti-cynomolgus and anti-murine cross-reactive GPRC5D CAR T cells do not induce alopecia or cause other clinical signs of damage to the skin in these species.

1Cellular Therapeutics Center, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. 2Myeloma Service, Department of Medi-cine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. 3Juno Therapeutics, A Celgene Company, Seattle, WA 98109, USA. 4Sloan Kettering Institute, New York, NY 10065, USA. 5Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. 6Amyloidosis and Myeloma Unit, Department of Hematology, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, University of Barcelona, 08036 Barcelona, Spain. 7Eureka Therapeutics, Emeryville, CA 94608, USA. 8Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA. 9Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.*Corresponding author. Email: [email protected]

Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works

by guest on July 4, 2020http://stm

.sciencemag.org/

Dow

nloaded from

Page 2: CANCER IMMUNOTHERAPY Copyright © 2019 GPRC5D is a target ...€¦ · multiplex quantitative immunofluorescence (Q-IF) for CD138, BCMA, and GPRC5D on primary bone marrow samples;

Smith et al., Sci. Transl. Med. 11, eaau7746 (2019) 27 March 2019

S C I E N C E T R A N S L A T I O N A L M E D I C I N E | R E S E A R C H A R T I C L E

2 of 14

On the basis of these results, we anticipate that GPRC5D will be-come an important clinical target for MM immunotherapy.

RESULTSExpression of GPRC5D by MM cellsIn evaluating potential cell surface targets for immunotherapy of MM, we sought to identify antigens with near ubiquitous expression on MM plasma cells and limited expression on essential normal tissue cells. Using the Cancer Cell Line Encyclopedia (CCLE), we evaluated mRNA expression of GPRC5D in silico across >1000 different malig-nant cell lines, including 30 MM cell lines. As a control, we evaluated SDC1 (CD138), a common surface marker of normal and malignant

plasma cells. Although SDC1 is highly expressed in MM cell lines, it is also highly expressed in cell lines from the majority of tumor types, with upper aerodigestive tract tumors having the highest expression (fig. S1A). GPRC5D mRNA was highly expressed in MM cell lines (n = 30), but in contrast to SDC1, no other tumor types exhibited substantial expression (Fig. 1A). Similarly, analysis of data from the Genotype-Tissue Expression (GTEx) database of primary normal (nonmalignant) tissue types demonstrated high expression of SDC1 mRNA in the esophagus, skin, lung, and liver, among other tissues (fig. S1B), whereas GPRC5D mRNA was not highly expressed in any normal tissues aside from the skin, in which it was variably expressed, in agreement with previous reports (14–16). Furthermore, analysis of RNA expression data on human bone marrow samples showed

10

8

6

GP

RC

5D m

RN

A ex

pres

sion

(log 2

RM

A)

4

Multipl

e mye

loma (

30)

Cerebe

llum

Leuk

emia,

othe

r (1)

Lymph

oma D

LBCL (

18)

CML (15

)

Mening

ioma (

3)

Lymph

oma,

other

(28)

Lymph

oma,

Burkitt

(11)

Lymph

oma,

Hodgk

in (12

)

T cell A

LL (1

6)

B cell A

LL (1

5)

Bile du

ct (8)

AML (34

)

Pancre

as (4

4)

Thyroi

d (12

)

Colorec

tal (6

1)

Kidney

(34)

Osteos

arcom

a (10

)

Urinary

tract

(27)

Breast

(58)

Neurob

alstom

a (17

)

Lung

NSC (1

31)

Ewing sa

rcoma (

12)

Prostat

e (7)

Melano

ma (61

)

Upper

aerod

igesti

ve (3

2)

Endom

etrium

(27)

Medull

oblas

oma (

4)

Liver

(28)

Ovary

(51)

Stomac

h (38

)

Glioma (

62)

Lung

, small

cell (

53)

Mesoth

eliom

a (11

)

Esoph

agus

(25)

Soft tis

sue (

21)

Other (

15)

Chond

rosarc

oma (

4)

A

10

2

4

6

8

0

GP

RC

5D m

RN

A ex

pres

sion

[log 2

(FP

KM

+ 0

.1)]

-2

-4

B

Cerebra

l hem

isphe

re

Anterio

r cing

ulate

corte

x (BA24

)

Frontal

corte

x (BA9)

Cortex

Amygda

la

Hippoc

ampu

s

Nucleu

s acc

umbe

ns (b

asal

gang

lia)

Cauda

te (ba

sal g

angli

a)

Putamen

(bas

al ga

nglia

)

Sigmoid

colon

Tibial

nerve

Skelet

al mus

cle

Uterus

Muscu

laris

of es

opha

gus

Gastro

esop

hage

al jun

ction

of es

opha

gus

Hypoth

alamus

Adipos

e

Cervix,

endo

cervi

x

Corona

ry art

ery

Servica

l spin

al co

rd (c-

1)

Substa

ntia n

igra

Ovary

Tibial

arter

y

Mammary

tissu

e

Fallop

ian tu

be

Adipos

e (om

entum

)

Kidney

Left v

entric

le

Cervix,

ectoc

ervix

Adrena

l glan

d

Bladde

r

Who

le blo

od

Skin, s

un ex

pose

d

Skin, n

ot su

n exp

osed

Aortic

arteryTo

nsil

Small in

testin

e

Pancre

asLiv

er

Atrial a

ppen

dage

Vagina

Stomac

h

Prostat

e

Spleen

Cord bl

ood

Thyroi

d

Trans

verse

colon

Pituita

ry

Mucos

a of e

soph

agusTe

stis

Minor s

aliva

ry gla

ndLu

ng

Bone m

arrow

Fig. 1. High expression of GPRC5D mRNA in MM cells and variable expression in skin. (A) mRNA expression of GPRC5D in malignant cell lines (n = 1036; CCLE, accessed in September 2013, Affymetrix). RMA, robust multiarray average; DLBCL, diffuse large B cell lymphoma; CML, chronic myeloid leukemia; ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; NSC, non–small cell. (B) mRNA expression of GPRC5D in normal tissues according to GTEx RNASeq data (GTEx ENSG00000111291.4). The dashed line represents the expression of GPRC5D in CD138-sorted primary MM cells (BLUEPRINT RNA-seq, n = 9). FPKM, fragments per kilobase of transcript per million mapped reads.

by guest on July 4, 2020http://stm

.sciencemag.org/

Dow

nloaded from

Page 3: CANCER IMMUNOTHERAPY Copyright © 2019 GPRC5D is a target ...€¦ · multiplex quantitative immunofluorescence (Q-IF) for CD138, BCMA, and GPRC5D on primary bone marrow samples;

Smith et al., Sci. Transl. Med. 11, eaau7746 (2019) 27 March 2019

S C I E N C E T R A N S L A T I O N A L M E D I C I N E | R E S E A R C H A R T I C L E

3 of 14

that primary malignant and normal plasma cells expressed 1000- and 500-fold more GPRC5D mRNA than B cells from peripheral blood, respectively (Fig. 1B and fig. S1C).

To evaluate potential correlations between GPRC5D expression and clinical outcomes, we analyzed the Multiple Myeloma Research Foundation (MMRF) CoMMpass trial (NCT0145429), a publicly available longitudinal study with accompanying CD138-sorted RNA-seq expression data from 765 patients (research.themmrf.org/; version IA13). A previous investigation of 48 patients independent of the CoMMpass cohort (20) reported that GPRC5D expression above the median correlated with a worse prognosis. Our analysis of the CoMMpass cohort confirms this finding, as GPRC5D expression above the median in this large dataset correlated with shorter progression- free survival (P = 0.0031; fig. S2A). GPRC5D expression did not correlate with International Staging System score or any evaluated common cyto-genetic abnormality (fig. S2, B and C).

Similar to an earlier report (22), we did not identify GPRC5D on MM cells using any commercially available or internally developed flow cytometric reagents. These reagents were incompatible with quan-titation of cellular antigen density. We used protein immunohisto-chemistry (IHC) to evaluate protein expression by primary malignant plasma cells. The specificity of anti-GPRC5D IHC was validated using K562 cells engineered to express GPRC5D and human MM cell lines endogenously expressing GPRC5D (fig. S3). We also performed multiplex quantitative immunofluorescence (Q-IF) for CD138, BCMA, and GPRC5D on primary bone marrow samples; representative images are presented in Fig. 2A. Using a cutoff of ≥50% antigen ex-pression on CD138+ cells, which has been used in some trials of BCMA- targeted CAR T cell therapy (NCT02215967 and NCT02658929), we observed that 65% (54 of 83) of samples have GPRC5D expression above this level, 73% (61 of 83) of samples meet this threshold for BCMA, and 88% (73 of 83) meet this cutoff when expression of either BCMA or GPRC5D is considered (Fig. 2, B and C). GPRC5D ex-pression on CD138 cells was independent of BCMA expression (R2 = 0.156; Fig. 2D).

We examined expression of GPRC5D on normal tissue by immu-nostaining core biopsies of 30 primary tissues, each from three human donors. Of these, 24 did not express GPRC5D protein (table S1); IHC of the tissue types that showed any sign of positive staining was repeated using samples from non-human primates (NHPs) (cynomolgus mon-key; 96% amino acid homology to human; antibody cross-reactive), yielding similar results. Among non–plasma cell normal tissues, IHC was positive in cells from the hair follicle bulb and the peribronchial glands; the hair follicle bulb was the only tissue in which expression was confirmed by RNA-ISH (RNAscope) and quantitative polymerase chain reaction (PCR) (table S1 and Fig. 2E). Results from quantita-tive PCR assessment of expression in skin indicated a weakly posi-tive signal (table S1), consistent with expression being limited to a rare cell type in the skin. These results are in agreement with the GTEx data and previous reports of GPRC5D expression in the hair follicle (14–16).

Development of a GPRC5D-targeted CARTo select and identify GPRC5D-specific single-chain variable frag-ments (scFvs), NIH-3T3 fibroblasts were stably transduced with human GPRC5D cDNA via a retrovirus to generate stable artificial antigen-presenting cells (hGPRC5D-aAPCs). Expression of GPRC5D by these cells was confirmed by flow cytometry, and a highly antigen- expressing subclone was expanded. hGPRC5D-aAPCs were used to

screen scFvs from a human B cell–derived scFv phage display library (screening and validation strategy; Fig. 3A). Ultimately, 32 dis-tinct clones were identified, including light- and heavy-chain com-plementarity-determining regions (CDRs) covering five and three subfamilies, respectively, and with HCDR3 length ranging from 6 to 23 amino acids. The top seven clones that exhibited the highest specific binding to human MM cell lines MM.1S and NCI-H929 but did not bind to GPRC5D-negative cell lines (derived from other hematologic malignancies) were selected for development into CAR constructs. Epitope mapping of a subset of these scFv clones demonstrated diverse epitope binding; all four extracellular do-mains of GPRC5D were bound by at least one of the identified scFvs (Fig. 3B).

To select an scFv for clinical development as a CAR, we engi-neered CARs incorporating all top seven GPRC5D-targeted human scFvs identified above in various structural formats: the variable heavy chain/variable light chain (VH/VL) or VL/VH orientation of each scFv, each with one of three IgG4/IgG2–derived spacer domains of vary-ing lengths [short, hinge only, 12 amino acids; medium, hinge-CH3, 119 amino acids; or long, hinge-CH2-CH3, 228 amino acids, with CH2 modifications to limit Fc receptor binding as previously de-scribed (23)], for a total of 42 CAR constructs. All CARs designed for this initial evaluation contained a CD28 transmembrane do-main and 4-1BB and CD3 signaling domains (Fig. 3C).

Because antigen-independent tonic signaling can impede the overall efficacy of CAR T cell therapy (24–26), we first screened for CARs that conveyed limited tonic signaling. We generated a reporter Jurkat T cell line that expressed red fluorescent protein (RFP) specifically downstream of CD3 signaling. The RFP gene was inserted in-frame downstream of the endogenous NR4A1 (Nur77) gene after a “self- cleaving” T2A element via homologous recombination; RFP expres-sion thus indicates transcription of the immediate early gene NR4A1 (fig. S4), which is not influenced by cytokine-mediated or Toll-like receptor–mediated signals (27). The Nur77-RFP Jurkat T cell line was stably transduced with a bicistronic construct containing GFP and 1 of the 42 CAR constructs described above, and tonic signaling was determined as the percentage of GFP-expressing (CAR-transduced) cells that were also positive for RFP. Results of the assay varied sub-stantially among CAR constructs, and the constructs incorporating human GPRC5D–targeted scFv 109 [GPRC5D(109)] consistently dis-played the least tonic signaling as indicated by this assay (Fig. 3D). Certain CAR constructs that were associated with the most tonic sig-naling in cells expressing such CARs also inhibited growth of the Jurkat reporter cell line and were excluded from further evaluation (120 VH/VL and VL/VH with the short spacer and 123 VL/VH with the medium spacer).

Using the remaining cell lines, we compared the various CARs’ antigen-independent signaling with their antigen-dependent signal-ing via CAR binding to GPRC5D as measured using this reporter system. To assess antigen-specific signaling, the CAR/GFP-modified Jurkat Nur77-RFP reporter cells were cocultured 1:2 with MM.1S myeloma cells, which endogenously express GPRC5D, and RFP was measured after 20 hours. Results of this assay demonstrated that incorporation of a long spacer increased antigen-mediated signaling through the CAR but did not increase antigen-independent (tonic) signaling (Fig. 3E). The GPRC5D(109)-containing CAR in the VL/VH orientation with a long spacer was the most responsive to antigen exposure and displayed the lowest tonic signaling (Fig. 3E; represent-ative flow plots, fig. S4B).

by guest on July 4, 2020http://stm

.sciencemag.org/

Dow

nloaded from

Page 4: CANCER IMMUNOTHERAPY Copyright © 2019 GPRC5D is a target ...€¦ · multiplex quantitative immunofluorescence (Q-IF) for CD138, BCMA, and GPRC5D on primary bone marrow samples;

Smith et al., Sci. Transl. Med. 11, eaau7746 (2019) 27 March 2019

S C I E N C E T R A N S L A T I O N A L M E D I C I N E | R E S E A R C H A R T I C L E

4 of 14

In vitro activity of GPRC5D-targeted CAR T cell therapyWe tested the in vitro activity of primary human T cells modified to express 4-1BB–containing GPRC5D(109) CAR T cells after coculture with human MM cell lines with a range of GPRC5D mRNA expression (fig. S5A) and primary MM cells. After a 24-hour coculture, these cells

efficiently induced cytotoxicity in OPM2 human MM cells (which express endogenous BCMA and GPRC5D) across a broad range of effector–to–tumor cell (E:T) ratios, from 80% at 0.03:1 E:T ratio to 98% at 1:1 E:T ratio, comparable to coculture with BCMA-targeted CAR T cells (28) (Fig. 4A), with cytotoxicity from both MM antigen-targeted

Fig. 2. Expression of GPRC5D protein on primary MM cells and in the hair follicle. (A) Representative immunostaining of primary myeloma bone marrow for CD138, BCMA, and GPRC5D. Scale bars, 50 m (black and white) and 20 m (magenta). (B) Percentage of patient bone marrow samples with >50% of CD138+ cells expressing the indicated antigen(s) (Ag; n = 83). (C) Automated Q-IF in 83 bone marrow samples from patients with MM stained as in (A). Each column represents an individual patient sample. (D) Correlation of BCMA and GPRC5D expression on CD138+ cells; R2 = 0.156. (E) GPRC5D staining of the hair follicle, the only tissue type in which positive IHC staining was confirmed by RNA in situ hybridization (RNA-ISH; RNAscope; results are summarized in table S1). Scale bars, 50 m (blue) and 20 m (black).

by guest on July 4, 2020http://stm

.sciencemag.org/

Dow

nloaded from

Page 5: CANCER IMMUNOTHERAPY Copyright © 2019 GPRC5D is a target ...€¦ · multiplex quantitative immunofluorescence (Q-IF) for CD138, BCMA, and GPRC5D on primary bone marrow samples;

Smith et al., Sci. Transl. Med. 11, eaau7746 (2019) 27 March 2019

S C I E N C E T R A N S L A T I O N A L M E D I C I N E | R E S E A R C H A R T I C L E

5 of 14

cocultures significantly above background cytotoxicity seen with irrelevantly CD19-targeted (SJ25C1) CAR T cells (P < 0.001; Fig. 4A) (3). Similar cytotoxicity after coculture was seen against other GPRC5D mRNA high (MM.1S) and low (RPMI-8226) human MM cell lines (fig. S5B). GPRC5D(109)-containing CAR T cells also erad-

icated primary MM cells obtained via bone marrow aspirate. As shown in Fig. 4B, coculture with either GPRC5D- or BCMA-targeted CAR T cells from the same donor reduced the CD138+ MM cell fraction of CD3− viable bone marrow mononuclear cells (BMMCs) by >90% relative to coculture with irrelevantly targeted CAR T cells

6 × 1010

#scFvs

80

72

32

7

Human scFv phage libraryN terminus

C terminus

scFv ex. A

S

GPRC5D-aAPC panning

Validation of positive phage clonespecificity by FACS

Diversity: DNA sequencing

Cell surface binding ofphage clones to hMMCL by FACS

scFv cloning into CAR vectors:characterization of CAR T cell properties

CAR vector candidate selection

TM3 TM3TM3

TM1

TM2 TM4

TM5TM7 TM6

TM3

scFv ex. BscFv ex. CscFv ex. D

A

D

E

C

B

αGPRC5D scFv S CD28 TM 4-1BB CD3ζ

ML

102

102

102

102102

102

104104

104

104 104

104

108

108108108

108

108

109

120

120

120

120

122122

122

122

122

122

123

123

123

100Tonic signaling

Long

VL/VHVH/VL

Medium Spacer lengthShort

No tonic signaling

80

60

% o

f tot

al n

umbe

r of c

ells

Ag-

depe

nden

t

40

20

80

60

40

20

0

–200 20 40 60 80

0

102 104 108 109 120 122 123

SML SML SML SML SML SML SML SML SML SML SML SML SML

0 20 40 60 80

123

0 20 40 60Ag-independent

80 100

109

109

109

109

109

123

Fig. 3. Development of GPRC5D- targeted CARs. (A) Human B cell–derived scFv phage display library screening strategy. Posi-tive “hits” were confirmed by scFv binding to NIH-3T3 fibroblasts expressing GPRC5D, but not those expressing an irrelevant protein. Sequencing identified individual clones, which underwent a sec-ond validation step of binding to human MM cell lines MM.1S and NCI-H929, but not to the acute myeloid leukemia cell line SET2. scFv clones with the strongest spe-cific binding to the MM cell lines were selected for cloning into a CAR vector. (B) Linear, conforma-tional, and discontinuous epitope binding of a subset of GPRC5D- targeted scFvs assessed by enzyme-linked immunosorbent assay (ELISA)–based technology. (C) GPRC5D-targeted scFvs were cloned into CAR constructs in-cluding one of three spacers of varying lengths (S), a CD28 trans-membrane (TM) domain, and 4-1BB and CD3 signaling domains. (D) Antigen-independent (tonic) signaling of CARs containing the indicated scFvs and spacers. Jurkat Nur77-RFP reporter cells were transduced with 1 of 42 CAR/green fluorescent protein (GFP) bicistronic constructs. Viable GFP+ Jurkat cells (5 × 105) were plated and monitored for RFP expres-sion 11 days after transduction in the absence of target antigen. Expression of both RFP and GFP indicated tonic signaling; expres-sion of GFP alone indicated CAR transduced without tonic sig-naling. (E) Antigen-dependent versus antigen-independent signaling of candidate CARs. Antigen-dependent signaling was measured after culturing Jurkat Nur77-RFP reporter cells 2:1 with MM.1S cells (expressing endogenous GPRC5D) for 20 hours. Percent CAR T cell signaling rep-resents the proportion of GFP+ (CAR-transduced) cells that are also RFP+ (activated). Data are repre-sentative of two experiments.

by guest on July 4, 2020http://stm

.sciencemag.org/

Dow

nloaded from

Page 6: CANCER IMMUNOTHERAPY Copyright © 2019 GPRC5D is a target ...€¦ · multiplex quantitative immunofluorescence (Q-IF) for CD138, BCMA, and GPRC5D on primary bone marrow samples;

Smith et al., Sci. Transl. Med. 11, eaau7746 (2019) 27 March 2019

S C I E N C E T R A N S L A T I O N A L M E D I C I N E | R E S E A R C H A R T I C L E

6 of 14

(representative of coculture with n = 5 primary samples; additional cocultures of primary samples are presented in fig. S6).

Cytokine secretion profiles after coculture with OPM2 MM cells were similar between CAR T cells targeting GPRC5D and those target-

ing BCMA. GPRC5D- or BCMA-targeted CAR T cells cocultured with OPM2 cells had polyfunctional cytokine secretion profiles when compared with either irrelevantly targeted CD19-targeted (SJ25C1) control or cells cultured in the absence of target cells. The largest

100

CD19(SJ25C1) alone3.5

3.0

2.5

2.0

1.5

1.0

0.5

0

pg/m

l (×1

04)

pg/m

l (×1

05)

GPRC5D(109) alone

GPRC5D(109) OPM2

CD19(SJ25C1) OPM2

BCMA(125) OPM2

BCMA(125) alone

50%

Cyt

otox

icity

01:1 0.3:1 0.1:1

Effector: tumor

0.03:1

CD19(SJ25C1)

EGFIFN-γ

FGF-2

Eotaxin

TGF-α

G-CSFFlt-3

L

GM-CSF

Fractal

kineIFNα

2GRO

IL-10

MCP-3

IL-12

P40MDC

IL-13

IL-15

sCD40

L

IL-17

A

IL-1R

AIL-

1α IL-9IL-

1β IL-2

IL-3IL-

4IL-

5IL-

6IL-

7IL-

8IP

-10

MCP-1

MIP-1α

MIP-1β

TNFαTNFβ

VEGF

BCMA(125)GPRC5D(109)

Tumoralone

A

C

B

CD

138-

AP

C

CD3-FITC

Anti-BCMA

Anti-GPRC5DIrrelevantly targeted

7.80% of CD3–

0.52% of CD3–

93% lysis

0.49% of CD3–

94% lysis

GPRC5D(109) cells Mock-processed cellsCD4+

CTV

CD25

No target

Nalm6 (GPRC5D-negative)

OPM2 (GPRC5D-positive)

CD8+ CD4+ CD8+

GPRC5D(109) cells Mock-processed cellsCD4+ CD8+ CD4+ CD8+

E

–103 0 103 104 105 –103 0 103 104 105 –103 0 103 104 105 –103 0 103 104 105

–103 0 103 104 105 –103 0 103 104 105 –103 0 103 104 105 –103 0 103 104 105

D

Fig. 4. Cytotoxicity, cy-tokine secretion, prolif-eration, and activation of GPRC5D-targeted CAR T cells in the presence of MM cell targets. (A) Cell killing of OPM2–firefly lu-ciferase (ffLuc) MM cells induced by CAR T cells incorporating the indicated scFv after 24 hours of coculture, as indicated by adenosine triphosphate– dependent biolumines-cence after addition of luciferin; normalized to tumor cell–alone control (pooled data from two ex-periments each performed in triplicate, mean ± SEM; P < 0.001). Effectors count-ed as CAR+ viable cells. (B) Flow cytometry of primary BMMCs from a patient with multiply re-lapsed MM after overnight coculture with CAR T cells incorporating the indi-cated scFv at a 1:1 ratio of CAR+ viable T cells to BMMCs. To avoid contri-bution by T cell expansion or transduction efficiency, percentage of CD3− cells is reported (representa-tive of primary samples from five patients with MM). (C) Cytokines produced by CAR+ viable T cells in-corporating the indicated scFv after 1:1 coculture with OPM2 MM cells or alone for 24 hours, mea-sured in the supernatant by multiplex Luminex assay. (D) Proliferation and (E) activation of mock- transduced or GPRC5D(109)- expressing CAR T cells cultured alone, with B-ALL (Nalm6; GPRC5D−), or with MM (OPM2; endogenous GPRC5D+) cells at a 1:1 ratio of CAR+ viable T cells to tumor cells. T cells were stained with CellTrace Violet (CTV) before coculture and stained for CD4, CD8, and CD25 after 72 hours. (D) Proliferation indicated by dilution of CTV fluorescence. (E) Activation indicated by increased CD25 fluorescence. Representative data are from two or more experiments, unless otherwise stated.

by guest on July 4, 2020http://stm

.sciencemag.org/

Dow

nloaded from

Page 7: CANCER IMMUNOTHERAPY Copyright © 2019 GPRC5D is a target ...€¦ · multiplex quantitative immunofluorescence (Q-IF) for CD138, BCMA, and GPRC5D on primary bone marrow samples;

Smith et al., Sci. Transl. Med. 11, eaau7746 (2019) 27 March 2019

S C I E N C E T R A N S L A T I O N A L M E D I C I N E | R E S E A R C H A R T I C L E

7 of 14

increases were seen in secretion of interferon-g (IFN-g), macrophage inflammatory protein 1- (MIP-1), and tumor necrosis factor– (TNF) (effector); granulocyte-macrophage colony-stimulating fac-tor (GM-CSF) and interleukin-2 (IL-2) (stimulatory); MIP-1b and IL-8 (chemo-attractive); and sCD40L and IL-13 (regulatory) (Fig. 4C and fig. S7).

We also measured the proliferation and activation of GPRC5D(109) CAR T cells (Fig. 4, D and E). These responses were similarly spe-cific; GPRC5D(109) T cells proliferated (as indicated by dilution of CellTrace Violet) and up-regulated the activation marker CD25 in the presence of OPM2 cells but not upon coculture with B cell acute lymphoblastic leukemia (B-ALL) Nalm6 cells; mock-transduced T cells did not respond to MM cells.

Specificity of scFv clone 109 for GPRC5DTo evaluate the potential for off-target binding of anti-GPRC5D clone 109, we measured its specificity among G protein–coupled receptors (GPCRs). We transiently expressed anti-GPRC5D scFv clone 109, in-cluding the long spacer, in human embryonic kidney (HEK) 293 cells using a cell surface expression vector that included cytoplasmic mCherry. In parallel, we transiently expressed the cDNA for each human GPCR in a vector with cytoplasmic GFP; of these, 202 passed quality con-trol of >25% transduction and were screened for off-target binding. Using an automated flow cytometric assay that detects cell-cell in-

teraction, we determined that scFv clone 109, as a cell surface chi-meric receptor, interacted exclusively with GPRC5D (Fig. 5A).

The specificity of clone 109 for GPRC5D among cell surface pro-teins generally was confirmed using an scFv-Fc IHC assay in which individual HEK293 cell populations, each expressing 1 of 4417 human plasma membrane proteins, were grown in microarray spots and treated with an anti-GPRC5D clone 109 scFv-mIgG2a Fc antibody or an mIgG2a Fc isotype control. Cell microarrays were assessed for binding by automated fluorescent microscopy after treatment with a fluorescently labeled secondary antibody. The clone 109–containing antibody bound strongly to GPRC5D and initially indicated potential weak-to-medium binding of two additional proteins, protocadherin 1 (PCDHA1) and Fcg receptor 2A (CD32a; FCGR2A), a protein with known potential for Fc interaction (29). A small-scale second assay including only these proteins indicated potential for binding (Fig. 5B). Nonetheless, after coculture of K562 cells individually ex-pressing these proteins with GPRC5D(109) CAR-expressing Jurkat Nur77-RFP reporter cells, neither coculture resulted in activation, as measured by RFP signal (Fig. 5C), confirming that these poten-tial off-target interactions are nonspecific and did not stimulate GPRC5D(109) CAR signaling in the presence of these proteins. Further, activation of Jurkat Nur77-RFP reporter cells mediated by the GPRC5D(109) CAR after coculture with OPM2 MM cells was abolished when they were instead cocultured with OPM2 cells in which

6

FCGR2A

ZsGreen1 Isotype CTLA-4 GPRC5D(109)

GPRC5DPCDHA1

CD86EGFR

SLC38A2SLC38A4

5

4

3

2

GRPC5D

GRPC5D

GRPC5D

GRPC5D

GRPC5D

GRPC5D

1

0

A

B

Z s

core

MC

2RO

R9G

1O

R4C

45O

R2M

4M

RG

PR

GP

R35

OR

51L1

MC

1RG

PR

55O

R2S

2M

C5R

FFA

R2

GP

R18

MC

4RG

PR

146

MR

GP

RG

PB

AR

1N

PB

WR

2G

PR

119

PTA

FRC

XC

R6

CC

RL2

FFA

R3

MTN

R1A

LPA

R2

LTB

4RO

PN

5H

TR5A

CN

R2

FPR

3C

XC

R2

GP

R18

3A

CK

R3

GA

LR3

LPA

R4

OP

RD

1G

PR

173

PTG

ER

3G

ALR

3G

PR

C5D

SS

TR4

GP

R84

AC

KR

2V

N1R

2TR

HR

GP

R15

1AV

PR

1BC

CK

BR

HC

RTR

2C

HR

M1

TAC

R3

DR

D5

GIP

RP

TH2R

GLP

2RFZ

D7

FZD

5FZ

D10

FZD

9P

TH1R

GP

R15

3S

MO

TAS

1R3

GP

R15

8TA

S2R

4FF

AR

1G

PR

162

GP

R14

1TA

S2R

41O

R5M

11O

R13

G1

OR

9Q1

MC

2RO

R6C

65O

R13

J1O

R61

OR

4D6

GP

RC

5DO

R12

D3

MR

GP

RO

R5H

6G

PR

3O

R10

S1

AD

OR

A2

GP

R26

OX

GR

1M

RG

PR

P2R

Y10

GP

R17

GP

RC

5DC

XC

R1

GP

R13

9H

TR1E

SS

TR2

GP

R45

P2R

Y2

CC

R9

HTR

1BN

PY

2RH

RH

2S

1PR

5K

ISS

1RG

PC

R5D

DR

D3

PR

OK

R1

OP

N3

TAC

R1

AD

RB

3N

TSR

2AV

PR

1AG

HR

HR

GP

R15

0N

PFF

R1

HTR

6D

RE

D1

HTR

7G

PR

152

RX

FP3

GC

GR

CH

RM

4A

DR

A1B

FZD

4G

PR

37C

HR

M3

RZD

1TA

S1R

2C

CR

5O

R1E

1O

R3A

2O

R10

H2

OR

10A

5TA

S2R

30G

PR

31M

RG

PR

MR

GP

RN

PB

WR

1X

CR

1P

2YR

6G

PR

174

TAA

R5

FPR

2FP

R2

LPA

R1

OP

N1S

LPA

R3

P2R

Y13

LTB

4R2

GP

RC

5AP

TGE

R2

GP

R4

AG

TR2

HTR

1FO

PR

L1G

PR

78O

PN

1MC

XC

R3

AVP

R2

LPA

R5

CC

R2

F2R

L3P

TGIR

S1P

R1

CX

3CR

1M

C2R

BD

KR

B2

CR

HR

2M

LNR

GP

RC

5DH

TR1A

CN

R1

CC

KA

RC

ALC

RL

AD

RA

2CH

TR2A

GP

R37

LP

TGE

R4

CA

LCR

GP

R75

AD

RA

1DFZ

D8

TSH

RG

AB

BR

2G

AB

BR

1C

AS

RTP

RA

1A

DO

RA

3F2

RL2

PTG

DR

GP

R6

P2Y

R11

NP

SR

1C

CR

7O

PR

K1

OP

RM

1G

PR

C5B

HR

H4

ED

NR

BC

RH

R1

VIP

R2

VIP

R1

GP

R16

1G

PR

107

FZD

6R

XFP

1G

RM

2G

PR

C5D

CGPRC5DPCDHA1FCGRA2BCMA

100

80

60

40

20

% G

PR

C5D

(8)-

indu

ced

activ

atio

n

05:1 1:1 1:5

E:T ratio

Fig. 5. Specific binding of GPRC5D by scFv clone 109. (A) Binding of HEK293 cells transiently expressing a library of human GPCRs with cytoplasmic GFP to cocultured HEK293 cells transiently expressing anti-GPRC5D scFv clone 109, a long spacer, and cytoplasmic mCherry (both cell types in suspension), quantified by automated flow cytometric analysis. Prespecified threshold for significance (dashed line): Z score = 3, P < 0.0027. (B) Binding of anti-GPRC5D scFv clone 109-mIgG2a Fc chimeric antibody to HEK293 cells expressing the indicated cell surface proteins. Confirmation of binding to potential off-target proteins and nonspecific binders identified in a microarray screen of >4400 transmembrane proteins is shown. ZsGreen1, transfection control; Isotype, irrelevant scFv-mIgG2a Fc, negative control; CTLA-4/CD86 interaction, positive control. (C) Evaluation of GPRC5D(109) CAR activation by potential off-target proteins PCDH1A and FCGR2A. Jurkat Nur77-RFP activation reporter cells expressing a bicistronic plasmid containing a GPRC5D(109) CAR and GFP were cocultured with K562 cells expressing the indicated antigens, GPRC5D (positive control), or BCMA (negative control). Activation is determined as %RFP+GFP+/total GFP+ cells.

by guest on July 4, 2020http://stm

.sciencemag.org/

Dow

nloaded from

Page 8: CANCER IMMUNOTHERAPY Copyright © 2019 GPRC5D is a target ...€¦ · multiplex quantitative immunofluorescence (Q-IF) for CD138, BCMA, and GPRC5D on primary bone marrow samples;

Smith et al., Sci. Transl. Med. 11, eaau7746 (2019) 27 March 2019

S C I E N C E T R A N S L A T I O N A L M E D I C I N E | R E S E A R C H A R T I C L E

8 of 14

GPRC5D was knocked out using CRISPR-Cas9 (fig. S8). Together, these results show that scFv clone 109 specifically recognizes GPRC5D.

In vivo activity of GPRC5D-targeted CAR T cell therapyTo evaluate the in vivo activity of GPRC5D-targeted CAR T cell ther-apy, we used the OPM2 human myeloma cell xenograft model that causes bone marrow–predominant disease (28, 30). Nonobese diabetic scid gamma (NSG) mice were injected via tail vein with OPM2-ffLuc cells, which were allowed to engraft and expand for 14 days before a single tail vein injection of CAR T cells (with comparable transduction efficiency; representative example, fig. S9), and tumor burden was monitored by bioluminescence imaging (BLI). In vivo activity was compared among CAR T cells incorporating one of three highly active anti-GPRC5D scFv clones, which also had low antigen- independent tonic signaling (102, 108, and 109); all were made with the same long spacer, CD28 transmembrane domain, and 4-1BB and CD3 signaling domains. Treatment with each of the GPRC5D- targeted CAR T cells increased survival (Fig. 6A). At 100 days after CAR T cell injection, only mice treated with GPRC5D(109)-containing CAR T cells maintained 100% survival.

Evaluation of GPRC5D(109) CAR T cells in a large burden of dis-ease model (treatment 3 weeks after tumor engraftment) demonstrated CAR T cells homing to and rapidly eradicating MM by day 7 after treatment with either a 4-1BB or a CD28 costimulatory signaling domain. All aspects of the CARs other than the costimulatory do-main were kept constant, including the long spacer and CD28 trans-membrane domain. In this case, we used a bicistronic construct including a membrane-tethered exterior Gaussia luciferase, separated by a P2A element from the CAR, to allow in vivo BLI of CAR T cells after injection of coelenterazine, a distinct substrate from the luciferin required for ffLuc BLI (31). A large burden OPM2-ffLuc MM model was used to distinguish between these two similar CARs; the ample amount of antigen was intended to drive CAR T cell expansion and ease monitoring of their homing and accumulation. Mice were treated with 3 × 106 CAR+ viable T cells 21 days after OPM2 engraftment. Regardless of costimulatory domain, GPRC5D(109) CAR T cell therapy comparably extended survival (Fig. 6B). GPRC5D(109) CAR constructs with either costimulatory domain eradicated OPM2 cells between days 2 and 7 after CAR T cell injection, and eradication was predom-inately durable (Fig. 6C). The deaths of treated mice around day 60, in the absence of OPM2 BLI signal, were secondary to xenogeneic graft-versus-host disease, a known, donor-dependent limitation of injecting human T cells into NSG mice (32, 33).

To assess whether GPRC5D-targeted CAR T cells accumulate at the site of the xenograft, we conducted BLI after coelenterazine in-jection at 1 week after treatment, the time we previously found to be the peak of in vivo expansion of BCMA-targeted CAR T cell therapy in this model (28). This assay demonstrated that CAR T cells with either costimulatory domain localized to the site of the MM xeno-graft (Fig. 6D).

In addition to the OPM2 model, in vivo analysis of mice bearing xenografts of the human MM cell line, RPMI-8226, with low expres-sion of GPRC5D mRNA (fig. S5) similarly showed that T cells gene- modified with this GPRC5D-targeted CAR mediated antitumor activity and in vivo CAR T cell expansion (fig. S10).

Given the promising clinical results reported with BCMA-targeted CAR T cell therapy to treat MM (7), we directly compared GPRC5D(109)/ 4-1BBz with BCMA-targeted CAR T cell therapy, both including an identical CAR backbone (Fig. 6, E and F). We treated mice 14 days

after OPM2 injection as in Fig. 6A; however, we used lower doses of CAR T cells than in previous experiments. When treating with 1 × 106 or 3.3 × 105 GPRC5D or BCMA-targeted CAR+ T cells, a dose response was noted in the kinetics of tumor regression (Fig. 6E). GPRC5D(109) CAR T cells were comparable to BCMA-targeted CAR T cells in inducing tumor regression (Fig. 6E) and in extending survival (Fig. 6F) across both doses.

Because loss or down-regulation of BCMA is implicated in re-lapse after BCMA-targeted CAR T cell therapy (8, 10), we evaluated GPRC5D-targeted CAR T cell therapy in a model of BCMA loss- mediated relapse. We injected a mixture of OPM2WT cells spiked with a subpopulation of GFP/ffLuc+ CRISPR-mediated OPM2BCMA-KO cells so that the BCMA-KO cells could be specifically imaged. BCMA(125) CAR T cells eradicated OPM2WT cells (fig. S11), whereas the OPM2BCMA-KO subpopulation progressed. Antigen escape- mediated tumor progression could be rescued by GPRC5D(109) CAR T cells (Fig. 6G).

Lack of on-target/off-tumor toxicity induced by GPRC5D-targeted CAR T cellsTo evaluate potential activation of GPRC5D-targeted CAR T cells by essential normal cells, primary human T cells were genetically mod-ified to express the GPRC5D(109) CAR and cocultured with a panel of isolated primary human cell types, after which cytokine release was measured. Whereas coculture of GPRC5D(109) CAR T cells with positive control OPM2 MM cells caused substantial IFN-g, IL-2, and TNF release, quantities of cytokines in the media after coculture with any of the 20 normal tissue types investigated were minimal; for example, IFN-g was 2600-fold higher after OPM2 coculture when compared to the highest value after coculture with cells isolated from normal tissue (fig. S12).

Given the expression of GPRC5D in cells from the hair follicle (Fig. 2E and table S1), we sought to evaluate on-target/off-tumor binding in a relevant in vivo model. To find a murine or cynomolgus cross-reactive anti-GPRC5D scFv, we used the Nur77 Jurkat reporter cell line. Nur77 Jurkat cell populations were stably transduced to express one of six anti-GPRC5D scFvs and cocultured 1:1 with K562 cells engineered to express human, murine, or cynomolgus GPRC5D (the latter two forms have 82 and 96% amino acid homology to human, respectively). scFv clone 109 was not cross-reactive to either mGPRC5D or cGPRC5D, but multiple clones were cross-reactive to mGPRC5D and cGPRC5D (fig. S13). Of these, clones 122 and 108 were selected for further experimentation in murine and cynomolgus models, respectively, given their high antigen-dependent signaling-to-tonic signaling ratios (fig. S13). Both GPRC5D(109)- and GPRC5D(122)- containing CAR T cells were well tolerated by mice; neither affected body mass or temperature (Fig. 7, A and B). Both CAR T cell therapies eradicated OPM2 cells injected 14 days earlier (Fig. 7C). There was no fur loss or other clinical sign of toxicity.

In the NHP model, autologous cynomolgus T cells were genetical-ly modified with the cGPRC5D cross-reactive CAR GPRC5D(108) (protocol schematic, fig. S14). After blood was taken for CAR T cell production, NHPs were treated with lymphodepleting conditioning cyclophosphamide (40 mg/kg on days −4 and −2). On day 1, 10 × 106 CAR+caspase3− autologous cynomolgus T cells/kg were injected into three NHPs. Because of the concern for hair follicle expression of GPRC5D, to increase the sensitivity of detecting toxicity, NHPs were also treated with the topical skin irritant imiquimod on a small re-gion of the back 4 days before CAR T cell injection. To boost CAR

by guest on July 4, 2020http://stm

.sciencemag.org/

Dow

nloaded from

Page 9: CANCER IMMUNOTHERAPY Copyright © 2019 GPRC5D is a target ...€¦ · multiplex quantitative immunofluorescence (Q-IF) for CD138, BCMA, and GPRC5D on primary bone marrow samples;

Smith et al., Sci. Transl. Med. 11, eaau7746 (2019) 27 March 2019

S C I E N C E T R A N S L A T I O N A L M E D I C I N E | R E S E A R C H A R T I C L E

9 of 14

1010

109

108

107

106

1011

0 10 20 30 40 50 60 70 10

Days after CAR T injection

Bio

lum

ines

cenc

e (p

/s)

CD19(SJ25C1)/CD28zGPRC5D(109)/CD28zGPRC5D(109)/4-1BBz

E

100

80

40

60

20

00 10 20 30 40 50 60

Days after OPM2 injection

P < 0.001

P < 0.001

Per

cent

sur

viva

l

B100

80

40

60

20

00 10 20 30 40 50

Days after CAR T injection

Days after OPM2/CAR

CD19(SJ25C1)/CD28z

GPRC5D(109)/CD28z

GPRC5D(109)/4-1BBz

Tumor only

P < 0.0001 P < 0.0001

P < 0.0005

P < 0.0005

P < 0.0005 P < 0.0005

P < 0.0001

MockGPRC5D(102)/4-1BBzGPRC5D(108)/4-1BBzGPRC5D(109)/4-1BBz

Per

cent

sur

viva

l

60 70 80 90 100 110

A

C

D

3×106 CAR T cells at day 14 3×106 CAR T cells at day 21

100

80

40

60

20

00 2010 30 40 50 60 70 80 90 100 110 120

Days after CAR T injection

Per

cent

sur

viva

l

F

G

1010

109

108

107

106

1011

0 10 20 30 40 50 60 70 10Days after CAR T injection

1×106 CAR T cells at day 14 3×105 CAR T cells at day 14

1×106 CAR T cells at day 14 3×105 CAR T cells at day 14Tumor onlyMockBCMA(125)GPRC5D(109)

Bio

lum

ines

cenc

e (p

/s)

Tumor onlyMockBCMA(125)GPRC5D(109)

100

80

40

60

20

00 10 20 30 40 50 60 70 80 90 100 110

Days after CAR T injection

Per

cent

sur

viva

l

20 days/–1 day

GPRC5D(109)/CD28z GPRC5D(109)/4-1BBz

23 days/2 days 28 days/7 days 33 days/12 days 40 days/19 days 54 days/33 days Luminescence

Luciferin, CAR T cells

Radiance(p/s/cm2/sr)

108

107

2

345

79

Coelenterazine, CAR T cells

Luciferin, OPM2BCMA KO

*

Luciferin, OPM2BCMA KO A

*

GPRC5D

CD19

BCMA

BCMA

BCMA

BCMA

KO

G +

G

75%

25%

B

ffLuc

*

*

Day: 7 15 16 348Luminescence

Radiance(p/s/cm2/sr)

108

107

85

33

85

33

85

33

85

33

106

105

104

Fig. 6. Eradication of MM cells and improvement of survival by GPRC5D-targeted CAR T cells in a murine xenograft model. NSG mice were injected intrave-nously with OPM2-ffLuc cells to establish a bone marrow–tropic MM xenograft and then treated with a single intravenous injec-tion of CAR T cells at the indicat-ed time and dose. (A) Survival of mice treated 14 days after OPM2 injection with 3 × 106 4-1BB–containing CAR+ viable T cells incorporating the indicated anti- GPRC5D scFv clones (n = 8 per arm). (B) Survival of mice treated at 21 days after OPM2 injection with 3 × 106 CAR+ viable T cells gene-modified to express a bicis-tronic construct encoding extGLuc and a CAR incorporating scFv CD19(SJ25C1) or GPRC5D(109) and either a 4-1BB or CD28 costim-ulatory domain (n = 5 per arm). (C) Tumor burden (d-luciferin BLI of OPM-ffLuc) of mice from (B). (D) CAR T cell homing (co-elenterazine BLI of extGLuc CAR T cells) of mice from (B) performed on day 7 after CAR T cell treatment. (E and F) Dose response of GPRC5D- and BCMA-targeted CAR+ via-ble T cells, administered 14 days after OPM2 injection (n = 8 mice per arm). (E) Tumor burden as as-sessed by BLI of OPM-ffLuc and (F) survival. (G) NSG mice were in-jected with a mixed population of unmanipulated OPM2WT (75%) + GFP/ffLuc+ CRISPR-mediated OPM2BCMA-KO (25%). On day 8 and day 16, mice were injected with the indicated CAR+ viable T cells. BLI monitors only OPM2BCMA-KO, which are the only cells to ex-press GFP/ffLuc (n = 5 mice per arm, representative of two experi-ments). Note that, in the two BLI images of mice with the highest tumor burden, a higher mini-mum color scale threshold was used compared to the shown scale to remove BLI scatter. All P values shown are relative to mock- transduced (A, E, and F) or irrel-evantly targeted (B) CAR T cells. Average myeloma distribution and percent weight change were assessed by two-way analysis of variance (ANOVA). P ≤ 0.05 is considered significant. The log-rank (Mantel-Cox) test was used to calculate statistical significance of survival experiments, with P values adjusted for multiple comparisons via Benjamini-Hochberg correction.

by guest on July 4, 2020http://stm

.sciencemag.org/

Dow

nloaded from

Page 10: CANCER IMMUNOTHERAPY Copyright © 2019 GPRC5D is a target ...€¦ · multiplex quantitative immunofluorescence (Q-IF) for CD138, BCMA, and GPRC5D on primary bone marrow samples;

Smith et al., Sci. Transl. Med. 11, eaau7746 (2019) 27 March 2019

S C I E N C E T R A N S L A T I O N A L M E D I C I N E | R E S E A R C H A R T I C L E

10 of 14

T cell expansion, each NHP received 10 × 106 cGPRC5D+caspase3− autologous artificial antigen-presenting T cells/kg 4 days after CAR T cell injection. The transduction rate of the CAR into NHP T cells was 36 to 49% of CD3+ cells. After gene transfer, preinfusion NHP T cells remained viable (80 to 92%) and were functional, with IFN-g release approaching 10,000 pg/ml of supernatant after coculture with cells expressing GPRC5D (1:1 E:T ratio) and antigen-specific target cell lysis consistent between CAR T cells from the three NHPs (fig. S15, A and D). Although there was insufficient material to as-sess post-infusion CAR T cell expansion, persistence was detected in the peripheral blood in all three NHPs and in the bone marrow in two at the time of sacrifice for gross and histologic examination (day 21 after infusion; fig. S15E).

After GPRC5D(108)-containing CAR T cell therapy, there was no acute infusion-related toxicity. After treatment, clinical observation, body temperature, and weight curves remained stable (Fig. 7, D and E). No adverse events, increases in proinflammatory cytokines, or rele-vant changes in clinical chemistry were observed in any of the sub-

jects. There was no fur loss or other clinical or pathological signs of damage to the skin, lungs, or other tissues (Fig. 7F and Table 1).

DISCUSSIONThese studies demonstrate that GPRC5D is an attractive target for the immunotherapy of MM. This receptor is expressed on MM cells and absent from nearly all healthy tissues, with the exception of the hair follicle, which may be immune-privileged. Further, GPRC5D-targeted CAR T cells eradicate MM cells from xenograft models and do not cause overt toxicity or pathology in mice or NHPs.

We confirmed that GPRC5D protein is consistently expressed on MM cells with a membranous pattern by IHC staining. The single prior reported study to evaluate protein expression did not identify GPRC5D on the cell surface using flow cytometric analyses (22), likely due to the unavailability of reliable, high-quality flow cytometry reagents. Our study was limited by a lack of reagents to quantify antigen density; the development of such reagents should allow investigation

!"""#$%!"""##$%

20

151050

0 2 4 6 8 10 12 14

10

0

-10

-20

A B

% B

ody

mas

s ch

ange

Days after CAR T

Bod

y te

mpe

ratu

re (°

C)

Bod

y te

mpe

ratu

re (°

C)

43.3

Days after CAR T

40.5

37.7

35

32.2

987654321

D

F

42

Days after CAR T injection

40

38

36

34

No T cells Mock-transducedGPRC5D(109)/4-1BBzGPRC5D(122)/4-1BBz

D(–8)D(–1) D4 D6 D8

D11 D15D21

E

Bod

y m

ass

(kg)

5.0

Days after CAR T injection

4.5

4.0

3.5

3.0

100110021003

50 15

C

Bio

lum

ines

cenc

e (p

/s)

1010

109

108

107

106

105

Days after CAR T 10

1000 µm

500 µm

1000 µm

1000 µm

500 µm

500 µm

Fig. 7. Lack of overt toxicity caused by GPRC5D-targeted CAR T cells in murine and NHP models. (A to C) Mice were injected with 3 × 106 human CAR+ viable T cells expressing a CAR containing a human/murine cross-reactive anti-GPRC5D scFv (clone 122) 14 days after injection of OPM2; nontreated mice and mice injected with mock-transduced T cells or T cells expressing a CAR containing scFv clone 109 (which recognizes only human GPRC5D) served as controls. (A) Body mass, (B) body tem-perature, and (C) BLI of OPM2-ffLuc cells. (D to E) Three cynomolgus monkeys were injected with autologous cynomolgus T cells modified to express a CAR containing a human/cynomolgus cross-reactive anti-GPRC5D scFv clone 108 (1 × 107 CAR+caspase− T cells/kg) and 1 × 107 cGPRC5D+caspase− autologous aAPC T cells/kg on day 4 (D4) and then euthanized for pathologic evaluation at 21 days (full protocol in fig. S14). (D) Body temperature, (E) body mass, and (F) pathologic investigation of skin, lung, and small intestine (representative images). All abnormal pathologic findings are summarized in Table 1.

by guest on July 4, 2020http://stm

.sciencemag.org/

Dow

nloaded from

Page 11: CANCER IMMUNOTHERAPY Copyright © 2019 GPRC5D is a target ...€¦ · multiplex quantitative immunofluorescence (Q-IF) for CD138, BCMA, and GPRC5D on primary bone marrow samples;

Smith et al., Sci. Transl. Med. 11, eaau7746 (2019) 27 March 2019

S C I E N C E T R A N S L A T I O N A L M E D I C I N E | R E S E A R C H A R T I C L E

11 of 14

of whether the GPRC5D− MM cells seen in our IHC analysis are a distinct subpopulation or part of the normal distribution of expres-sion. Nonetheless, the activity of GRPC5D(109) CAR T cells against MM cell lines with relatively high and low GPRC5D mRNA expres-sion is encouraging.

The distribution of GPRC5D expression on CD138+ cells across patient samples is similar to that of BCMA. However, the intrapa-tient expression patterns are independent of each other; therefore, the percentage of CD138+ cells expressing BCMA does not correlate with an expected percent GPRC5D expression for any individual patient. Consistent with this, although in most samples, the largest population of CD138+ cells expresses both BCMA and GPRC5D, in several patient samples, single-antigen BCMA expression was more prevalent, whereas in others, GPRC5D expression was dominant. One limitation of these results is that the effects of processing primary bone marrow samples may result in artefactual antigen loss in some cases, which would cause underestimation of BCMA and GPRC5D expression.

We explored the potential for on-target/off-tumor toxicity by tar-geting GPRC5D. GPRC5D is strongly expressed in the hair follicles and variably in lung tissue; the latter was apparent by IHC but not confirmed by RNA-ISH. Coculture of GPRC5D-targeted CAR T cells with 20 different primary cell types from essential normal tissues induced only minimal IFN-g release, at least 2600-fold lower than coculture with MM cells. To further ensure the specificity of GPRC5D-targeted CAR T cells for MM cells, it will also be important to evaluate GPRC5D expression in additional primary cell targets from multiple donors when improved flow reagents become available. NHPs and mice treated with species cross-reactive CAR T cells showed no clinical signs of toxicity. Potential hair loss may be a risk acceptable for patients; however, the hair follicle is considered an immune-privileged site (17–19), which may explain the apparent lack of skin or hair toxicity in NHPs and mice treated with species cross-reactive CAR T cells. However, although we did not observe any acute toxicities targeting GPRC5D in murine and NHP studies, the conclusions are limited by the use of surrogate species cross-reactive CAR binders and, in the NHP study, the small number of animals treated (n = 3) and the inability to evaluate CAR T cell expansion. The potential for on-target/off-tumor toxicity against normal plasma cells is similar to toxicity with CD19-targeted CAR T cell therapy, where hypogammaglobu-linemia may occur. If hypogammaglobulinemia or cytopenias result, treatment with pooled donor intravenous immunoglobulin is avail-able. We concluded that GPRC5D is an attractive target for immu-notherapy of MM given its preferential expression on MM cells.

Our GPRC5D-targeted CAR development strategy was designed to maximize its clinical activity. To avoid host anti-murine CAR im-mune responses upon translation into patients, which have, in some cases, been found to correlate with limited clinical responses in pa-tients retreated with murine scFv-based CAR T cells targeting CD19 (6), we screened a human B cell–derived phage display library and identified seven human anti-GPRC5D scFvs. As the orientation of the scFv can affect the affinity of a CAR, we evaluated these scFvs in both the VH/VL and VL/VH orientations. The distance between gene- modified T cells and the specific binding domain on the target antigen also influences optimal CAR T cell function (34); we therefore eval-uated each of these scFvs with three different length spacer domains (23). To minimize antigen-independent (tonic) signaling, another factor found to adversely affect CAR T cell activity (24–26), scFvs were eval-uated using a Jurkat T cell line designed to express RFP in-frame immediately downstream of endogenous Nur77 via homologous re-combination; this Nur77-RFP reporter construct serves as a surrogate for T cell activation (27). A flow cytometric assay of these reporter cells transduced with each of the 42 potential CAR constructs (seven scFvs in both VH/VL and VL/VH orientations, each with three spacers) for antigen-independent (tonic) signaling and antigen-mediated activation clearly and rapidly differentiated between the CAR designs. Confirming the utility of this reporter assay, primary T cells modified with CARs incorporating the GPRC5D(109) scFv showed superior in vivo activity compared with GPRC5D-targeted CARs containing other scFvs. This approach is useful in screening not only CARs but also synthetic T cell receptor–based or tumor-infiltrating lymphocyte- based cell therapies for activation.

We have shown that GPRC5D-targeted CAR T cells had antitumor activity in an in vivo BCMA antigen escape relapse model. It is not yet firmly established whether or how the degree of BCMA expression may affect the efficacy of BCMA-targeted CAR T cell therapy, but it is possible that targeting a second antigen with an independent ex-pression pattern, such as GPRC5D, may increase the frequency, depth, and/or duration of responses in patients harboring BCMA-low or BCMA-negative MM plasma cell reservoirs. Clinical investigation of GPRC5D-targeted CAR T cell therapy should be pursued for patients with advanced MM, regardless of previous BCMA-targeted therapy.

MATERIALS AND METHODSStudy designThe objectives of this study were (i) to determine whether GPRC5D is an attractive target for the immunotherapy of MM and (ii) to develop

Table 1. Summary of pathologic findings from cynomolgus injected with human/cynomolgus cross-reactive anti-GPRC5D(scFv clone 108) CAR T cells.

Tissue Finding Number of individuals (n = 3) Degree

Spleen Increased cellularity in lymphoid tissue and white pulp 2 Minimal (1)

Mild (1)

Lymph node, mesenteric Increased number and size in lymphoid follicle and germinal center 3 Minimal (1)

Mild (2)

LiverFocal fibrosis with pigmented

macrophages 2 Minimal

Focal hepatocellular necrosis 1 Minimal

Lung, left diaphragmatic lobe Embolus containing nuclear material in the capillary 1 Minimal

by guest on July 4, 2020http://stm

.sciencemag.org/

Dow

nloaded from

Page 12: CANCER IMMUNOTHERAPY Copyright © 2019 GPRC5D is a target ...€¦ · multiplex quantitative immunofluorescence (Q-IF) for CD138, BCMA, and GPRC5D on primary bone marrow samples;

Smith et al., Sci. Transl. Med. 11, eaau7746 (2019) 27 March 2019

S C I E N C E T R A N S L A T I O N A L M E D I C I N E | R E S E A R C H A R T I C L E

12 of 14

an optimized CAR targeting GPRC5D to treat MM, including post- BCMA antigen escape-mediated relapse. We screened primary MM samples and normal tissue by multiplex Q-IF, scoring by HALO image analysis using the same settings across samples. Toward the second objective, we screened a human scFv phage display library to develop GPRC5D-targeted CARs. Candidate CARs were screened for tonic signaling using a Jurkat Nur77 reporter line. The efficacy and safety of one CAR with low tonic signaling, GPRC5D(109), were extensively evaluated via in vitro cytotoxicity, cytokine, proliferation, and activa-tion assays, as well as murine xenograft safety and efficacy studies. Safety was further evaluated with species cross-reactive GPRC5D- targeted CARs. Studies were planned with the minimum number of animals per treatment group to reproducibly observe statistically significant differences (n = 5 to 8 per arm per experiment). All murine experiments were replicated at least twice, using T cells from different donors in each replicate. Tumor engraftment was defined by baseline BLI before cellular therapy. Outlier mice with baseline tumor burden discordant from others in the experiment were excluded before ran-domization and CAR T cell infusion. No data were excluded at any later point. Researchers imaging and collecting data from mice were unaware of treatment group allocation, but data were not analyzed in a blinded fashion.

Human scFv phage display library screenA human B cell–derived scFv phage display library (E-ALPHA, Eureka Therapeutics) was panned using NIH-3T3 aAPCs stably expressing GPRC5D. Positive phage clones were first confirmed by their capacity to specifically bind 3T3-GPRC5D aAPCs via flow cytometry. Con-firmed clones were then sequenced to assess diversity. Unique clones were further validated by flow cytometry to assess specific binding to human MM cell lines and not human cell lines from other hema-tologic malignancies.

Epitope mappingA library of overlapping 15-nucleotide oligomer peptides cov-ering the extracellular domains of GPRC5D was synthesized and chemically linked to flexible scaffolds to assess linear, con-formational, and discontinuous epitope binding of GPRC5D- targeted scFvs using Pepscan’s proprietary ELISA-based technology (Pepscan) (35).

Transduction of human T cellsPrimary human T cells were isolated from whole blood obtained from healthy donors or the New York Blood Center, Memorial Sloan Ket-tering (MSK) Institutional Review Board (IRB) no. 95-054, Blood-Works IRB no. 20140680, or Key Biologics IRB no. 25042/1. T cells were stimulated with phytohemagglutinin (2 mg/ml; Sigma) or CD3/CD28 Dynabeads (Thermo Fisher) at a 1:1 ratio for 24 hours and grown in the presence of IL-2 ± IL-7 and IL-15. T cells were spinoculated with gamma retrovirus or lentivirus on days 2 to 3 after activation. Gamma retrovirus was gibbon ape leukemia virus pseudotyped and used in vitro for tests of cytotoxicity, primary MM cell coculture, and cyto-kine profiling in mice to investigate antitumor activity and T cell proliferation and homing and in NHPs to assess tolerability. Lentivirus was vesicular stomatitis virus glycoprotein (VSV-G) pseudotyped and used in vitro for cytotoxicity, proliferation, and activation assays and in vivo to assess antitumor activity and toxicity. Transduction effi-ciency was determined by flow cytometric analysis on days 4 to 10. All experiments were normalized for CAR+ viable cells.

T cell signalingA Jurkat T cell leukemia Nur77-RFP reporter cell line was gener-ated by inserting a 2A-RFP sequence in-frame with the endogenous Nur77 gene by homologous recombination. This Jurkat Nur77-RFP line was further engineered to express various anti-GPRC5D CAR-2A-GFP bicistronic constructs. Cells were plated either alone or 2:1 with MM.1S cells for 20 hours. Antigen-independent (tonic signaling) and antigen-dependent activation were assessed by measuring changes in RFP expression by flow cytometry. Signaling of transduced cells was calculated as the ratio of GFP+RFP+ cells to total GFP+ cells.

Generation of GPCR transient expression libraryA cDNA library of all human GPCRs was generated, and each cDNA was cloned into a transient expression construct including a C-terminus fused GFP. Constructs were transfected into HEK293 cells cultured in suspension. Transfection was confirmed by flow cytometric anal-ysis for GFP, and membrane localization was confirmed manually by fluorescent microscopy. Two hundred two GPCR-transfected HEK293 cell populations with >25% GFP+ and correct localization were used for screening.

High-throughput scFv-GPCR cell-cell binding screenA construct containing GPRC5D scFv clone 109, connected by a long IgG4 spacer to the murine programmed death-ligand 1 (PD-L1) trans-membrane domain with RFP fused to the C terminus, was generated and transfected into HEK293 cells cultured in suspension. On day 2 after transfection, GPCR library and GPRC5D scFv 109–expressing cells were cocultured 1:1 in 96-well plates. Cell-cell conjugates were detected as GFP+RFP+ doublets via automated flow cytometry.

Cell surface protein binding screenExpression vectors for 4417 cDNAs (representing >3500 distinct genes) encoding native human plasma membrane proteins were reverse- transfected into HEK293 cells for screening in duplicate. Cells were grown in microarray spots on glass slides. Transduction efficiency was checked by transducing four spots per slide with pIRES-hEGFR- IRES-ZsGreen1 control vector to confirm a mean ZsGreen signal of at least 1.5-fold greater than background, a previously defined threshold. Cells were fixed, and slides were stained with anti-GPRC5D clone 109 scFv-Fc (6.7 mg/ml) for 1 hour. Binding was detected with Alexa Fluor 647 (A647)–congugated anti-mouse IgG. A647 signal was recorded by automated fluorescence microscopy. Images were analyzed with ImageQuant software. Positive hits were classified as strong, medium, weak, or very weak via visual inspection. The identity of all binding antigens was confirmed by Sanger sequencing of the vector.

Murine experimentsAll in vivo studies were conducted in compliance with Institution-al Animal Care and Use Committee (IACUC)–approved protocols [Memorial Sloan Kettering Cancer Center (MSKCC) 00-05-065 or Juno 15-06]. Six- to 12-week-old NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice (The Jackson Laboratory) were injected subcutaneously with RPMI-8226 cells or systemically via tail vein with OPM2 cells (30) stably transduced with ffLuc. Injection of d-luciferin substrate (Millipore-Sigma) allowed for longitudinal in vivo BLI. A single dose of human genetically modified CAR T cells was administered at the indicated time points. In some cases, T cells were modified with a bicistronic construct including a CAR and membrane-tethered ex-ternal Gaussia luciferase (31), which could be imaged after injection

by guest on July 4, 2020http://stm

.sciencemag.org/

Dow

nloaded from

Page 13: CANCER IMMUNOTHERAPY Copyright © 2019 GPRC5D is a target ...€¦ · multiplex quantitative immunofluorescence (Q-IF) for CD138, BCMA, and GPRC5D on primary bone marrow samples;

Smith et al., Sci. Transl. Med. 11, eaau7746 (2019) 27 March 2019

S C I E N C E T R A N S L A T I O N A L M E D I C I N E | R E S E A R C H A R T I C L E

13 of 14

of coelenterazine substrate (NanoLight Technology). BLI was con-ducted using an IVIS Spectrum, and images were analyzed using Living Image software (PerkinElmer). Survival was graphically rep-resented as Kaplan-Meier curves. The log-rank (Mantel-Cox) test was used to test statistical significance, with P values adjusted for multiple comparisons via Benjamini-Hochberg correction.

NHP experimentsThis study was conducted in compliance with protocol 20127278, approved by the Charles River Laboratories IACUC. Whole blood was drawn from seven cynomolgus monkeys (Charles River Laboratories), and peripheral blood mononuclear cells (PBMCs) were isolated, viably frozen, and shipped. After 13 days, PBMCs were thawed, and T cells were isolated, activated, and transduced (day −9 to day −5). In par-allel, baseline blood and bone marrow were obtained (at 14 days after the initial blood draw). CAR T cell viability, transduction efficiency, and functionality (IFN-g release and lysis of target cells) were as-sessed in vitro, and three animals with highly viable, functional CAR T cells on these in vitro assays were selected for further exper-imentation. Lymphodepleting chemotherapy [cyclophosphamide (40 mg/kg); Cardinal Health] was administered 4 and 2 days before CAR T cell injection; the first dose was accompanied by imiquimod (skin irritant) application. After lymphodepletion, baseline blood and bone marrow samples were collected 1 day before administration of 1 × 107 cGPRC5D-targeted CAR+caspase− autologous T cells/kg body weight [in which the CAR consisted of anti-GPRC5D(108), a long spacer, 4-1BB endodomain, and CD3] as a single dose. On day 4, 1 × 107 autologous aAPC-cGPRC5D+caspase− T cells/kg were injected. Clinical observations, temperatures, weights, and serum and bone marrow evaluations were conducted over the following 21 days, after which animals were humanely euthanized with sodium pento-barbital (Vortech Pharmaceuticals) and necropsy and pathology were performed. Genomic DNA was extracted from cynomolgus PBMC and bone marrow samples on day 21, with cynomolgus anti- GPRC5D CAR T cells serving as a positive CAR-expressing control. A nested two-step PCR was performed using CAR-specific primers. PCR products were visualized on an agarose gel, with an expected CAR band size of 1267 base pairs. Bands were extracted and sequenced to confirm the presence of CAR DNA in the samples.

Statistical analysisStatistical analysis was performed using GraphPad Prism (GraphPad Software). All statistical tests are two-tailed. Unless otherwise indi-cated, log-rank Mantel-Cox test was used for survival curves, and un-paired t test was used for comparison of experimental groups to controls. Original data are in data file S1.

SUPPLEMENTARY MATERIALSwww.sciencetranslationalmedicine.org/cgi/content/full/11/485/eaau7746/DC1Materials and MethodsFig. S1. SDC1 (CD138) and GPRC5D mRNA expression.Fig. S2. Correlation of higher GPRC5D expression by MM cells with shorter progression-free survival.Fig. S3. GPRC5D protein expression on control cells.Fig. S4. Representative flow cytometric analyses of antigen-independent and antigen-specific activation using the Jurkat Nur77-RFP reporter line.Fig. S5. GPRC5D(109) CAR T cell–mediated cytotoxicity of MM cell lines with varying GPRC5D expression.Fig. S6. Lysis of primary bone marrow aspirate MM cells by GPRC5D-targeted CAR T cells.Fig. S7. Cytokine secretion by GPRC5D-targeted CAR T cells upon coculture with GPRC5D-expressing cells.

Fig. S8. Requirement of GPRC5D expression for activation through GPRC5D(109) CAR.Fig. S9. Comparable surface expression of different CAR vectors on primary T cells.Fig. S10. In vivo expansion and antitumor activity of GPRC5D-targeted CAR T cells in an RPMI-8226 MM xenograft model.Fig. S11. Eradication of OPM2BCMA-KO MM cells by GPRC5D-targeted CAR T cells.Fig. S12. Minimal cytokine release by GPRC5D-targeted CAR T cells upon coculture with primary human cell types isolated from normal tissues.Fig. S13. Screening for murine and cynomolgus cross-reactive scFv clones.Fig. S14. Schematic of the NHP study protocol.Fig. S15. Viability and functionality of cynomolgus GPRC5D(108) CAR T cells.Table S1. GPRC5D expression in normal tissue.Table S2. Single chromogenic immunostaining conditions.Table S3. Antibodies and reagents for IHC and RNA-ISH.Table S4. Multiplex immunostaining conditions.Data file S1. Original data.

REFERENCES AND NOTES 1. H. Kantarjian, A. Stein, N. Gökbuget, A. K. Fielding, A. C. Schuh, J.-M. Ribera, A. Wei,

H. Dombret, R. Foà, R. Bassan, Ö. Arslan, M. A. Sanz, J. Bergeron, F. Demirkan, E. Lech-Maranda, A. Rambaldi, X. Thomas, H.-A. Horst, M. Brüggemann, W. Klapper, B. L. Wood, A. Fleishman, D. Nagorsen, C. Holland, Z. Zimmerman, M. S. Topp, Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N. Engl. J. Med. 376, 836–847 (2017).

2. M. L. Davila, I. Riviere, X. Wang, S. Bartido, J. Park, K. Curran, S. S. Chung, J. Stefanski, O. Borquez-Ojeda, M. Olszewska, J. Qu, T. Wasielewska, Q. He, M. Fink, H. Shinglot, M. Youssif, M. Satter, Y. Wang, J. Hosey, H. Quintanilla, E. Halton, Y. Bernal, D. C. G. Bouhassira, M. E. Arcila, M. Gonen, G. J. Roboz, P. Maslak, D. Douer, M. G. Frattini, S. Giralt, M. Sadelain, R. Brentjens, Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med. 6, 224ra25 (2014).

3. J. H. Park, I. Rivière, M. Gonen, X. Wang, B. Sénéchal, K. J. Curran, C. Sauter, Y. Wang, B. Santomasso, E. Mead, M. Roshal, P. Maslak, M. Davila, R. J. Brentjens, M. Sadelain, Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N. Engl. J. Med. 378, 449–459 (2018).

4. S. L. Maude, T. W. Laetsch, J. Buechner, S. Rives, M. Boyer, H. Bittencourt, P. Bader, M. R. Verneris, H. E. Stefanski, G. D. Myers, M. Qayed, B. De Moerloose, H. Hiramatsu, K. Schlis, K. L. Davis, P. L. Martin, E. R. Nemecek, G. A. Yanik, C. Peters, A. Baruchel, N. Boissel, F. Mechinaud, A. Balduzzi, J. Krueger, C. H. June, B. L. Levine, P. Wood, T. Taran, M. Leung, K. T. Mueller, Y. Zhang, K. Sen, D. Lebwohl, M. A. Pulsipher, S. A. Grupp, Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).

5. D. W. Lee, J. N. Kochenderfer, M. Stetler-Stevenson, Y. K. Cui, C. Delbrook, S. A. Feldman, T. J. Fry, R. Orentas, M. Sabatino, N. N. Shah, S. M. Steinberg, D. Stroncek, N. Tschernia, C. Yuan, H. Zhang, L. Zhang, S. A. Rosenberg, A. S. Wayne, C. L. Mackall, T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: A phase 1 dose-escalation trial. Lancet 385, 517–528 (2015).

6. C. J. Turtle, L.-A. Hanafi, C. Berger, M. Hudecek, B. Pender, E. Robinson, R. Hawkins, C. Chaney, S. Cherian, X. Chen, L. Soma, B. Wood, D. Li, S. Heimfeld, S. R. Riddell, D. G. Maloney, Immunotherapy of non-Hodgkins lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci. Transl. Med. 8, 355ra116–355ra116 (2016).

7. S. A. Ali, V. Shi, I. Maric, M. Wang, D. F. Stroncek, J. J. Rose, J. N. Brudno, M. Stetler-Stevenson, S. A. Feldman, B. G. Hansen, V. S. Fellowes, F. T. Hakim, R. E. Gress, J. N. Kochenderfer, T cells expressing an anti–B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma. Blood 128, 1688–1700 (2016).

8. J. N. Brudno, I. Maric, S. D. Hartman, J. J. Rose, M. Wang, N. Lam, M. Stetler-Stevenson, D. Salem, C. Yuan, S. Pavletic, J. A. Kanakry, S. A. Ali, L. Mikkilineni, S. A. Feldman, D. F. Stroncek, B. G. Hansen, J. Lawrence, R. Patel, F. Hakim, R. E. Gress, J. N. Kochenderfer, T cells genetically modified to express an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma. J. Clin. Oncol. 36, 2267–2280 (2018).

9. S. A. Laurent, F. S. Hoffmann, P.-H. Kuhn, Q. Cheng, Y. Chu, M. Schmidt-Supprian, S. M. Hauck, E. Schuh, M. Krumbholz, H. Rübsamen, J. Wanngren, M. Khademi, T. Olsson, T. Alexander, F. Hiepe, H.-W. Pfister, F. Weber, D. Jenne, H. Wekerle, R. Hohlfeld, S. F. Lichtenthaler, E. Meinl, g-Secretase directly sheds the survival receptor BCMA from plasma cells. Nat. Commun. 6, 7333 (2015).

10. A. D. Cohen, A. L. Garfall, E. A. Stadtmauer, S. F. Lacey, E. Lancaster, D. T. Vogl, B. M. Weiss, D. E. Ambrose, A. M. Nelson, F. Chen, G. Plesa, I. Kulikovskaya, V. Gonzalez, M. Gupta, R. M. Young, K. Dengel, L. O’keefe, S. Le, C. Richardson, R. E. Isaacs, J. J. Melenhorst, B. L. Levine, C. H. June, M. C. Milone, Safety and efficacy of B-cell maturation antigen (BCMA)-specific chimeric antigen receptor T cells (CART-BCMA) with cyclophosphamide conditioning for refractory multiple myeloma (MM). Blood 130, 505 (2017).

by guest on July 4, 2020http://stm

.sciencemag.org/

Dow

nloaded from

Page 14: CANCER IMMUNOTHERAPY Copyright © 2019 GPRC5D is a target ...€¦ · multiplex quantitative immunofluorescence (Q-IF) for CD138, BCMA, and GPRC5D on primary bone marrow samples;

Smith et al., Sci. Transl. Med. 11, eaau7746 (2019) 27 March 2019

S C I E N C E T R A N S L A T I O N A L M E D I C I N E | R E S E A R C H A R T I C L E

14 of 14

11. R. Gardner, D. Wu, S. Cherian, M. Fang, L.-A. Hanafi, O. Finney, H. Smithers, M. C. Jensen, S. R. Riddell, D. G. Maloney, C. J. Turtle, Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood 127, 2406–2410 (2016).

12. E. Sotillo, D. M. Barrett, K. L. Black, A. Bagashev, D. Oldridge, G. Wu, R. Sussman, C. Lanauze, M. Ruella, M. R. Gazzara, N. M. Martinez, C. T. Harrington, E. Y. Chung, J. Perazzelli, T. J. Hofmann, S. L. Maude, P. Raman, A. Barrera, S. Gill, S. F. Lacey, J. J. Melenhorst, D. Allman, E. Jacoby, T. Fry, C. Mackall, Y. Barash, K. W. Lynch, J. M. Maris, S. A. Grupp, A. Thomas-Tikhonenko, Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 5, 1282–1295 (2015).

13. T. J. Fry, N. N. Shah, R. J. Orentas, M. Stetler-Stevenson, C. M. Yuan, S. Ramakrishna, P. Wolters, S. Martin, C. Delbrook, B. Yates, H. Shalabi, T. J. Fountaine, J. F. Shern, R. G. Majzner, D. F. Stroncek, M. Sabatino, Y. Feng, D. S. Dimitrov, L. Zhang, S. Nguyen, H. Qin, B. Dropulic, D. W. Lee, C. L. Mackall, CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med. 24, 20–28 (2017).

14. Y. Gao, X. Wang, H. Yan, J. Zeng, S. Ma, Y. Niu, G. Zhou, Y. Jiang, Y. Chen, M. Zhang, Comparative transcriptome analysis of fetal skin reveals key genes related to hair follicle morphogenesis in cashmere goats. PLOS ONE 11, e0151118 (2016).

15. S. Inoue, T. Nambu, T. Shimomura, The RAIG family member, GPRC5D, is associated with hard-keratinized structures. J. Invest. Dermatol. 122, 565–573 (2004).

16. Y.-J. Kim, B. Yoon, K. Han, B. C. Park, Comprehensive transcriptome profiling of balding and non-balding scalps in trichorhinophalangeal syndrome type I patient. Ann. Dermatol. 29, 597–601 (2017).

17. R. Paus, B. J. Nickoloff, T. Ito, A ‘hairy’ privilege. Trends Immunol. 26, 32–40 (2005). 18. X. Wang, A. K. Marr, T. Breitkopf, G. Leung, J. Hao, E. Wang, N. Kwong, N. Akhoundsadegh,

L. Chen, A. Mui, N. Carr, G. L. Warnock, J. Shapiro, K. J. McElwee, Hair follicle mesenchyme-associated PD-L1 regulates T-cell activation induced apoptosis: A potential mechanism of immune privilege. J. Invest. Dermatol. 134, 736–745 (2014).

19. G. E. Westgate, R. I. Craggs, W. T. Gibson, Immune privilege in hair growth. J. Invest. Dermatol. 97, 417–420 (1991).

20. J. Atamaniuk, A. Gleiss, E. Porpaczy, B. Kainz, T. W. Grunt, M. Raderer, B. Hilgarth, J. Drach, H. Ludwig, H. Gisslinger, U. Jaeger, A. Gaiger, Overexpression of G protein-coupled receptor 5D in the bone marrow is associated with poor prognosis in patients with multiple myeloma. Eur. J. Clin. Investig. 42, 953–960 (2012).

21. Y. Cohen, O. Gutwein, O. Garach-Jehoshua, A. Bar-Haim, A. Kornberg, GPRC5D is a promising marker for monitoring the tumor load and to target multiple myeloma cells. Hematology 18, 348–351 (2013).

22. I. Frigyesi, J. Adolfsson, M. Ali, M. K. Christophersen, E. Johnsson, I. Turesson, U. Gullberg, M. Hansson, B. Nilsson, Robust isolation of malignant plasma cells in multiple myeloma. Blood 123, 1336–1340 (2014).

23. M. Hudecek, D. Sommermeyer, P. L. Kosasih, A. Silva-Benedict, L. Liu, C. Rader, M. C. Jensen, S. R. Riddell, The nonsignaling extracellular spacer domain of chimeric antigen receptors is decisive for in vivo antitumor activity. Cancer Immunol. Res. 3, 125–135 (2015).

24. D. Gomes-Silva, M. Mukherjee, M. Srinivasan, G. Krenciute, O. Dakhova, Y. Zheng, J. M. S. Cabral, C. M. Rooney, J. S. Orange, M. K. Brenner, M. Mamonkin, Tonic 4-1BB costimulation in chimeric antigen receptors impedes T cell survival and is vector-dependent. Cell Rep. 21, 17–26 (2017).

25. A. H. Long, W. M. Haso, J. F. Shern, K. M. Wanhainen, M. Murgai, M. Ingaramo, J. P. Smith, A. J. Walker, M. E. Kohler, V. R. Venkateshwara, R. N. Kaplan, G. H. Patterson, T. J. Fry, R. J. Orentas, C. L. Mackall, 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat. Med. 21, 581–590 (2015).

26. N. Watanabe, P. Bajgain, S. Sukumaran, S. Ansari, H. E. Heslop, C. M. Rooney, M. K. Brenner, A. M. Leen, J. F. Vera, Fine-tuning the CAR spacer improves T-cell potency. Oncoimmunology 5, e1253656 (2016).

27. J. F. Ashouri, A. Weiss, Endogenous Nur77 is a specific indicator of antigen receptor signaling in human T and B cells. J. Immunol. 198, 657–668 (2017).

28. E. L. Smith, M. Staehr, R. Masakayan, I. J. Tatake, T. J. Purdon, X. Wang, P. Wang, H. Liu, Y. Xu, S. C. Garrett-Thomson, S. C. Almo, I. Riviere, C. Liu, R. J. Brentjens, Development and evaluation of an optimal human single-chain variable fragment-derived BCMA-targeted CAR T cell vector. Mol. Ther. 26, 1447–1456 (2018).

29. T. E. Williams, S. Nagarajan, P. Selvaraj, C. Zhu, Concurrent and independent binding of Fcg receptors IIa and IIIb to surface-bound IgG. Biophys. J. 79, 1867–1875 (2000).

30. M. A. Lawson, J. M. Paton-Hough, H. R. Evans, R. E. Walker, W. Harris, D. Ratnabalan, J. A. Snowden, A. D. Chantry, R. Cui, NOD/SCID-GAMMA mice are an ideal strain to assess the efficacy of therapeutic agents used in the treatment of myeloma bone disease. PLOS ONE 10, e0119546 (2015).

31. E. B. Santos, R. Yeh, J. Lee, Y. Nikhamin, B. Punzalan, B. Punzalan, K. La Perle, S. M. Larson, M. Sadelain, R. J. Brentjens, Sensitive in vivo imaging of T cells using a membrane-bound Gaussia princeps luciferase. Nat. Med. 15, 338–344 (2009).

32. M. A. King, L. Covassin, M. A. Brehm, W. Racki, T. Pearson, J. Leif, J. Laning, W. Fodor, O. Foreman, L. Burzenski, T. H. Chase, B. Gott, A. A. Rossini, R. Bortell, L. D. Shultz,

D. L. Greiner, Human peripheral blood leucocyte non-obese diabetic-severe combined immunodeficiency interleukin-2 receptor gamma chain gene mouse model of xenogeneic graft-versus-host-like disease and the role of host major histocompatibility complex. Clin. Exp. Immunol. 157, 104–118 (2009).

33. L. Covassin, J. Laning, R. Abdi, D. L. Langevin, N. E. Phillips, L. D. Shultz, M. A. Brehm, Human peripheral blood CD4 T cell-engrafted non-obese diabetic-scid IL2rnull H2-Ab1tm1Gru Tg (human leucocyte antigen D-related 4) mice: A mouse model of human allogeneic graft-versus-host disease. Clin. Exp. Immunol. 166, 269–280 (2011).

34. W. Haso, D. W. Lee, N. N. Shah, M. Stetler-Stevenson, C. M. Yuan, I. H. Pastan, D. S. Dimitrov, R. A. Morgan, D. J. FitzGerald, D. M. Barrett, A. S. Wayne, C. L. Mackall, R. J. Orentas, Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia. Blood 121, 1165–1174 (2013).

35. P. Timmerman, W. C. Puijk, R. H. Meloen, Functional reconstruction and synthetic mimicry of a conformational epitope using CLIPS™ technology. J. Mol. Recognit. 20, 283–299 (2007).

Acknowledgments: We would like to thank S. Yoo, P. Carlson, T. Cox, J. Freeth, C. Hauskins, C. Herr, Y. Ho, C. de Imus, A. Lickteig, S. Morkowski, M. Myers, and L. Torrey for technical assistance; J. Moore (MSKCC Editorial and Grant Services) for editorial support; S. Weil (MSKCC Medical Graphics) for assistance with presentation of data; and M. Blake, C. Davis, C. Hordo, R. Guzman, B. Moyer, R. Ponce, R. Salmon, S. Moulis, J. Schwartz, S. Sequeira, E. Levine, A. Jungbluth, M. Roshal, Q. Gao, A. Dogan, S. Mailankody, S. Monette, S. Giralt, and O. Landgren for scientific and strategic discussions. Funding: E.L.S. is a Special Fellow of The Leukemia & Lymphoma Society and an American Society of Hematology Scholar. Additional support was provided by an MSKCC Technology Development Grant, the Multiple Myeloma Research Foundation, the Lymphoma Research Foundation, and the Society of Immunotherapy for Cancer. S.C.A. reports support from the NIH (R01 HG008325 and R01 CA198095) and the Albert Einstein Cancer Center (P30 CA013330). R.J.B. reports support from the NIH (R01 CA138738-05, P01 CA059350, and PO1 CA190174-01), the annual Terry Fox Run for Cancer Research organized by the Canada Club of New York, Kate’s Team, the Carson Family Charitable Trust, the William Lawrence and Blanche Hughes Foundation, the Emerald Foundation, and the Experimental Therapeutics Center of MSKCC. All MSK investigators acknowledge the MSKCC Core Facilities Grants (P30 CA008748 and U54 OD020355-01). Author contributions: E.L.S. and R.J.B. conceptualized the study. E.L.S., B.S., C.L., K.H., M.S., R.M., J.J., T.J.L., M.G., S.C.A., Y.X., and H.L. chose and developed the methodology. E.L.S., B.S., K.H., M.S., R.M., J.J., T.J.L., K.Y.N., M.G., T.J.P., T.D., M.T.P., J.M.B., C.F.D.L., E.O., E.P., S.C.G.-T., H.L., and Y.X. conducted experiments, validated assays, and analyzed data. I.R., X.W., S.C.A., and C.L. provided technical resources. E.L.S. drafted the paper. B.S., K.H., T.J.L., J.J., M.G., S.C.A., P.W., X.W., and R.J.B. reviewed and edited the paper. E.L.S., B.S., K.H., and P.W. coordinated and managed the project. E.L.S., B.S., K.H., H.-G.W., I.R., S.C.A., C.L., and R.J.B. supervised the study. E.L.S., H.-G.W., S.C.A., and R.J.B. provided funding. Competing interests: E.L.S., R.J.B., and C.L. have licensed intellectual property to and collect royalties from Juno Therapeutics, A Celgene Company. E.L.S., R.J.B., and I.R. receive research funding from Juno Therapeutics, A Celgene Company. E.L.S. and R.J.B. are consultants for Juno Therapeutics, A Celgene Company. E.L.S. is a consultant for Fate Therapeutics. C.F.D.L. has received research funding and is a consultant for Celgene, Janssen, Takeda, and Amgen. P.W., H.L., Y.X., and C.L. are employed by and hold equity in Eureka Therapeutics. I.R. receives research funding from Fate Therapeutics. K.H., J.J., T.J.L., M.T.P., and E.O. are employed by and hold equity in Juno Therapeutics, A Celgene Company. B.S. and M.G. were employed at Juno Therapeutics, A Celgene Company during their involvement in all work within this manuscript. B.S. is currently an employee and equity shareholder of Lyell Immunopharma. M.G. is currently an employee of Poseida Therapeutics and is an equity shareholder of Celgene and Poseida Therapeutics. R.M. and E.P. were employed by MSKCC during their involvement in all work within this manuscript. R.M. is currently employed by AgenTus Therapeutics Inc. E.P. is currently employed by Regeneron. E.L.S., C.L., and R.J.B. acknowledge filed patent application WO2016/090312 “Chimeric antigen receptors targeting g-protein coupled receptor and uses thereof” related to the work disclosed in this paper. All other authors declare that they have no competing interests. Data and materials availability: All data associated with this study are present in the paper or the Supplementary Materials. OPM2, RPMI-8226, and MM1.S human myeloma cell lines expressing ffLuc and guide RNAs for CRISPR KO of GPRC5D and BCMA are available from R.J.B. under a material transfer agreement with MSKCC.

Submitted 19 July 2018Resubmitted 14 December 2018Accepted 8 March 2019Published 27 March 201910.1126/scitranslmed.aau7746

Citation: E. L. Smith, K. Harrington, M. Staehr, R. Masakayan, J. Jones, T. J. Long, K. Y. Ng, M. Ghoddusi, T. J. Purdon, X. Wang, T. Do, M. T. Pham, J. M. Brown, C. F. De Larrea, E. Olson, E. Peguero, P. Wang, H. Liu, Y. Xu, S. C. Garrett-Thomson, S. C. Almo, H.-G. Wendel, I. Riviere, C. Liu, B. Sather, R. J. Brentjens, GPRC5D is a target for the immunotherapy of multiple myeloma with rationally designed CAR T cells. Sci. Transl. Med. 11, eaau7746 (2019).

by guest on July 4, 2020http://stm

.sciencemag.org/

Dow

nloaded from

Page 15: CANCER IMMUNOTHERAPY Copyright © 2019 GPRC5D is a target ...€¦ · multiplex quantitative immunofluorescence (Q-IF) for CD138, BCMA, and GPRC5D on primary bone marrow samples;

CAR T cellsGPRC5D is a target for the immunotherapy of multiple myeloma with rationally designed

Hans-Guido Wendel, Isabelle Riviere, Cheng Liu, Blythe Sather and Renier J. BrentjensLarrea, Eric Olson, Elizabeth Peguero, Pei Wang, Hong Liu, Yiyang Xu, Sarah C. Garrett-Thomson, Steven C. Almo,Ghoddusi, Terence J. Purdon, Xiuyan Wang, Trevor Do, Minh Thu Pham, Jessica M. Brown, Carlos Fernandez De Eric L. Smith, Kim Harrington, Mette Staehr, Reed Masakayan, Jon Jones, Thomas J. Long, Khong Y. Ng, Majid

DOI: 10.1126/scitranslmed.aau7746, eaau7746.11Sci Transl Med

tumors that are resistant to the earlier CARs, and they are safe in mice and primates.The authors demonstrated that CAR T cells against GPRC5D are effective in mouse models, even those with

identified another target antigen for multiple myeloma, called GPRC5D.et al.resistant to the CAR T cells. Smith maturation antigen, but some patients' cancer cells expressed little to none of this antigen and were thereforeresults in multiple myeloma, a bone marrow cancer. These earlier CAR T cells targeted a protein called B cell

Chimeric antigen receptor (CAR) T cells, a type of cell-based immunotherapy, have shown some promisingCARs to drive away multiple myeloma

ARTICLE TOOLS http://stm.sciencemag.org/content/11/485/eaau7746

MATERIALSSUPPLEMENTARY http://stm.sciencemag.org/content/suppl/2019/03/25/11.485.eaau7746.DC1

CONTENTRELATED

http://science.sciencemag.org/content/sci/367/6476/446.fullhttp://stm.sciencemag.org/content/scitransmed/11/511/eaaw9414.fullhttp://stm.sciencemag.org/content/scitransmed/11/499/eaau5907.fullhttp://stm.sciencemag.org/content/scitransmed/11/494/eaau9087.fullhttp://stm.sciencemag.org/content/scitransmed/10/453/eaan0941.fullhttp://stm.sciencemag.org/content/scitransmed/6/224/224ra25.fullhttp://stm.sciencemag.org/content/scitransmed/9/417/eaag1209.fullhttp://stm.sciencemag.org/content/scitransmed/7/288/288ra78.full

REFERENCES

http://stm.sciencemag.org/content/11/485/eaau7746#BIBLThis article cites 35 articles, 9 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the

registered trademark of AAAS. is aScience Translational MedicineScience, 1200 New York Avenue NW, Washington, DC 20005. The title

(ISSN 1946-6242) is published by the American Association for the Advancement ofScience Translational Medicine

of Science. No claim to original U.S. Government WorksCopyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement

by guest on July 4, 2020http://stm

.sciencemag.org/

Dow

nloaded from